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We argue that the anti-de Sitter (AdS) geometry in d + 1 dimensions naturally emerges from an
arbitrary conformal field theory in d dimensions using the free flow equation.We first show that an
induced metric defined from the flowed field generally corresponds to the quantum information
metric, called the Bures or Helstrom metric, if the flowed field is normalized appropriately.
We next verify that the induced metric computed explicitly with the free flow equation always
becomes the AdS metric when the theory is conformal. We finally prove that the conformal
symmetry in d dimensions converts to the AdS isometry in d +1 dimensions after d-dimensional
quantum averaging. This guarantees the emergence ofAdS geometry without explicit calculation.
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1. Introduction The anti-de Sitter/conformal field theory (AdS/CFT) (or gravity/gauge theory)
correspondence [1] is a promising tool to crack a hard problem in strongly coupled gauge theories
(see Refs. [2–4] for some reviews), but is still mysterious even after many pieces of evidence and
application appeared after the first proposal. Although the correspondence may be a manifestation of
the closed string/open string duality, an alternative understanding might exist due to its holographic
property.

One important mystery is the precise mechanism by which the AdS radial direction emerges from
CFT. It may be common sense that the AdS radial direction is emergent as a renormalization scale
of dual CFT as both behave similarly under dilatational symmetry [1], and this viewpoint works for
renormalization group flows triggered by relevant deformations [5,6]. However, a direct approach
to search for the Wilsonian cutoff corresponding to the sharp cutoff on the AdS radial direction [7]
is still far from a clear answer, since the ordinary Wilsonian renormalization gives rise to non-local
interaction in the bulk interpretation (see also Ref. [8]).1

While several approaches have been developed to grab the tail of the AdS radial direction and
construct bulk dynamics from CFT [10–13] (see also Refs. [14,15]), one of the present authors,
together with his collaborators, has proposed an alternative method to define a geometry from
a quantum field theory and explicitly calculated the metric from several quantum field theories
[16–18]. In Ref. [16], the method was proposed and applied to the O(n) nonlinear sigma model in

1 This situation may drastically change in the AdS3/CFT2 correspondence. A clear dictionary was proposed
in Ref. [9].
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2 dimensions, and the 3D metric in the large-n limit was shown to describe an AdS space in the
massless limit. In Ref. [17], it was shown in the large-n limit that the induced metric describes an
AdSd+1 space with d ≥ 3 in the UV limit and with d ≥ 1 in the IR limit, if the method is applied
to the massive O(n) ϕ4 model and an appropriate normalization is introduced for the flowed field.
In Ref. [18], the large-n expansion was performed for the massless O(n) ϕ4 model in 3 dimensions.
While the induced metric describes the AdS4 space at the leading order, the next-leading-order
corrections make the space asymptotically AdS only in the UV and IR limits with different radii.

By observing that the induced metric always gives the AdS metric when the theory is conformal, it
is natural to expect that symmetry plays a key role behind these results. In this letter, we investigate
a direct relation between CFT and the AdS metric in this framework. The goal of this letter is to
generalize the previous results to an arbitrary conformal field theory incorporating the symmetry
argument.

The rest of this letter is organized as follows. In Sect. 1, after a brief explanation of the proposal of
Ref. [16], we first show that our metric corresponds to the information metric, stressing the importance
of the field normalization introduced in Ref. [17]. In Sect. 2, we explicitly derive the AdS metric
directly from the CFT. We then prove that the induced metric in d + 1 dimensions possesses the
isometry of the AdS space as a consequence of the conformal symmetry in d dimensions. Section 6
is devoted to the summary and discussion.

2. Gradient flow and information metric In this section, we briefly review the proposal in
Refs. [16,17] to define a d + 1-dimensional induced metric from a d-dimensional quantum field
theory. We also show that the metric defined in this way with appropriate normalization can be
interpreted as a quantum information metric, called the Bures or Helstrom metric.

Gradient flow and induced metric We consider an n real component scalar field ϕ(x) in d
dimensions, whose quantum dynamics is controlled by the action functional S(ϕ). The flowed field
φ is defined from ϕ with the initial condition φ(x; 0) = ϕ(x) through the flow equation as

∂φa(x; t)

∂t
= − δSf (ϕ)

δϕa(x)

∣∣∣∣
ϕ(x)→φ(x;t)

, (1)

where the flow time t has the (length)2 dimension, x is the d-dimensional coordinate system, a =
1, 2, . . . , n labels a component of the scalar field, and Sf (ϕ) is an appropriate action for ϕ, which is
not necessarily related to the original action S(ϕ) in general. In particular, when they coincide, the
flow is called the gradient flow [19–22]. In the case of the free flow (i.e., Sf is the free action), the
flow equation becomes the heat equation. Thus the flow equation defines a procedure to smear the
original field ϕ into a smeared field φ, the correlation functions of which are all finite at t > 0.

A d + 1-dimensional metric operator is given by

ĝMN (x; t) := R2
n∑

a=1

∂σ a(x; t)

∂zM

∂σ a(x; t)

∂zN , (2)

where R is a constant with the length dimension, and zM = (xμ, τ) with τ = √
2dt, which is regarded

as the d + 1-dimensional coordinates after d-dimensional quantum averaging, and σ a(x; t) is the
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(dimensionless) normalized flowed field defined as

σ a(x; t) := φa(x; t)√〈∑n
a=1 φa(x; t)2〉S

. (3)

Here 〈O(ϕ)〉S denotes the quantum average with the d-dimensional action S, given by

〈O(ϕ)〉S := 1

Z

∫
Dϕ O(ϕ) e−S(ϕ), Z =

∫
Dϕ e−S(ϕ). (4)

Since σ a(x; t) always satisfies
n∑

a=1

〈
σ a(x; t)σ a(x; t)

〉
S = 1, we call this normalization condition the

nonlinear sigma model (NLSM) normalization, the importance of which will become clear in the next
subsection. The vacuum expectation value (VEV) of the metric is denoted as gMN (z) := 〈ĝMN (x; t)〉S ,
the fluctuations of which are suppressed in the large-n limit (see Refs. [16–18] for more details).

Information metric In this subsection, we show that gMN (z) defined in the previous subsection
is equivalent to a quantum information metric, called the Bures (or Helstrom) metric. The NLSM
normalization is important to show this.

The Bures metric for the density matrix is defined from the infinitesimal distance between two
density matrices ρ and ρ + dρ as

D(ρ, ρ + dρ)2 = 1

2
tr(dρ G), (5)

where G is the Hermitian 1-form operator implicitly given by ρ G + G ρ = dρ. In particular, for the
density matrix ρ of a pure state, the Hermitian operator is determined as G = dρ since ρ2 = ρ.

In order to apply to our case, we consider an eigenstate of the position operator as well as the flow
time one denoted by |z〉 = |(x, τ)〉 and define the inner product of the state as

〈z|w〉 :=
n∑

a=1

〈σ a(x; t)σ a(y; s)〉S , w = (y,
√

2ds). (6)

Notice that the NLSM normalization guarantees 〈z|z〉 = 1. Then the information metric for this pure
state is computed as

R2D(ρz, ρz+dz)
2 = gMN (z)dzM dzN , (7)

where ρz = |z〉〈z|, and we used 〈σ(x; t) · ∂M σ(x; t)〉S = 0 and

〈σ(x; t) · ∂M ∂N σ(x; t)〉S = −〈∂M σ(x; t) · ∂N σ(x; t)〉S

with A · B := ∑n
a=1 AaBa. Our metric gMN (z) defines a distance in the space of the density matrices

made of the pure states (in units of R). In particular, when the action S of the original theory has
O(n) symmetry, such pure states defined above in an abstract way may be given by

∑
a σ a(x; t)|0〉.2

2 In the case of the O(n) invariant mixed state ρz := ∑
a σ a(x; t)|0〉〈0|σ a(x; t), we have G = ndρz from

ρ2
z = ρz/n.
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3. AdS isometry from conformal symmetry In this section, we directly relate arbitrary con-
formal field theory in the flat d-dimensional space-time with the AdS metric in d + 1 dimensions.3

We here assume that the CFT contains a real scalar primary operator ϕ(x) of a general conformal
dimension 	 without specifying any concrete models for CFT. In this section, we are interested in
the VEV of the metric operator, which determines the classical geometry induced from this primary
operator, though its “quantum” fluctuations around the VEV exist for n = 1 in this case.

AdS metric from CFT We start with the free generally massive flow equation with n = 1:

∂φ(x; t)

∂t
= (∂2 − m2)φ(x; t), (8)

where ∂2 = ημν∂μ∂ν . This is easily solved as

φ(x; t) = et(∂2−m2)ϕ(x). (9)

The two-point function of φ is evaluated as

G0(x; t|y; s) := 〈φ(x; t)φ(y; s)〉CFT

= e−(t+s)m2
e(t∂2

x +s∂2
y )〈ϕ(x)ϕ(y)〉CFT, (10)

where we have used the subscript CFT instead of S, since the action is not specified. The Poincaré
invariance and the scale transformation of ϕ with ϕ(λx) = λ−	ϕ(x) fix the form of G0 such that

G0(x; t|y; s) = e−(t+s)m2

(t + s)	
F0

(
(x − y)2

t + s

)
, (11)

where F0 is a certain smooth function. Furthermore, the flow equation (8) implies

∂

∂t
G0(x; t|y; s) = (∂2

x − m2)G0(x; t|y; s), (12)

which leads to 	F0(0) = −2dF ′
0(0). Thus the two-point function of the normalized field σ becomes

m independent as

G(x; t|y; s) := 〈σ(x; t)σ (y; s)〉CFT

=
(

2
√

ts

t + s

)	

F

(
(x − y)2

t + s

)
, (13)

where F(x) ≡ F0(x)/F0(0). Hence F(0) = 1 and 2dF ′(0) = −	.4 Taking the d + 1-dimensional
coordinates as z = (x, τ = √

2dt), the vacuum expectation value of the induced metric ĝMN is

gMN (z) = R2〈∂M σ(x; t)∂N σ(x; t)〉CFT. (14)

3 The argument and calculation below hold just by changing the signature suitably when we consider the
Euclidean flat space.

4 Explicitly, F(x) is computed as

F(x) = (d/2)

(	)(d/2 − 	)

∫ 1

0
dv v	−1(1 − v)d/2−	−1e−xv/4.
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This is computed as (gμτ (z) = gτν(z) = 0)

gμν(z) = ημν

R2	

τ 2 , gττ (z) = R2	

τ 2 , (15)

which is nothing but the AdS metric with R
√

	 as its radius.

Isometry from conformal transformation In the previous subsection, we have explicitly calcu-
lated the induced metric gMN from CFT, and have shown that it becomes the AdS metric in the
Poincaré patch. In this subsection, we discuss the relation between the AdS metric and the CFT only
from the symmetry. Namely, we show that the induced metric gMN (z) = 〈

ĝMN (x; t)
〉
CFT possesses

the isometry of the AdS space. This is necessary and sufficient since AdS is a maximally symmetric
space, so that the metric is completely fixed by the isometry group SO(2, d) up to an overall constant.

We first relate the conformal transformation to the isometry of AdS.5 The infinitesimal conformal
transformation and the response of the primary scalar operator are given by

δxμ = aμ + ωμ
νxν + λxμ + bμx2 − 2xμ(bνxν),

δconf ϕ(x) = −δxμ∂μϕ(x) − 	

d
(∂μδxμ)ϕ(x). (16)

Here aμ, ωμν , λ, bμ are parameters of the transformation. Since the infinitesimal conformal
transformation is quadratic in the coordinate x, the normalized field σ , given in terms of ϕ by

σ(x; t) =
(√

2t
)	

√
F0(0)

et∂2
ϕ(x), (17)

is transformed as

δconf σ(x; t) = − {t(∂2δxμ) + 2t2(∂ν∂ρδxμ)∂ν∂ρ + 2t(∂νδxμ)∂ν + δxμ
}
∂μσ(x; t)

− 	

d

{
2t(∂ν∂μδxμ)∂ν + (∂μδxμ)

}
σ(x; t). (18)

Plugging Eq. (16) into Eq. (18), we obtain

δconf σ(x; t) = −{2λ− 4(bμxμ)}t∂tσ(x; t)−{δxμ + 2t(d − 2 −	)bμ}∂μσ(x; t)+ 4t2bμ∂μ∂tσ(x; t),
(19)

where we have used ∂tσ(x; t) = (	
2t + ∂2)σ (x; t). Notice that a special conformal transformation of

the normalized flow operator contains a higher-derivative term as the last term in Eq. (19), which
cannot be interpreted as an infinitesimal diffeomorphism in the bulk.6 To deal with this we rewrite

5 This question was addressed in the early stage after Maldacena’s proposal in Ref. [23], in which was
studied the mechanism of how the special conformal transformation of the adjoint scalar fields in N = 4 super
Yang–Mills theory was metamorphosed into the corresponding isometry transformation in the bulk. We would
like to thank T. Yoneya for his valuable comment given in the KEK Theory workshop 2017 “East Asia Joint
Workshop on Fields and Strings 2017”.

6 Difficulty in the bulk interpretation of the special conformal transformation of a key operator was also
observed in the bilocal field approach by using a vector model [24], where the special conformal transformation
of the collective field mixes up fields with different spin. The authors speculated on the necessity of a suitable
field redefinition to resolve this issue, though our answer may be different in the flow field approach, as shown
below. We would like to thank S. Das for his valuable comment given in the KIAS-YITP joint workshop 2017
“Strings, Gravity and Cosmology”.
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Eq. (19) as

δconf σ(x; t) = δdiff σ(x; t) + δextraσ(x; t), (20)

δdiff σ(x; t) = −(δ̄t∂t + δ̄xμ∂μ)σ (x; t), δextraσ(x; t) = 4t2bν∂ν

(
∂t + 	 + 2

2t

)
σ(x; t), (21)

with δ̄xμ = δxμ + 2dtbμ, δ̄t = (2λ − 4(bμxμ))t. By setting τ 2 = 2dt, the transformation δdiff can
be rewritten as

δ̄xμ = δxμ + τ 2bμ, δ̄τ = (λ − 2(bμxμ))τ. (22)

This is nothing but the isometry transformation of the AdS space whose metric is given by ds2
AdS ∝

dτ 2 + dxμ2

τ 2 .

The conformal transformation of the induced metric operator is computed as

δconf ĝMN (x; t) = δdiff ĝMN (x; t)+R2 lim
(y;s)→(x;t)

∂

∂zM

∂

∂wN

{
δextraσ(x; t)σ (y; s) + σ(x; t)δextraσ(y; s)

}
.

(23)
The first term is

δdiff ĝMN (x; t) = −δ̄zK∂K ĝMN (x; t) − ∂M δ̄zK ĝKN (x; t) − ∂N δ̄zK ĝMK (x; t), (24)

which is nothing but the diffeomorphism of the metric tensor in d + 1 dimensions.
Thus our task is to show that the second term in Eq. (23) vanishes in the vacuum expectation value.

By using Eqs. (13) and (21), the term is computed as

〈
δextraσ(x; t)σ (y; s) + σ(x; t)δextraσ(y; s)

〉
= −8

(
√

4ts)	

(t + s)	+2 (t − s)bμ(x − y)μ(x − y)2F ′′
(
(x − y)2

t + s

)
. (25)

Then it is easy to see

lim
(y;s)→(x;t)

∂

∂zM

∂

∂wN

〈
δextraσ(x; t)σ (y; s) + σ(x; t)δextraσ(y; s)

〉 = 0. (26)

We stress that this happens only when the conformal transformation is decomposed as Eq. (21). Note
that the quantum averaging and the differentiation commute since all correlation functions of σ are
finite as long as the flow time is non-zero. Therefore we obtain〈

δconf ĝMN (x; t)
〉
=
〈
δdiff ĝMN (x; t)

〉
. (27)

Since the conformal invariance of the two-point function of the primary scalar operator implies
that

〈
δconf ĝMN (x; t)

〉 = 0, it follows that
〈
δdiff ĝMN (x; t)

〉 = 0. This means that the induced metric
gMN (z) satisfies the Killing equation of the AdS space as

δdiff gMN (z) = −δ̄zK∂K gMN (z) − ∂M δ̄zK gKN (z) − ∂N δ̄zK gMK (z) = 0, (28)

which implies that the induced metric must be theAdS metric up to an overall constant. This completes
the proof of our claim.
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4. Discussion In this letter an induced geometry by a flow equation from a quantum field theory
was investigated. The induced metric was shown to appear as a quantum information metric, which
measures a distance in the space of the pure states constructed by scalar fields in a general quantum
field theory. In a conformally symmetric situation, it was shown that the induced metric matches the
AdS one when the flow equation is free.7 This agreement was confirmed only by using symmetry
without any explicit computations of the metric. An appearance of the AdS metric from CFT in
our method relies on the following two facts. (a) The field σ used to define the metric operator is
dimensionless thanks to the NLSM normalization. If φ were used instead, one would not obtain the
AdS metric. (b) The VEV of the metric operator is UV finite thanks to the free flow equation. If
the VEV were UV divergent, one would not obtain the AdS metric due to additional dimensionful
quantities introduced through renormalization.

So far any relation between the induced metric formalism presented in this letter and the other
approaches to seeing dual geometry mentioned in the introduction is not known. It may be reasonable
to think that there is no relation between them since, e.g., the procedure to renormalize fields in
quantum field theory and that to smear operators are generally independent. Still, we expect that
the results and technique developed in this letter, particularly the symmetry argument, will become
useful in studying the AdS geometry from CFT by other methods. For example, it may be possible to
define an induced metric similarly in the Wilsonian renormalization approach to dual gravity. Then
it would be interesting to see whether the metric becomes the AdS one or not.

In this letter we assume that the background of quantum field theory or conformal field theory is
flat. It would be interesting to extend the presented calculation to curved backgrounds. In particular,
it would be interesting to check whether the induced metric from CFT on a curved space-time is still
of AdS form in a different coordinate system from the Poincaré patch.

A challenging but important issue is whether this formalism encodes the gravitational dynamics
or not. The first step toward this goal may be to see how a linearized Einstein gravity is encoded in
this formulation, as shown in a different method to derive dual bulk dynamics by using entanglement
entropy [25,26]. For this analysis it will be necessary to specify a concrete model to test the proposal
such as an O(n) sigma model, since bulk dynamics is dependent on each CFT. Note that the 1/n
expansion becomes important to see the dual bulk dynamics beyond the geometry in the AdS/CFT
correspondence. A virtue of this formulation is that observables in this formalism are correlation
functions of scalar fields in quantum field theory, which admit analytic computation by the ordinary
technique of 1/n expansion [18], so that one can proceed by checking one’s guesswork explicitly
by hand.

We hope to report on resolutions on these issues in the near future.
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