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1. Introduction

Two decades have passed since the anti-de Sitter / conformal field theory (AdS/CFT) correspondence
was discovered [1] (see Refs. [2–4] for reviews). This is a theoretical realization of holography [5,6]
and provides an alternative framework to explore strongly coupled gauge theory or quantum gravity
from its dual weakly coupled theory from a computable relation of observables [7,8]. Even though
it is very difficult to give a complete proof for the AdS/CFT correspondence, as is usual with a
strong–weak duality, there have been several attempts to deepen our understanding of the duality by
extending a boundary CFT to a bulk gravitational one [9–11] (see also Refs. [12–14]).

One of the recent focuses in the study of the AdS/CFT correspondence is on how diffeomorphism
invariance is encoded in a boundary CFT and the Einstein equation is reproduced from boundary
data. Such a study was initiated at the linear order of perturbation around the AdS background by
using the entanglement entropy [15–17].A recent study in Ref. [18] elegantly reproduced the Einstein
equation with a fixed gauge at the second order by incorporating a geometrical identity [19] (see
also Ref. [20]). In the holographic renormalization group approach using the local renormalization
group (RG) [21] (see Refs. [22–25], and also Ref. [26] and the references therein for a review), it
was shown in an abstract way that the bulk diffeomorphism invariance is fully encoded in the form
of the Poisson algebra of the RG Hamiltonian by its Wess–Zumino consistency condition [27,28].

In this setting, this paper aims to propose a new scheme to compute bulk dynamical observables
from a boundary CFT by employing a new approach to AdS/CFT incorporating a flow equation
[29–32], which was introduced to smear operators so as to resolve the UV divergence arising in
the coincidence limit [33–35]. One of the virtues in the flow equation approach is to access a dual
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geometry directly even in a non-conformal case, which emerges after the metric operator condenses
[29,30]. This enables one to elucidate that the boundary conformal transformation converts to the
bulk AdS isometry precisely after taking into account the quantum effect at the boundary [31] (see
also Refs. [36,37]), and to provide an AdS geometry whose boundary is a general conformally
flat manifold [32]. In this paper we pursue this direction further in order to compute the quantum
correction to the cosmological constant of the bulk AdS space through the vacuum expectation value
of the Einstein tensor at the next-to-leading order of the 1/n expansion. This may provide a deeper
understanding of the bulk dynamics in the proposal.

The rest of the paper is outlined as follows. In Sect. 2, we explain our approach to define bulk
operators from a boundary CFT containing a scalar primary operator though the flow equation. We
introduce various “quantum operators” here. In Sect. 3, we present our results. We first show that the
vacuum expectation value of the metric operator describes the bulk AdS space at the leading order
of the 1/n expansion for the free massless O(n) vector model. We then calculate the next-to-leading
order corrections and show that, while the metric operator receives no corrections, the Einstein tensor
has 1/n correction proportional to the metric, which can be interpreted as a quantum correction to
the cosmological constant of the AdS space. In Sect. 4, we explain why the quantum correction to
the Einstein tensor is proportional to the metric, using the conformal symmetry of the original d-
dimensional theory. In Sect. 5 we summarize our results and discuss some extensions for the future.
Some technical details are given in appendices. In Appendix A, we set up a covariant formulation
for the 1/n expansion around the background metric. In Appendix B, we calculate various two-point
functions for the metric operator around its vacuum expectation value, which are necessary for the
1/n expansion.

2. Pre-geometric operators

In this section we propose a method to compute dual observables in the flow equation approach. In
this approach we generally construct d-dimensional operators parametrized by a flow time which
become seeds of geometric objects in the bulk theory. We refer to such operators as pre-geometric
operators. Then, physical observables in the bulk are obtained by taking the vacuum expectation
value of the pre-geometric operators.

2.1. Metric operator

In this subsection we illustrate how to construct a metric operator in the flow equation approach;
see also Ref. [31] for more details. For this purpose, as well as for later convenience, we consider
a d-dimensional quantum field theory whose elementary fields are n real scalar fields denoted by
ϕa(x) with a = 1, 2, . . . , n. Then we smear the elementary fields so as to remove the short-distance
singularity, which is described by a flow equation of a generic form given as

∂φa(x; t)

∂t
= − δSf (ϕ)

δϕa(x)

∣∣∣∣
ϕ(x)→φ(x;t)

, φa(x; 0) = ϕa(x). (2.1)

Here, Sf is a smearing functional describing how to smear operators, which is in principle independent
of the action of the original theory controlling the dynamics of ϕ. This defines a procedure to smear
the original field ϕa into a smeared field φa like the block spin transformation of ϕa in a non-local
fashion, and φa is called the flow field corresponding to ϕa. The dynamics generated by the flowed
operators φa(x; t) constitutes a holographic theory with the smearing scale

√
t as the holographic

direction.
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To approach the dual AdS geometry from CFT, it is convenient to consider the free flow, which is
realized by choosing Sf as the free action:

∂φa(x; t)

∂t
= (∂2 − m2)φa(x; t). (2.2)

The solution is given by

φa(x; t) = et(∂2−m2)ϕa(x) = e−tm2

(4π t)d/2

∫
ddy e−(x−y)2/4tϕ(y). (2.3)

The free flow equation is formally the same form as the heat equation, so that the smeared operator is
given by superposing all the original operators inserted at each point of the space with the Gaussian
weight whose standard deviation is the smearing scale

√
t.

Following the standard renormalization group transformation procedure, we (re)normalize the
smeared field φa as

σ a(x; t) := φa(x; t)√〈∑n
a=1 φa(x; t)2〉 , (2.4)

where 〈O(ϕ)〉 denotes the quantum average with the original d-dimensional action S as

〈O(ϕ)〉 := 1

Z

∫
Dϕ O(ϕ) e−S(ϕ), Z =

∫
Dϕ e−S(ϕ). (2.5)

Note that this operator is well defined due to the fact that the flowed operators are free from the
contact singularity.

We can introduce the metric operator, which becomes the metric in the holographic space after
taking the quantum average, as

ĝMN (x; t) := L2
n∑

a=1

∂σ a(x; t)

∂zM

∂σ a(x; t)

∂zN , (2.6)

where L is a constant with the dimension of length, and zM = (xμ, τ) with τ = √
2dt, which will

be regarded as the (d + 1)-dimensional coordinates. The vacuum expectation value (VEV) of the
metric is called the induced metric, which is denoted by gMN (z) := 〈ĝMN (x; t)〉.

It was shown in Ref. [31] that the induced metric gMN (z) becomes a quantum information metric
called the Bures or Helstrom metric for the Hilbert space generated by the flowed fields. This holds
for a general (even non-conformal) quantum field theory.

2.2. Other pre-geometric operators

Once the metric operator is constructed, other pre-geometric operators are defined by replacing the
metric that appears in the definition of the corresponding (classical) geometric object with the metric
operator. For example, the Levi–Civita connection operator is defined by

	̂M
LN (x; t) = 1

2
ĝMP(x; t)(ĝP{N ,L}(x; t) − ĝNL,P(x; t)), (2.7)

where X{x,y} := Xx,y + Xy,x. Curvature operators are defined by

R̂LP
M

N (x; t) =∂[L	̂M
P]N (x; t) + 	̂M[LQ(x; t)	̂Q

P]N (x; t), (2.8)

R̂PN (x; t) =R̂MP
M

N (x; t), (2.9)

R̂(x; t) =ĝPN (x; t)R̂PN (x; t), (2.10)
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where X[x,y] := Xx,y − Xy,x. Finally, the Einstein tensor operator is defined by

ĜMN (x; t) = R̂MN (x; t) − 1

2
ĝMN (x; t)R̂(x; t). (2.11)

3. Induced Einstein tensor and bulk interpretation

In this section we evaluate the VEV of the Einstein tensor operator for a free O(n) vector model at
the next-to-leading order (NLO) in the 1/n expansion. We then interpret the induced Einstein tensor
as the bulk stress–energy tensor through the Einstein equation as

〈ĜAB〉 = T bulk
AB . (3.1)

Since the Einstein tensor is now evaluated on the vacuum, it is natural to think that the corresponding
bulk stress–energy tensor consists only of the cosmological constant term:

T bulk
AB = −
gAB. (3.2)

In what follows, we compute the cosmological constant 
 at the NLO in the 1/n expansion.

3.1. Leading order

Let us first compute induced geometric observables for a free O(n) vector model at the leading
order (LO) in the 1/n expansion. For this computation we can use the result in Ref. [31], where we
computed the induced metric for an arbitrary CFT that contains a real scalar primary operator ϕ(x)
of a general conformal dimension �. The two-point function of the normalized field σ is

〈σ a(x; t)σ b(y; s)〉CFT = δab

n

(
2
√

ts

t + s

)�

F

(
(x − y)2

t + s

)
, (3.3)

where F(0) = 1 and 2dF ′(0) = −�. Explicitly, F(x) is given by

F(x) = 	(d/2)

	(�)	(d/2 − �)

∫ 1

0
dv v�−1(1 − v)d/2−�−1e−xv/4. (3.4)

In the current case, � = (d − 2)/2.
The VEV of the induced metric becomes

gAB = L2�

τ 2 δAB. (3.5)

Using the factorization in the large-n limit as 〈ĝABĝCD〉 = gABgCD, etc., we then obtain the induced
Levi–Civita connection at the LO as

	A
BC = −1

τ
ρAτ

BC , ρAτ
BC := δBτ δAC + δCτ δAB − δAτ δBC ,

	A
BC,D = 1

τ 2 ρ
Aτ ,D
BC , ρ

Aτ ,D
BC := δτ

BDδAC + δτ
CDδAB − δτ

ADδBC , δτ
AB := δAτ δBτ . (3.6)

Induced curvatures at the LO are computed as

RAB
C

D = −gC[AgB]D
L2�

, RAB = − d

L2�
gAB, R = −d(d + 1)

L2�
, (3.7)
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which determine the VEV of the Einstein tensor at the LO as

GAB = d(d − 1)

2L2�
gAB. (3.8)

Therefore, the cosmological constant of the dual geometry is evaluated through Eq. (3.2) at the LO
as


 = −d(d − 1)

2L2�
+ O

(
1

n

)
, (3.9)

which implies that the AdS radius of the dual geometry is given at LO by L2
AdS = L2� + O(1/n).

3.2. Next-to-leading order

We proceed to the next-to-leading order computation of the induced Einstein tensor. For this purpose
we employ a covariant perturbation expansion: that is, we expand an arbitrary operator X̂ built from
the metric operator ĝAB around the vacuum by plugging in ĝAB = gAB + ĥAB and expanding in powers
of the fluctuation field ĥAB. We indicate terms in this expansion with a certain power of ĥAB with the
corresponding number of dots, like

X̂ = X + Ẋ + Ẍ + · · · . (3.10)

Terms with increasing numbers of ĥAB fields are more and more suppressed in the 1/n expansion.
Then, the VEV of the operator X̂ reduces to that of correlation functions of the fluctuation field ĥ.
In this notation the Einstein tensor at the NLO is given by

〈G̈AB〉 = 〈R̈AB〉 − 1

2
〈ĥABṘ〉 − 1

2
gAB〈R̈〉. (3.11)

We summarize the results of this expansion in Appendix A.
For a free O(n) vector model, the result in Eq. (3.5) does not receive any correction. Using results

for two-point functions of ĥAB that are calculated in Appendix B, we obtain

〈R̈AB〉 = 1

n(d + 2)τ 2 (χABCC − χACBC) = − d

nτ 2 δAB, (3.12)

−1

2
〈ĥABṘ〉 = 1

n(d + 2)τ 2 (χABCC − χACBC) + 1

n
RAB = − 2d

nτ 2 δAB, (3.13)

and

gAB〈R̈AB〉 = 1

n(d + 2)L2�
(χCCDD − χCDCD) = 〈ĥABṘAB〉, (3.14)

〈ĥACĥ B
C 〉RAB = −d(d + 1)(d + 2)

nL2�
, (3.15)

so that we have

− 1

2
gAB〈R̈〉 = d(d + 1)(d + 2)

2nτ 2 δAB, (3.16)

where we use

χABCC = (� + 1){(d + 5)δAB + 2(d + 2)δτ
AB} − (d + 1)(d + 2)δAB, (3.17)

χACBC = (� + 1){(d + 5)δAB + 2(d + 2)δτ
AB} − (d + 2)δAB, (3.18)

χCDCD = (� + 1){(d + 5)(d + 1) + 2(d + 2)} − (d + 1)(d + 2), (3.19)
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and the definition of χABCD can be found in Appendix B. Finally, we obtain1

〈G̈AB〉 = (d − 1)d(d + 4)

2nL2�
gAB. (3.20)

This final result is manifestly covariant, even though the calculation in the intermediate step contains
non-covariant terms. This is a non-trivial check of our result.

As a result, the induced Einstein tensor evaluated at the vacuum is given by

〈ĜAB〉 = d(d − 1)

2L2�
gAB

(
1 + d + 4

n

)
+ O

(
1

n2

)
. (3.21)

As asserted at the beginning of this section, this quantity is related to the bulk stress energy tensor
through the bulk Einstein equation, Eq. (3.1). Through Eq. (3.2), the cosmological constant and the
AdS radius are determined at the NLO as


 = −d(d − 1)

2L2�

(
1 + d + 4

n

)
+ O

(
1

n2

)
, L2

AdS = L2�

(
1 − d + 4

n

)
+ O

(
1

n2

)
. (3.22)

Since 〈ĝAB〉 has no NLO corrections and thus has the same classical relation to the Einstein tensor
at the LO, the 1/n correction to the cosmological constant comes purely from the quantum effect to
the Einstein tensor of the dual gravity theory to the O(n) free vector model, which is conjectured as
the free higher-spin theory on AdSd+1 [38].

4. Symmetry constraints

Finally, we discuss our results in terms of the conformal symmetry or AdS isometry. In the previous
publications [31,32], we showed that the conformal transformation converts to theAdS isometry after
taking the quantum average. In what follows, we show that pre-geometric operators computed at the
1/n level in the previous sections become covariant under the symmetry after taking the quantum
average.

For this purpose, as in Refs. [31,32], we divide the infinitesimal conformal transformation for the
σ(x; t) as

δconf σ(x; t) = δdiff σ(x; t) + δextraσ(x; t), (4.1)

where δdiff generates the isometry of the AdS space while δextra is the remaining contribution, which
was shown to vanish after taking the vacuum expectation value for the metric operator. Then, in order
to show that a pre-geometric operator T̂ behaves in a covariant manner under the AdS isometry, we
need to show that 〈δdiff T̂ 〉 = 0, which is equivalent to 〈δextraT̂ 〉 = 0.

1 This result was checked in a slightly different computation by

〈
G̈MN

〉 = 〈R̈PQ

〉
(δP

M δ
Q
N − 1

2
gMN gPQ) + 1

2
(−gPQδR

M δS
N + gMN gRPgSQ)

〈
ĥRS ṘPQ

〉

+ 1

2

〈
ĥMN ĥPQ

〉
RPQ − 1

2
gMN

〈
ĥQPĥR

P

〉
RQR,

where
〈
ĥRS ṘPQ

〉
is evaluated as

〈
ĥRS ṘPQ

〉
= −g{RQgS}P + 2gRSgPQ

n�
.
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To this end, explicit expressions for δdiff σ(x; t) and δextraσ(x; t) are not necessary, but we only
need the operation of δextra on the two-point function, which is given by

〈δextra{σ(x1; t1)σ (x2; t2)}〉 = −16d

(
2τ1τ2

τ 2
1 + τ 2

2

)�
(τ 2

1 − τ 2
2 )

(τ 2
1 + τ 2

2 )2
b · (x1 − x2)(x1 − x2)

2

× F ′′
(

2d(x1 − x2)
2

τ 2
1 + τ 2

2

)
. (4.2)

Here, bμ is the parameter of an infinitesimal conformal transformation. Using this, we have

〈δextra{ĥAB;EĥCD;F}〉 = −C(τ )bμ

[
δBD

{
δEτ ρ

d
ACFμ + δFτ ρ

d
ACEμ + δAτ ρ

d
CEFμ + δCτ ρ

d
AEFμ

}
+ (C ↔ D) + (A ↔ B) + both

]
, (4.3)

where

C(τ ) := 16dL4�F ′′(0)

nτ 5 , ρd
ABCμ := δτ

ABδCμ + δτ
ACδBμ + δτ

BCδAμ. (4.4)

We need to consider

〈R̈AB〉 = τ 4

4L4�2

[
〈ĥCC;D(ĥDA;B + ĥDB;A − ĥBA;D)〉 + 2〈ĥAC;DĥBD;C − ĥAD;CĥBD;C)〉

+ 〈ĥCD;AĥCD;B〉
]

, (4.5)

〈ĥABṘ〉 = τ 4

L4�2 〈ĥAB;C(ĥDD;C − ĥCD;D)〉 + dτ 2

L4�2 〈ĥABĥCC〉. (4.6)

Equation (4.3) leads to

〈δextra{ĥCC;DĥDA;B}〉 = −4(d + 2)C(τ ) [δAτ bB + bAδBτ ]

= 〈δextra{ĥCC;DĥAB;D}〉 = 〈δextra{ĥCD;DĥAB;C}〉, (4.7)

〈δextra{ĥAC;DĥBD;C}〉 = −3(d + 2)C(τ ) [δAτ bB + bAδBτ ] , (4.8)

〈δextra{ĥAD;CĥBD;C}〉 = −(d + 3)(d + 2)C(τ ) [δAτ bB + bAδBτ ] , (4.9)

〈δextra{ĥCD;AĥCD;B}〉 = −2(d + 2)(d + 2)C(τ ) [δAτ bB + bAδBτ ] , (4.10)

where bτ = 0. Then we obtain

〈δextraR̈AB〉 = τ 4C(τ )

4L4�2 (d + 2) [δAτ bB + bAδBτ ]

× {−4 − 4 + 4 + 2(−3 + d + 3) − 2(d + 2)} = 0, (4.11)

〈δextra{ĥABṘ}〉 = τ 4C(τ )

L4�2 (d + 2) [δAτ bB + bAδBτ ] (4 − 4) = 0. (4.12)

These guarantee that each term is covariant under isometry, and thus proportional to gAB, as seen in
the previous section.
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5. Discussion

In this paper, we have constructed the holographic space from the primary scalar field in a free
massless O(n) vector model by a flow equation at the next-to-leading order in the 1/n expansion.
We investigated some properties of the bulk theory by calculating the induced Einstein tensor in the
1/n expansion. After defining pre-geometric operators, we have calculated the VEV of the Einstein
tensor operator at the NLO in the 1/n expansion. As a result, the NLO correction appeared in the
VEV of the Einstein operator but not in the induced metric gAB. We therefore regarded the NLO
correction of the induced Einstein operator as the quantum correction to the cosmological constant
from the dual gravity theory on AdS space, which is proposed as the free higher-spin theory [38].
We have also shown that the stress–energy tensor for the vacuum state is covariant and proportional
to gAB, thanks to the conformal symmetry of the boundary theory, which turns into the bulk isometry
of the AdS space.

In our approach, the bulk AdS radial direction emerges as the smearing scale for the boundary
CFT. It is important to clarify how to determine the whole structure of the bulk theory. The bulk
stress–energy tensor corresponding to the vacuum state calculated in this paper may give a hint to
constructing the bulk theory.

In this paper we computed the one-loop correction to the cosmological constant in the bulk theory,
which is supposed to be the free higher-spin theory [38], from the dual free O(n) vector model
in the proposed framework. On the other hand, one-loop tests of higher-spin/vector model duality
have already appeared in Refs. [39,40] (see also Refs. [41–45]). Their intriguing result is that the
logarithmic divergence in the one-loop correction to the free energy cancels for higher-spin gauge
theories employing a standard zeta function regularization in accordance with the analysis of sphere
partition functions of their dual vector models. In particular, it was confirmed that the finite part
vanishes for a free higher-spin theory, with its scalar field obeying the standard boundary condition.
In the flow equation approach, the one-loop correction to the cosmological constant, which presum-
ably corresponds to that of the vacuum energy, is free from UV divergence without specifying any
regularization scheme. This is because the computation of the one-loop correction reduces to the
two-point function of the flowed field, which has no UV divergence by construction. Our result for
the finite part correction to the cosmological constant for a free higher-spin theory does not vanish
in any dimension. It is highly important to fill the gap between these results, which could be done
by identifying a bulk local operator in the flow equation approach.

The next important step is to evaluate the bulk stress–energy tensor corresponding to excited states.
Indeed, we can easily generalize the computation of the VEV for the Einstein operator presented in
this paper to that of arbitrary states as follows. We consider a set of states {|O〉} in CFT with the inner
product 〈O|O′〉 = δO,O′ , where the meaning of δO,O′ depends on the type of states. Then we evaluate
the matrix element of the Einstein operator in the 1/n expansion by using the covariant perturbation
given in Appendix A as

〈O|ĜAB|O′〉 = 〈O|GAB|O′〉 + 〈O|ĠAB|O′〉 + 〈O|G̈AB|O′〉 + · · ·
= {

GAB + 〈0|G̈AB|0〉} δO,O′ + 〈O|ĠAB|O′〉 + 〈O|G̈AB|O′〉c + O

(
1

n2

)
, (5.1)

where 〈O|X̂ |O′〉c := 〈O|X̂ |O′〉 − 〈0|X̂ |0〉δO,O′ for an arbitrary operator X̂ . As asserted in Sect. 3,
we interpret the matrix element of the Einstein operator as the bulk stress–energy tensor through
Eq. (3.1), which we may call the quantum Einstein equation. It is natural to interpret in this way that the
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corresponding bulk stress–energy tensor consists of the cosmological constant and the contribution
from the matter field in the bulk:

T bulk
AB = −
gmat

AB + T mat
AB , gmat

AB := 〈O|ĝAB|O′〉. (5.2)

Notice that we have already calculated the first term in Eq. (5.1) as

GAB + 〈0|G̈AB|0〉 = −
gAB, 
 = −d(d − 1)

2L2�

(
1 + d + 4

n

)
+ · · · , (5.3)

which represents the vacuum contribution. Therefore, the contribution of the matter field to the bulk
stress–energy tensor is given by

T mat
AB = 〈O|ĠAB|O′〉 + 〈O|G̈AB|O′〉c + 
〈O|ĝAB|O′〉c. (5.4)

It is very important to compute this bulk stress–energy tensor in the construction of the dual bulk
theory beyond the vacuum or geometry level. We are currently calculating T mat

AB , and will report the
result elsewhere.

This program can be extended to the case of the λϕ4 theory in three dimensions. In the previous
investigation [46], while the induced metric describes the AdS4 space at the leading order, the next-
to-leading-order corrections make the space asymptotically AdS only in the UV and IR limits with
different radii. These two limits correspond to the asymptotically free UV fixed point and the Wilson–
Fischer IR fixed point of the boundary theory, respectively. It would be interesting to investigate how
the stress–energy tensor in the bulk behaves from UV to IR at the NLO. We expect that this behaves in
a similar manner to the one computed from the corresponding solution for the dual bulk (higher-spin)
theory.

We hope to report on the progress with these issues in the near future.
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Appendix A. Covariant perturbation

We introduce the fluctuation of the metric operator around its VEV as

ĝAB = gAB + ĥAB, (A.1)

where gAB = 〈
ĝAB

〉
. Note that ĥAB = ĥBA. The inverse is thus expanded as

ĝAB = gAB − gACĥCDgDB + · · · = gAB − ĥAB + ĥACĥ B
C + · · · , (A.2)

where the space-time indices are raised or lowered by the VEV of the metric so that ĥAB =
gACĥCDgDB and ĥ B

C = ĥCDgDB.
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We then expand the Levi–Civita connection as

	̂A
BC = 	A

BC + 	̇A
BC + 	̈A

BC + · · · , (A.3)

where

	̇A
BC = 1

2
gAD

(
ĥD{B;C} − ĥCB;D

)
, ĥAB;C := ĥAB,C − 	D

CAĥDB − 	D
CBĥAD. (A.4)

Similarly, we have

	̈A
BC = −1

2
ĥAD

(
ĥD{B;C} − ĥCB;D

)
. (A.5)

Riemann curvatures are expanded as

R̂A
BCD = RA

BCD + ṘA
BCD + R̈A

BCD + · · · , (A.6)

R̂AB = RAB + ṘAB + R̈AB + · · · , (A.7)

R̂ = R + Ṙ + R̈ + · · · , (A.8)

where

RA
BCD = 	A

B[D,C] + 	A
E[C	E

BD], (A.9)

ṘA
BCD = 	̇A

B[D,C] + 	̇A
E[C	E

BD] + 	A
E[C	̇E

BD] = 	̇A
B[D;C], (A.10)

R̈A
BCD = 	̈A

B[D;C] + 	̇A
E[C	̇E

BD], (A.11)

RAB = 	C
A[B,C] + 	C

E[C	E
AB], (A.12)

ṘAB = 	̇C
A[B;C], (A.13)

R̈AB = 	̈C
A[B;C] + 	̇C

E[C	̇E
AB], (A.14)

R = gABRAB, (A.15)

Ṙ = gABṘAB − ĥABRAB, (A.16)

R̈ = gABR̈AB − ĥABṘAB + ĥACĥ B
C RAB. (A.17)

Using Eqs. (A.4) and (A.5), we have

ṘAB = 1

2

(
ĥC{A;B}C − ĥBA

;C
C − ĥC

C ;AB

)
, (A.18)

R̈AB = 1

4
gCEgFD

{
−2

[
ĥEF

(
ĥD{A;B} − ĥBA;D

)]
;C

+ 2
[
ĥEF

(
ĥD{A;C} − ĥCA;D

)]
;B

+ ĥEC;D

(
ĥF{A;B} − ĥBA;F

)
− (ĥE{D;B} − ĥBD;E)(ĥF{A;C} − ĥCA;F)

}
. (A.19)

At the next-to-leading order, the Einstein tensor is evaluated as

〈G̈AB〉 = 〈R̈AB〉 − 1

2
〈ĥABṘ〉 − 1

2
gAB〈R̈〉, (A.20)
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where

〈ĥABṘ〉 = 〈ĥAB{gGH gCF(ĥFG;HC − ĥHG;FC) − ĥCDRCD}〉,
〈R̈〉 = gAB〈R̈AB〉 − 1

2
gAEgBF gCD

×
{〈

ĥEF

(
ĥD{A;B}C − ĥBA;DC − ĥDC;AB

)
〉 − 2RAB〈ĥEDĥCF

〉}
.

Appendix B. Two-point functions of the metric fluctuation

In this appendix we calculate various two-point functions of ĥAB.

Appendix B.1. Preparation

We define

G(zi, zj) := L2f (τj, τj)F

(
2d(xi − xj)

2

τi + τj

)
, (B.1)

f (x, y) = g(x, y)�, g(x, y) := 2xy

x2 + y2 , (B.2)

where

F(0) = 1, F ′(0) = − �

2d
, F ′′(0) = �(� + 1)

4d(d + 2)
. (B.3)

Derivatives of f at x = y are given by

fx(x, x) = fy(x, x) = 0, fxx(x, x) = −�

x2 , fxy(x, x) = �

x2 , (B.4)

fxxx(x, x) = 3�

x3 , fxxy(x, x) = −�

x3 , (B.5)

fxxyy(x, x) = 3�(� + 1)

x4 , fxxxy(x, x) = −3ρ2

x4 , (B.6)

where the subscripts x and y denote derivatives with respect to these variables.

Appendix B.2. The connected part of propagators

The simplest one can be calculated from G as follows:

〈ĥABĥCD〉 = 〈ĝABĝCD〉c = 1

n
∂1

A∂2
B∂3

C∂4
DG(z1, z3)G(z2, z4)

∣∣∣∣
zi=z

+ (C ↔ D)

= 1

n

L4�2

τ 4 (δACδBD + δADδBC), (B.7)

where

∂1
A∂3

CG(z1, z3)
∣∣
z1=z3

= L2�

τ 2 δAC . (B.8)

Similarly,

〈ĥAB,EĥCD〉 = 〈ĝAB,EĝCD〉c = 1

n
∂1

E∂1
A∂2

CG�(z1, z2)∂
1
B∂2

DG�(z1, z2)

∣∣∣∣
z1=z2=z

+ (C ↔ D) + (A ↔ B) + ({A, C} ↔ {B, D}), (B.9)
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〈ĥAB,EĥCD,F 〉 = 1

n
∂1

E∂1
A∂2

CG(z1, z2)∂
1
F∂1

D∂2
BG(z1, z2)

∣∣∣∣
z1=z2=z

+ 1

n
∂1

E∂2
F∂1

A∂2
CG(z1, z2)∂

1
D∂2

BG(z1, z2)

∣∣∣∣
z1=z2=z

+ (C ↔ D) + (A ↔ B) + ({A, C} ↔ {B, D}), (B.10)

〈ĥAB,EF ĥCD〉 = 1

n
∂1

E∂1
A∂2

CG(z1, z2)∂
1
F∂1

B∂2
DG(z1, z2)

∣∣∣∣
z1=z2=z

+ 1

n
∂1

E∂1
F∂1

A∂2
CG(z1, z2)∂

1
B∂2

DG(z1, z2)

∣∣∣∣
z1=z2=z

+ (C ↔ D) + (A ↔ B) + ({A, C} ↔ {B, D}). (B.11)

We now evaluate derivatives of G as

∂1
E∂1

A∂2
CG(z1, z2)

∣∣
z1=z2=z = −L2�

τ 3 ρCτ
AE , (B.12)

∂1
C∂2

D∂1
A∂2

BG(z1, z2)
∣∣
z1,2=z = L2�

τ 4

[
3(� + 1)δτ

ABCD + (� − 1)
(
δτ

ACδd
BD + δτ

BDδd
AC

)
+ (� + 2)

(
δτ

ABδd
CD + δτ

ADδd
BC + δτ

CDδd
AB + δτ

BCδd
AD

)

+ d

d + 2
(� + 1)

(
δd

ABδd
CD + δd

ADδd
BC + δd

ACδd
BD

)]
(B.13)

= L2�

(d + 2)τ 4

[
(� + 1)(d ρABCD − 6δτ

ABCD)

+ (2� + d + 4)
(
δτ

ABδCD + δτ
ADδBC + δτ

CDδAB + δτ
BCδAD

)
+ (2� − 2d − 2)

(
δτ

ACδBD + δτ
BDδAC

)]
, (B.14)

with δτ
AB := δAτ δBτ , δd

AB := δAB − δτ
AB, ρABCD := δABδCD + δACδBD + δADδBC , δτ

ABCD := δτ
ABδτ

CD,
and

∂1
C∂1

D∂1
A∂2

BG(z1, z2)
∣∣
z1,2=z = −L2�

τ 4

[
3�δτ

ABCD + (� − 1)
(
δτ

ACδd
BD + δτ

ADδd
BC + δτ

CDδd
AB

)
+ (� + 2)

(
δτ

ABδd
CD + δτ

BCδd
AD + δτ

BDδd
AC

)

+ d

d + 2
(� + 1)

(
δd

ABδd
CD + δd

ADδd
BC + δd

ACδd
BD

)]
(B.15)

= − L2�

(d + 2)τ 4

[
(� + 1)(d δABCD − 6δτ

ABCD)

+ (2� + d + 4)
(
δτ

ABδCD + δτ
BCδAD + δτ

BDδAC
)

+ (2� − 2d − 2)
(
δτ

CDδAB + δτ
ADδBC + δτ

ACδBD
)]

. (B.16)
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Combining the above results, we finally obtain

〈ĥABĥCD〉 = 1

n

L4�2

τ 4 (δACδBD + δADδBC) , (B.17)

〈ĥAB;EĥCD〉 = 0, (B.18)

〈ĥAB;EĥCD;F 〉 = −〈ĥAB;EF ĥCD〉 = 1

n

L4�2

(d + 2)τ 6 [χAECFδBD + χAEDFδBC

+ χBECFδAD + χBEDFδAC], (B.19)

where

χAECF := 2(� + 1)

{
d

2
ρAECF − 3δτ

AECF + ρτ
AECF

}
− (d + 2)δAEδCF , (B.20)

ρAECF := δAEδCF + δACδEF + δAFδCE , (B.21)

ρτ
AECF := δτ

AEδCF + δAEδτ
CF + δτ

ACδEF + δACδτ
EF + δτ

AFδCE + δAFδτ
CE . (B.22)
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