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Abstract: There exist two methods to study two-baryon systems in lattice QCD: the

direct method which extracts eigenenergies from the plateaux of the temporal correlation

function and the HAL QCD method which extracts observables from the non-local po-

tential associated with the tempo-spatial correlation function. Although the two methods

should give the same results theoretically, there have been reported qualitative difference

for observables from lattice QCD simulations. Recently, we pointed out in [1, 2] that the

separation of the ground state from the excited states is crucial to obtain sensible results

in the former, while both states provide useful signals for observables in the latter. In this

paper, we identify the contribution of each state in the direct method by decomposing the

two-baryon correlation functions into the finite-volume eigenmodes obtained from the HAL

QCD method. As in our previous studies, we consider the ΞΞ system in the 1S0 channel
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at mπ = 0.51 GeV in (2+1)-flavor lattice QCD using the wall and smeared quark sources

with spatial extents, La = 3.6, 4.3, 5.8 fm. We demonstrate that the “pseudo-plateau” at

early time slices (t = 1 ∼ 2 fm) from the smeared source in the direct method indeed

originates from the contamination of the excited states, and the plateau with the ground

state saturation is realized only at t > 5 ∼ 15 fm corresponding to the inverse of the lowest

excitation energy. We also demonstrate that the two-baryon operator can be optimized by

utilizing the finite-volume eigenmodes, so that (i) the finite-volume energy spectra from

the HAL QCD method agree with those from the temporal correlation function with the

optimized operators and (ii) the correct finite-volume spectra would be accessed in the

direct method only if highly optimized operators are employed. Thus we conclude that

the long-standing issue on the consistency between Lüscher’s finite volume method and

the HAL QCD method for two baryons is now resolved at least for this particular sys-

tem considered here: they are consistent with each other quantitatively only if the excited

contamination is properly removed in the former.
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1 Introduction

The interactions between two baryons have been studied by two methods in lattice QCD.

The first one is the direct method [3–5], which extracts the eigenenergies of the ground

and/or the excited states from the temporal correlations of two-baryon systems. The bind-

ing energies and scattering phase shifts are calculated from eigenenergies using Lüscher’s

finite volume formula [6–8]. The second one is the HAL QCD method [9–12], which derives

the energy-independent non-local kernel (called the “potential” in the literature) from the
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tempo-spatial correlations of two baryons. Then the binding energies and phase shifts in

the infinite volume are calculated by using the Schrödinger-type equation with the ker-

nel as the potential, which has field theoretical derivation on the basis of the reduction

formula for composite operators. Both methods rely on the asymptotic behavior of the

Nambu-Bethe-Salpeter (NBS) wave function, and should in principle give the same results

for observables [10, 12, 13]. In practice, however, the current numerical results for two-

nucleon (NN) systems seem to be inconsistent with each other: for heavy pion masses

(mπ > 0.3 GeV), both dineutron (1S0) and deuteron (3S1) are claimed to be bound in the

direct method, while those are unbound in the HAL QCD method. Also, the discrepancy

is ubiquitous in two-baryon systems: although both methods indicate a bound H-dibaryon

in the SU(3) flavor limit at mπ = mK ' 0.8 GeV, the binding energy is 74.6(4.7) MeV in

the direct method [14], while it is 37.8(5.2) MeV in the HAL QCD method [15].1

In a series of recent papers [1, 2, 17–20], we have carefully examined the systematic

uncertainties in both methods. The difficulty of two-baryon systems compared to a single

baryon originates from the existence of elastic scattering states. Their typical excitation

energies δE are one to two orders of magnitude smaller than O(ΛQCD), so that one needs to

probe large Euclidean time t & (δE)−1 to extract the genuine signal of the ground state in

the direct method. However, the statistical fluctuation increases exponentially in t as well

as the baryon number A for multi-baryon systems as proved in [21, 22]. This practically

prevents one to identify the signal of the ground state in the naive analysis of the temporal

correlation of two baryons.

Moreover, our extensive studies [1, 2] showed that a commonly employed procedure in

the direct method to identify plateaux at early time slices, t � (δE)−1, suffers from un-

controlled systematic errors from the excited state contaminations, since pseudo-plateaux2

easily appear at early time slices. The typical symptoms of such systematics in the previous

studies were explicitly exposed by the normality check3 based on Lüscher’s finite volume

formula [8] and the analytic properties of the S-matrix [2].

As far as the HAL QCD method is concerned, the time-dependent formalism [11]

is free from the problem of the ground state saturation, since the energy-independent

potential is extracted from the spatial and temporal correlations with the information of

both the ground and excited states associated with the elastic scattering. While in practical

calculations there appears a systematic uncertainty associated with the truncation of the

derivative expansion for the non-locality of the potential, the derivative expansion is found

to be well converged at low energies [20, 24]. Other systematic uncertainties such as the

contaminations from the inelastic states and the finite volume effect for the potential are

also shown to be well under control [20].

In this paper, we reveal the origin of the inconsistency between the direct method and

the HAL QCD method, by explicitly evaluating the magnitude of the excited states in the

1Recently, there appears another study [16] using the direct method, which indicates the dineutron is

unbound while the H-dibaryon is bound 19(10) MeV at mπ = mK = 0.96 GeV.
2In refs. [1, 2], they are called “fake plateaux” or “mirages” of the plateau of the ground state.
3In ref. [2], it is called “sanity check”, a common terminology in computer science for a simple/quick

test [23].
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temporal correlation functions. We focus on the ΞΞ system in the 1S0 channel, which is a

most convenient channel to obtain insights into the NN systems, since it belongs to the

same SU(3) flavor multiplet as NN(1S0) but has much better statistical signals. Detailed

studies in this channel were already performed with the direct method [1] as well as the HAL

QCD method [20] in (2+1) flavor lattice QCD at mπ = 0.51 GeV and mK = 0.62 GeV,

so that the main purpose of this paper is to present an in-depth analysis by combining

both results: in particular, the excited state contaminations in the temporal correlation

functions are quantitatively evaluated by decomposing them in terms of the finite-volume

eigenmodes of Hamiltonian with the HAL QCD potential (the HAL QCD Hamiltonian).

We show how the pseudo-plateau actually appears at early time slices and also predict

the time slice at which the ground state saturation is achieved. Moreover, we establish a

consistency between the direct method and the HAL QCD method, by demonstrating that

temporal correlation functions constructed from the optimized two-baryon operators by

the eigenmode of the HAL QCD Hamiltonian show the plateaux with the values consistent

with the eigenenergies at early time slices.

This paper is organized as follows. In section 2, we introduce the theoretical framework

of the direct method and the HAL QCD method, and present the numerical setup of the

lattice QCD calculation. In section 3, we recapitulate the previous analysis on the direct

method [1] as well as on the HAL QCD method [20]. In section 4, we decompose the

correlation functions into the eigenmodes of the HAL QCD Hamiltonian. The anatomy of

the excited state contaminations in the direct method is presented. We also demonstrate

that eigenfunctions can be used to optimize two baryon-operators. The consistency between

the temporal correlations with the optimized operators and the HAL QCD method is

established. Section 5 is devoted to the conclusion. In appendix A, we check how the next-

to-next-leading order (N2LO) analysis for the HAL QCD potential affects the finite volume

spectra. In appendix B, we collect eigenfunctions of the HAL QCD Hamiltonian on various

volumes. In appendix C, we study the reconstruction of the R-correlator from the elastic

states. In appendix D, we collect the results for the reconstruction of the effective energy

shifts. In appendix E, we show the effective energy shifts from the optimized operators

on various volumes. We note that a preliminary account of this study was reported in

refs. [17, 19].

2 Methods and Lattice setup

In this section, we briefly summarize the direct method and the HAL QCD method for

two-baryon systems, together with the lattice setup used in this paper.

2.1 Direct method

In the direct method for two-baryon systems, the energy eigenvalues (on a finite volume)

are measured from the temporal correlation of the two-baryon operator, J sink,src
BB (t), as

CBB(t) ≡ 〈0|J sink
BB (t)J src

BB(0)|0〉 =
∑
n

Zne
−Wnt + · · · , (2.1)

– 3 –
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where Wn is the energy of n-th two-baryon elastic state and the ellipsis denotes the inelastic

contributions. In order to obtain the energy shifts ∆En ≡ Wn − 2mB with mB being the

single baryon mass, one often uses the ratio of the temporal correlation function of two-

(one-) baryon system CBB(t) (CB(t)) as

R(t) ≡ CBB(t)

{CB(t)}2
, CB(t) = ZBe

−mBt + · · · , (2.2)

to reduce the statistical uncertainties as well as some systematics thanks to the correlations

between CBB(t) and CB(t). The energy shift of the ground state can be obtained from the

plateau value of the effective energy shift defined by

∆Eeff(t) ≡ 1

a
log

R(t)

R(t+ a)
(2.3)

with a being the lattice spacing. Here t needs to be sufficiently large compared to the

inverse of the excitation energy.

Once the energy shift of the ground (or excited) state on a finite volume is obtained,

one can calculate the scattering phase shift in the infinite volume at that energy, δ0(k), via

Lüscher’s finite volume formula [8],

k cot δ0(k) =
1

π(La)

∑
~n∈Z3

1

~n2 − q2
, q =

k(La)

2π
, (2.4)

where we consider the S-wave scattering for simplicity, k is defined through Wn=2
√
m2
B+k2

and L is the number of the spatial site of the lattice box. If the energy shift ∆En is negative,

the analytic continuation of the above formula to k2 < 0 is understood. The state with a

negative energy shift in the infinite volume limit corresponds to a bound state.

As noted before, the origin of the difficulty of two-baryon systems is the exis-

tence of elastic scattering states. Since the typical excitation energy of such states is

(2π)2/((La)2mB), the ground state saturation requires extremely large t, e.g., t & O(4) fm

at La = 4 fm and mB = 2 GeV, where the bad signal-to-noise ratio makes it practically

impossible to obtain signals. In the literature of the direct method [3–5], however, one

extracted the energy shift for the ground state from the plateau-like behavior of the effec-

tive energy shift at early time slices, t ∼ O(1) fm instead, assuming that the ground state

saturation is achieved.

2.2 HAL QCD method

In the HAL QCD method, the energy-independent non-local potential U(~r, ~r′) is defined

from

(Ek −H0)ψW (~r) =

∫
d~r′U(~r, ~r′)ψW (~r′), (2.5)

with the Nambu-Bethe-Salpeter (NBS) wave function [9, 10],

ψW (~r) = 〈0|T{
∑
~x

B(~x+ ~r, 0)B(~x, 0)}|2B,W 〉. (2.6)

– 4 –
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Here |2B,W 〉 is the QCD eigenstate for two baryons with the eigenenergy W = 2
√
m2
B + k2

in the center of mass system, B(~x, t) is a single baryon operator, Ek = k2/(2µ), and

H0 = −∇2/(2µ) with µ = mB/2 being the reduced mass. Eq. (2.5) has field theoretical

derivation on the basis of the Nishijima-Zimmermann-Haag reduction formula for composite

operators [25–27]. Below the inelastic threshold Wth, the potential U(~r, ~r′) is shown to be

faithful to the phase shifts, which are encoded in the behaviors of the NBS wave functions

at large r.

The four-point correlation function of the two-baryon system F (~r, t) is given by

F (~r, t) ≡ 〈0|T

{∑
~x

B(~x+ ~r, t)B(~x, t)J src
BB(0)

}
|0〉 (2.7)

= 〈0|T

{∑
~x

B(~x+ ~r, t)B(~x, t)

}∑
n

|2B,Wn〉〈2B,Wn|J
src
BB(0)|0〉+ · · ·

=
∑
n

Anψ
Wn(~r)e−Wnt + · · · , (2.8)

where An ≡ 〈2B,Wn|J
src
BB(0)|0〉 is the overlap factor and the ellipsis represents the inelastic

contributions.

In the time-dependent HAL QCD method [11, 12], the potential is extracted directly

from the so-called R-correlator as[
−H0 −

∂

∂t
+

1

4mB

∂2

∂t2

]
R(~r, t) =

∫
d~r′U(~r, ~r′)R(~r′, t), (2.9)

where

R(~r, t) ≡ F (~r, t)

{CB(t)}2
=
∑
n

An
Z2
B

ψWn(~r)e−(Wn−2mB)t + · · · , (2.10)

with the ellipsis being the inelastic contributions. Eq. (2.9) requires neither the ground state

saturation nor the determination of individual eigenenergy Wn and eigenfunction ψWn(~r),

as all elastic states can be used to extract the energy-independent potential. Therefore,

compared with the direct method, the condition required for the reliable calculation is much

more relaxed in the time-dependent HAL QCD method as t & O(Λ−1
QCD) ∼ O(1) fm, where

R(~r, t) is saturated by the contributions from elastic states (“the elastic state saturation”).

In practice, we expand the non-local potential in terms of derivatives as U(~r, ~r′) =∑
n

Vn(~r)∇nδ(~r−~r′). The leading order (LO) approximation gives U(~r, ~r′)'V LO
0 (r)δ(~r−~r′),

which can be determined as

V LO
0 (~r) = −H0R(~r, t)

R(~r, t)
− (∂/∂t)R(~r, t)

R(~r, t)
+

1

4mB

(∂/∂t)2R(~r, t)

R(~r, t)
. (2.11)

We can also examine the effect of higher order contributions to observables such as the

scattering phase shifts: in this paper, we present the study on the correction to the LO

potential for the spin-singlet channel at the next-to-next-leading order (N2LO) as

U(~r, ~r′) '
{
V N2LO

0 (~r) + V N2LO
2 (~r)∇2

}
δ(~r − ~r′). (2.12)

– 5 –
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volume La # of conf. # of smeared sources (A,B) # of wall sources

403 × 48 3.6 fm 207 512 (0.8, 0.22) 48

483 × 48 4.3 fm 200 4× 384 (0.8, 0.23) 4× 48

643 × 64 5.8 fm 327 1× 256 (0.8, 0.23) 4× 64

Table 1. Simulation parameters. The rotational symmetry for isotropic lattice is used to increase

statistics.

2.3 Lattice setup

Numerical data in previous literature [1, 20] and in this paper are obtained from the

(2+1)-flavor lattice QCD ensembles, generated in ref. [28] with the Iwasaki gauge ac-

tion and nonperturbatively O(a)-improved Wilson quark action at the lattice spacing

a = 0.08995(40) fm (a−1 = 2.194(10) GeV). In the present paper, we make use of gauge

ensembles on three lattice volumes, L3 × T = 403 × 48, 483 × 48, and 643 × 64, with

heavy up and down quark masses and the physical strange quark masses, corresponding to

mπ = 0.51 GeV, mK = 0.62 GeV, mN = 1.32 GeV and mΞ = 1.46 GeV.

We employ two different quark sources with the Coulomb gauge fixing, the wall source,

qwall(t) =
∑

~y q(~y, t), mainly used in the HAL QCD method, and the smeared source,

qsmear(~x, t) =
∑

~y f(|~x − ~y|)q(~y, t), often used in the direct method. For the smearing

function, we take f(r) ≡ {Ae−Br, 1, 0} for {0 < r < (L − 1)/2, r = 0, (L − 1)/2 ≤ r},
respectively, as in ref. [28], and the center of the smeared source is same for all six quarks

(i.e., zero displacement between two baryons), as has been employed in all previous studies

in the direct method claiming the existence of the NN bound states for heavy quark

masses [3–5].4 For both sources, the point-sink operator for each baryon is employed in

this study. A number of configurations and other parameters are summarized in table 1.

The correlation functions are calculated by the unified contraction algorithm (UCA) [29]

and the statistical errors are evaluated by the jack-knife method. For more details on the

simulation setup, see ref. [1].

In this paper, we focus on ΞΞ (1S0) system, which belongs to the same 27 representa-

tion as NN (1S0) in the flavor SU(3) transformation, but has much better signal-to-noise

ratio than NN as the system contains four strange quarks. We use the relativistic inter-

polating operator [1] for Ξ, given by

Ξ0
α = εabc(s

aTCγ5u
b)scα, Ξ−α = εabc(s

aTCγ5d
b)scα, (2.13)

where C = γ4γ2 is the charge conjugation matrix, α and a, b, c are the spinor and color

indices, respectively.

3 Summary of previous studies

3.1 Operator dependence of the plateaux in the direct method

In ref. [1], we pointed out that the plateau-like behaviors at t ' 1 fm in the direct method

depend on sources or sink operators. For example, figure 1 (left) shows the source operator

4Ref. [5] uses a non-zero displaced operator as well.
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smeared src. ΞΞ(1S0) (g(r) = 1)

smeared src. g(r) = 1 + 0. 3exp(− 0. 18r)

smeared src. g(r) = 1− 0. 5exp(− 0. 20r)

smeared src. g(r) = 1− 0. 9exp(− 0. 22r)

Figure 1. (Left) The source operator dependence of the effective energy shift ∆Eeff(t) for ΞΞ (1S0)

using the wall source (red circles) and the smeared source (blue squares) for L = 48 [1]. (Right)

The sink operator dependence of the same quantity with the smeared source [1].

dependence of the effective energy shift ∆Eeff(t) in eq. (2.3) for the ΞΞ (1S0) on L = 48,

where J sink
BB (t) in eq. (2.1) is given by

J sink
BB (t) =

∑
~r

∑
~x

B(~x+ ~r, t)B(~x, t), (3.1)

where a baryon operator B is given in eq. (2.13). While plateau-like structures appear

around t/a ∼ 15 for both wall and smeared sources, the values disagree with each other.

Similar inconsistencies are found on other volumes and the infinite volume extrapolation

implies that the system is bound (unbound) for the smeared (wall) source. These discrep-

ancies indicate some uncontrolled systematic errors. Indeed, such an early-time pseudo-

plateau can be shown to appear even with 10% contamination of the excited states as

demonstrated by the mockup data [1].

Figure 1 (right) shows the sink operator dependence of ∆Eeff(t) for ΞΞ (1S0) with the

smeared source fixed, where the sink operator is generalized as

J sink
BB (t) =

∑
~r

g(~r)
∑
~x

B(~x+ ~r, t)B(~x, t), (3.2)

g(~r) = 1 + Ã exp(−B̃r), (3.3)

with four different parameter sets, (Ã, B̃) = (0.3, 0.18), (−0.5, 0.20), (−0.9, 0.22) and (0, 0).

The last one corresponds to the simple sink operator (g(r) = 1) in eq. (3.1). Although

a plateau-like structure is observed for each sink operator, the values disagree with each

other. This implies that the plateau-like behaviors at t ' 1 fm with the smeared source

are not the plateau of the ground state but are pseudo-plateaux caused by contaminations

of elastic scattering states other than the ground state. We note that such sink-operator

dependence is not observed in the case of the wall source [1].

– 7 –
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Figure 2. k cot δ0(k)/mπ as a function of (k/mπ)2 for NN(1S0) on each volume and the infinite

volume in the direct method from ref. [30] (left) and ref. [28] (right). Black dashed lines correspond

to Lüscher’s formula for each volume, while the black solid line represents the bound-state condition,

−
√
−(k/mπ)2. The red line (with an error band) corresponds to the ERE obtained from the data

at k2 < 0 on finite volumes. In the left figure, the ERE fit to the data at k2 > 0 on finite volumes

together with only the infinite volume limit at k2 < 0 is also shown by the blue line. Both figures

from ref. [2].

3.2 Normality check

Since the information on operator dependence as shown in the previous subsection is not

always available, we have introduced the “normality check” in ref. [2], based on Lüscher’s

finite volume formula together with the analytic properties of the S-matrix.

Some examples of the normality check are given in figure 2, where k cot δ0(k) is plotted

as a function of k2 for NN(1S0). Red and blue lines in figure 2 represent fits to data by

the effective range expansion (ERE) at the next-to-leading order (NLO) as

k cot δ0(k) =
1

a0
+
r0

2
k2, (3.4)

where a0 and r0 are the scattering length and the effective range, respectively. In figure 2

(left), inconsistency in ERE parameters is observed: the NLO ERE fit obtained from the

data at k2 < 0 on finite volumes (red line) disagrees with the fit to the data at k2 > 0 on

finite volumes together with the infinite volume limit at k2 < 0 (blue line). For the latter

fit (the blue line), the physical condition of the bound state pole is also violated. In figure 2

(right), the NLO ERE fit exhibits a singular behavior as the divergent effective range. See

ref. [2] for more detailed discussions.

As in the case of operator dependence, the normality check in ref. [2] indicates that

the plateau fitting at t ' 1 fm suffers from large uncontrolled systematic errors probably

due to contaminations from the excited states.

3.3 Source-operator dependence and derivative expansion of the potentials

In ref. [20], we investigated source operator dependence of the potential as a tool to estimate

the systematics associated with the derivative expansion of the HAL QCD potential, using

two sources, wall and smeared sources.

– 8 –
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Figure 3. The potential at the leading order (LO) analysis V LO
0 (r) (red circles) from the wall source

(left) and the smeared source (right) for ΞΞ(1S0) at t/a = 13 for L = 64 [20]. The blue squares,

green triangles and black diamonds denote 1st, 2nd and 3rd terms in eq. (2.11), respectively.

Figure 4. A comparison of the LO ΞΞ(1S0) potential V LO
0 (r) between the wall source (red) and

the smeared source (blue) at t/a = 13 [20].

Figure 3 shows the LO ΞΞ(1S0) potential and its breakup into 1st, 2nd, and 3rd terms

in eq. (2.11) of the time dependent HAL QCD method from the wall source (left) and

the smeared source (right). For the wall source, the 1st term dominates with moderate

(negligible) contributions from the 2nd (3rd) term. As the 2nd term is not constant as a

function of r, there exist small but non-negligible contributions from the excited states.

For the smeared source, on the other hand, all terms are important. The substantial r

dependence of the 2nd term (green triangles), which indicates large contributions from

the excited states in the smeared source, is canceled by the 1st term (blue squares) and

further corrected by the 3rd term (black diamonds). The total potentials (red circles)

from two sources, however, show qualitatively similar behaviors, which illustrates that the

time-dependent HAL QCD method works well for extracting the potential irrespective of

the source types.

Figure 4 shows a comparison of the total potentials between two sources,

V
LO(wall/smear)

0 (r), at t/a = 13. The potential approaches to zero within errors at larger r for

– 9 –
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Figure 5. (Left) The LO ΞΞ(1S0) potential at the N2LO analysis, V N2LO
0 (r) (red circles), together

with the potential at the LO analysis for the wall source, V
LO(wall)
0 (r) (blue diamonds) at t/a = 13

on L = 64. (Right) The scattering phase shifts δ0(k) from V
LO(wall)
0 (black diamonds), V N2LO

0 (r)

(blue squares) and V N2LO
0 (r) + V N2LO

2 (r)∇2 (red circles) at t/a = 13. Both figures from ref. [20].

both sources, indicating that contributions from inelastic states are suppressed. While the

potentials from two sources are very similar, there exists the non-zero difference between

them. We find that this difference becomes smaller as t increases, where the potential from

the wall (smeared) source is independent of (dependent on) t [20]. This indicates that the

effects of higher order terms in the derivative expansion exist in the data from the smeared

source. Using the difference, V N2LO
0 (r) and V N2LO

2 (r) in eq. (2.12) can be determined. In

figure 5 (left), V N2LO
0 (r) together with V

LO(wall)
0 (r) on L = 64 at t/a = 13 are plotted. As

we find that V N2LO
0 (r) agrees well with V

LO(wall)
0 (r) except at short distances, we expect

that V
LO(wall)

0 (r) works well to reproduce physical observables at low energies. Indeed, as

shown in figure 5 (right), the N2LO correction to the S-wave scattering phase shift δ0 is

small at low energies, showing not only that the derivative expansion converges well but

also that the LO analysis for the wall source is sufficiently good at low energies.

4 Anatomy: excited state contaminations in the effective energy shifts

We now show our main results of this paper, where we analyze the behaviors of ΞΞ(1S0)

temporal correlation functions for both wall and smeared sources using the HAL QCD po-

tential and demonstrate that contaminations of elastic excited states cause pseudo-plateau

behaviors at early time slices.

The strategy of our analysis is as follows. Provided that the leading order HAL QCD

potential from the wall source is found to be a reasonable approximation of the exact

potential, we evaluate eigenfunctions of the Hamiltonian with this potential in the finite

box whose eigenvalues are below the inelastic threshold. We then calculate overlap factors

between these eigenmodes and the ΞΞ (1S0) correlation functions, in terms of which we

reconstruct pseudo-plateau behaviors of the energy shifts. We also show that the plateaux

of the temporal correlation functions projected to the lowest or the 2nd lowest eigenfunc-

tion agree with their eigenvalues. This fact demonstrates that both HAL QCD potential

– 10 –
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∆En [MeV] L = 40 L = 48 L = 64

n = 0 −5.5(1.0)
(

+1.8
−0.4

)
−2.8(0.4)

(
+1.1
−0.1

)
−1.5(0.3)

(
+0.4
−0.1

)
n = 1 77.2(0.8)

(
+0.8
−4.7

)
52.0(0.4)

(
+3.6
0.0

)
28.4(0.3)

(
+0.4
−0.1

)
n = 2 161.5(1.0)

(
+0.2
−6.8

)
110.0(0.5)

(
+3.2
0.0

)
60.4(0.4)

(
+0.3
−0.1

)
n = 3 236.5(1.1)

(
+1.0
−0.7

)
164.9(0.6)

(
+2.1
−0.5

)
93.2(0.4)

(
+0.7
0.0

)
n = 4 — 216.3(0.4)

(
+1.0
−0.4

)
124.1(0.3)

(
+0.2
−0.1

)
n = 5 — — 155.8(0.3)

(
+0.6
−0.0

)
n = 6 — — 186.5(0.3)

(
+0.8
0.0

)
Table 2. Eigenvalues of the n-th eigenfunction below the inelastic threshold in the A+

1 represen-

tation of the HAL QCD Hamiltonian HLO in each volume. Eigenvalues are given in terms of the

energy shifts from the threshold, ∆En ≡Wn−2mΞ. Central values and statistical errors are evalu-

ated at t/a = 13, while the systematic errors are estimated by using the results at t/a = 14, 15, 16.

method and accurate extraction of energy shifts from the temporal correlation function

give consistent results.

4.1 Eigenvalues and eigenfunctions in the finite box

We first evaluate eigenvalues and eigenfunctions of the leading-order HAL QCD Hamilto-

nian in a finite box given by

HLO = H0 + U, U ≡ V LO(wall)
0 , (4.1)

where we take V
LO(wall)

0 on each volume for U , since V
LO(wall)

0 is a reasonable approximation

of the exact potential U .5 Note that the volume dependence of V
LO(wall)

0 is negligible,

thanks to the short-ranged nature of the interaction.

In a finite lattice box, eigenvalues and eigenfunctions of the Hermitian matrix HLO

can be easily obtained. The n-th eigenvalue of HLO in the A+
1 representation below the

inelastic threshold6 is tabulated in table 2, where we show the energy shift compared to the

threshold, ∆En ≡Wn−2mΞ. The number of excited states below the inelastic threshold is

3, 4 and 6 on L = 40, 48, and 64, respectively. For larger volume, the energy gap becomes

smaller and the number of elastic excited states increases.

Figure 6 shows the eigenfunctions Ψn(~r) on L = 48, with
∑

~r |Ψn(~r)|2 = 1 and

Ψn(~0) > 0.7 Up to a normalization, Ψn(~r) corresponds to the NBS wave function ψW=Wn(~r)

in a finite volume. The lowest state Ψ0(~r) has the similar shape to the R-correlator for

5In appendix A, we employ the potential at the N2LO analysis instead, and find that the results are

consistent with the LO results.
6For the ΞΞ system in the 1S0 channel at mπ = 0.51 GeV, the lowest inelastic threshold is either

Ξ∗Ξ or ΣΩ in 5D0 channel, which corresponds to Wth − 2mΞ ' 0.25 − 0.30 GeV on L = 64 − 40, using

mΣ = 1.40 GeV, mΞ∗ = 1.68 GeV and mΩ = 1.74 GeV.
7Ψn(~r) is a multi-valued function of r due to the effect of the (periodic) finite box.
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Figure 6. Eigenfunctions of elastic states in the A+
1 representation of the HAL QCD Hamiltonian

HLO below the inelastic threshold Ψn(~r) on L = 48 at t/a = 13 for n = 0, 1, 2 (left) and n =

3, 4 (right), where red up-pointing triangles, blue squares, green circles, orange diamonds and

black down-pointing triangles correspond to n = 0, 1, 2, 3 and 4, respectively. The eigenfunction is

normalized as
∑
~r |Ψn(~r)|2 = 1 and Ψn(~0) > 0. Errors are statistical only.

the wall source, which shows a weak peak structure around r . 1 fm and becomes flat

at large distances without any nodes, while the eigenfunctions for the excited states have

nodes, whose number increases as the eigenvalue becomes larger. The short distance struc-

tures for Ψn>0(~r), which has a steeper peak around r < 1 fm than that of Ψ0(~r) resemble

the R-correlator for the smeared source. Eigenfunctions on other volumes are collected in

appendix B.

4.2 Decomposition of the R-correlator via eigenfunctions

Since the R-correlator is dominated by elastic states at moderately large t, we can expand

it in terms of eigenfunctions of HLO as

Rwall/smear(~r, t) =
∑
n

awall/smear
n Ψn(~r)e−∆Ent, (4.2)

where the overlap coefficient an characterizes the magnitude of the contribution from the

corresponding eigenfunction. Using the orthogonality of Ψn(~r), an can be determined by

awall/smear
n =

∑
~r

Ψ†n(~r)Rwall/smear(~r, t)e∆Ent. (4.3)

The magnitude of the corresponding excited state contamination in the R-correlator is

represented by the ratio an/a0. In figure 7, we plot an/a0 obtained at t/a = 13 as a

function of ∆En for the wall source (left) and the smeared source (right). Calculations at

t/a = 14, 15, 16 confirm that the results are almost independent of t within statistical errors,

indicating that the decomposition is reliable.8 In the case of the wall source, Rwall(r, t)

has a large overlap with the ground state, and |an>0/a0| is smaller than 0.1. In the case of

8In appendix C, we check how well the decomposition in eq. (4.2) approximates the original R-correlator.

It is found that the magnitude of the residual relative to the original R-correlator at t/a = 13 is as small as

O(10−5−10−6) for the wall source and 0.4%, 2%, 5% for the smeared source on L = 40, 48, 64, respectively.
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Figure 7. The ratio of the overlap coefficients an/a0 in the R-correlator obtained at t/a = 13 for

the wall source (left) and the smeared source (right) on three volumes.

Figure 8. The overlap between the R-correlator and the eigenfunction, Ψ†
n(~r)R(~r, t)e∆Ent, as a

function of r at t/a = 13 on L = 48 for the ground state (n = 0, red circles) and the first excited

state (n = 1, blue squares) in the case of the wall source (left) and the smeared source (right).

the smeared source, on the other hand, |an/a0| ∼ O(1) and thus all elastic excited states

significantly contribute to the R-correlator.

This difference of the magnitude in an/a0 between two sources can be understood from

the overlap between the R-correlator and the eigenfunctions. Figure 8 shows the spatial

profile of the overlap, Ψ†n(~r)R(~r, t)e∆Ent, for the wall source (left) and the smeared source

(right) on L = 48, whose spatial summation corresponds to an. The contribution from

the first excited state (blue squares) is highly suppressed for the wall source, thanks to the

cancellation between positive values at short distances and negative values at long distances

of Ψ†n=1(~r)Rwall(~r, t)e∆En=1t. For the smeared source, on the contrary, the contamination

from the 1st excited state remains non-negligible, due to the absence of the negative parts

in Ψ†n=1(~r)Rsmear(~r, t)e∆En=1t.
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In the literature, the smeared source is often employed in the direct method, in order

to suppress contributions from (inelastic) excited states in a “single-baryon” correlation

function. The same smeared source, however, does not necessarily reduce the contamina-

tions from the elastic excited states in the two-baryon correlation function, as is explicitly

shown in figure 7. Indeed, one of the most relevant parameters which control the magni-

tudes of elastic state contributions is the relative distance ~r between two baryons at the

source, which appears as

1

L3

∑
~x

B(~x)B(~x+ ~r) =
∑
~p

B̃(~p)B̃(−~p)ei~p·~r, B̃(~p) ≡ 1

L3

∑
~x

B(~x)e−i~p·~x (4.4)

in the center of mass system. Almost all literature of the direct method have employed

the smeared source essentially corresponding to |~r| = 0, which implies that elastic states

for all ~p are equally generated at the source. Thus the choice |~r| = 0 (or |~r| � 1) is one of

the possible reasons for large contaminations from elastic excited states in the case of the

smeared source. As long as |~r| is non-zero and large, however, modes with non-zero ~pmay be

suppressed due to the oscillating factor ei~p·~r.9 The study in which the momentum projection

is performed for each baryon in the source operator is recently reported in ref. [16].

The temporal correlation function R(t) is reconstructed in terms of eigenfunctions as

Rwall/smear(t) =
∑
~r

Rwall/smear(~r, t) =
∑
~r

∑
n

awall/smear
n Ψn(~r)e−∆Ent =

∑
n

bwall/smear
n e−∆Ent,

(4.5)

where bn ≡ an
∑

~r Ψn(~r), whose ratio bn/b0 gives the magnitude of the contamination to

R(t) from the n-th elastic excited state.

Figure 9 shows |bn/b0| obtained at t/a = 13 as a function of ∆En on three volumes for

the wall source (left) and the smeared source (right). Solid (open) symbols correspond to

positive (negative) values for bn/b0. For the wall source, the contamination from the first

excited state is found to be smaller than 1%, and |bn/b0| is further suppressed exponentially

for higher excited states. In the case of the smeared source, the contamination from the

first excited state is as large as ∼ 10% with a negative sign and the contamination remains

to be ∼ 1% even for the higher excited state with ∆En ∼ 100 MeV.

4.3 Reconstruction of the effective energy shift

Let us now examine the energy shifts obtained from the reconstructed R-correlators;

∆E
wall/smear
eff (t, t0) =

1

a
log


nmax∑
n=0

bwall/smear
n (t0)e−∆En(t0)t

nmax∑
n=0

bwall/smear
n (t0)e−∆En(t0)(t+a)

 , (4.6)

9Ref. [5] reported the discrepancy in the effective energies between the zero displaced (|~r| = 0) and

the non-zero displaced (|~r| 6= 0) source operators, which can be naturally understood from this viewpoint,

rather than the existence of two bound states claimed in ref. [5].
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Figure 9. The ratio of the overlap coefficients in the temporal correlation function |bn/b0| obtained

at t/a = 13 for the wall source (left) and the smeared source (right) on various volumes. Solid (open)

symbols correspond to positive (negative) values of bn/b0.

0 5 10 15 20
t [a]

15

10

5

0

5

(1 S
0)

 
E e

ff(
t) 

[M
eV

] L
=

48

E0

Eeffwall(t0/a = 13)
wall src.

0 5 10 15 20
t [a]

15

10

5

0

5
(1 S

0)
 

E e
ff(

t) 
[M

eV
] L

=
48

E0

Eeffsmear(t0/a = 13)
smeared src.

Figure 10. The reconstructed effective energy shifts ∆Eeff(t, t0 = 13a) with statistical errors are

plotted as a function of t (colored bands), while the direct measurement of the effective energy shifts

from R-correlators are plotted by red circles or blue squares. The black dashed lines correspond

to the energy shift ∆E0(t0 = 13a) for the ground state of the HAL QCD Hamiltonian HLO in the

finite volume. The results on L = 48 for the wall source (left) and the smeared source (right).

where we take nmax = 3, 4, 6 for L = 40, 48, 64, respectively, corresponding to the number

of elastic excited states below the inelastic threshold, and bn(t0) and ∆En(t0) are extracted

at fixed t0.

In figure 10, we show the reconstructed effective energy shifts ∆Eeff(t, t0 = 13a),

together with numerical data of the effective energy shifts ∆Eeff(t) from the R-correlators,

for the wall source (left) and the smeared source (right) on L = 48. The bands correspond

to ∆Eeff(t, t0 = 13a) with statistical errors coming from those of bn and ∆En at t0/a = 13,

while red circles or blue squares correspond to ∆Eeff(t) obtained directly from the R-

correlator in section 3.1. Here we do not consider ∆Eeff(t, t0 = 13a) for t/a < 13, where

inelastic contributions are expected to be larger. Shown together by the black dashed

line represents the energy shift ∆E0(t0 = 13a) for the ground state of the HAL QCD

Hamiltonian HLO on L = 48.
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Figure 11. The same as figure 10 but for the wider range of the Euclidean time t.

We find that the results of the direct method, most notably the plateau-like structures

around t/a = 15, are well reproduced by ∆Eeff(t, t0) for both wall and smeared sources,

indicating that the behaviors of ∆Eeff(t) at this time interval in the direct method are

explained by the contributions from the several low-lying states. These plateau-like struc-

tures, however, do not necessarily correspond to the plateau of the ground state. Indeed,

in the case of the smeared source, there is a clear discrepancy between the value of the

plateau-like structure and the eigenvalue ∆E0 of the ground state. This is a consequence

of large excited state contaminations in the correlation function for the smeared source. In

the case of the wall source, on the other hand, since the overlap with the ground state is

large, the value of the plateau-like structure is consistent with the value ∆E0.

The fate of the plateau-like structures is more clearly seen in figure 11, where we

plot the behaviors at asymptotically large t of the reconstructed effective energy shifts

∆Eeff(t, t0 = 13a) for the wall source (red band) and the smeared source (blue band).

While the plateau-like structure at t/a ∼ 15 for the wall source is almost unchanged at

larger t, the value of ∆Eeff(t, t0 = 13a) in the case of the smeared source gradually changes

as t increases until it reaches to the value of the ground state, ∆E0, at t/a ∼ 100.

In appendix D.1, we perform the same analysis on other volumes and observe essentially

the same behaviors as in the case of L = 48: for the wall source, the value of the plateau-

like structure at t/a ∼ 15 remains almost unchanged at larger t and is consistent with

∆E0. For the smeared source, the value of the plateau-like structure at t/a ∼ 15 is

inconsistent with ∆E0. The deviation is found to be larger on a larger volume, due to
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severer contaminations from the excited states on larger volumes (see section 4.2).10 The

value of ∆Eeff(t, t0 = 13a) for the smeared source gradually changes at t increases and the

ground state saturation is realized at t/a & 50, 100 and 150 or t & 5, 10 and 15 fm on L =

40, 48 and 64, respectively. These time scales for the ground state saturation are actually

not surprising but rather natural, considering the fact that the lowest excitation energy is

as small as δE ≡ ∆E1 −∆E0 ' 84, 55 and 30 MeV on L = 40, 48 and 64, respectively.

These results clearly reveal that the plateau-like structures at t/a ∼ 15 for the smeared

source are pseudo-plateaux caused by contaminations of the elastic excited states.11 While

the effective energy shifts from the wall source happen to be saturated by the ground state

even at t/a ∼ 15, it is generally difficult to confirm that a plateau-like structure corresponds

to the correct energy shift of the ground state without the help of other inputs, such as

the HAL QCD potential analysis in the present case. Since the calculation of the energy

shift from the R-correlator at t ∼ (δE)−1 is impractical due to the exponentially growing

noises, one cannot obtain the correct spectra from the plateau identification in the direct

method unless sophisticated variational techniques [32] are employed.12

4.4 Projection with improved sink operator

Once the finite-volume eigenmodes of HLO with the HAL QCD potential are known, an

improved two-baryon sink operator for a designated eigenstate can be constructed as

J sink
BB (t) =

∑
~r

Ψ†n(~r)
∑
~x

B(~x+ ~r, t)B(~x, t), (4.7)

which is expected to have a large overlap to the n-th elastic state.13 This is equivalent to

considering the generalized temporal correlation function with the choice of g(~r) = Ψ†n(~r)

in eq. (3.2),

R(n)(t) ≡
∑
~r

Ψ†n(~r)R(~r, t), (4.8)

from which we define the effective energy shift for the n-th eigenfunction as

∆E
(n)
eff (t) =

1

a
log

R(n)(t)

R(n)(t+ a)
. (4.9)

10Values of pseudo-plateaux do not strongly depend on volumes, while the correct values ∆E0 do. This is

a counter example against the argument in refs. [4, 31] in which it is claimed that the volume-independence

of the plateaux guarantees their correctness.
11In appendix D.2, we show that the dominant contamination comes from the first excited state.
12Application of the variational method to two-baryon systems has started lately but mostly with respect

to the flavor space [16]. It will be interesting to perform the variational method with respect to relative

coordinate space for two baryons in addition. In the lattice study of meson-meson scatterings [33], the

danger of the excited state contaminations in the plateau fitting has been already recognized and the use

of the variational method is known to be mandatory.
13Use of such an improved operator as a “source” requires additional calculations and thus is left for

future study.
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Figure 12. The effective energy shift ∆E
(n)
eff (t) on L = 48 from the wall source (black up triangles)

and the smeared source (purple down triangles) for the ground state (left) and the first excited state

(right). Red bands represent the energy shifts with statistical errors obtained from the HAL QCD

Hamiltonian HLO, while black lines represent those for a non-interacting system. In the left figure,

the effective energy shifts in the direct method for the wall source (red circles) and the smeared

source (blue squares) are also shown.

Figure 12 shows the effective energy shift ∆E
(n)
eff (t) using the wall source (black up-

triangles) and the smeared sources (purple down-triangles) on L = 48 for the ground state

(left) and the first excited state (right). Shown together are the energy shift (∆E0 or

∆E1) with statistical errors (red bands), obtained from HLO with the HAL QCD potential

V
LO(wall)

0 (r) at t/a = 13, as well as that for a non-interacting system (black lines). In the

case of the ground state (figure 12 (left)), the effective energy shifts from the direct method

for the wall source (red circles) and the smeared source (blue squares) are also plotted for

comparisons.

First of all, after the sink projections, the results with the wall source and those with

the smeared source agree well around t/a ∼ 13 not only for the ground state but also for

the first excited state. This is in sharp contrast with the fact that the results in the direct

method without projections disagree between two sources for the ground state. Although

a small overlap with the first excited state causes relatively large statistical errors in the

case of the wall source, an agreement between two sources for the first excited states is

rather striking, and serves as a non-trivial check for the reliability of the effective energy

shifts with the sink projection. Moreover, results after the sink projections also agree

with those from the HAL QCD Hamiltonian. Although the sink projection utilizes the

information of the HAL QCD potential through eigenfunctions, agreements in effective

energy shifts within statistical errors for both ground and first excited states provide a

non-trivial consistency check between the HAL QCD method and the direct method with

proper projection. In other words, results in figure 12 establish that (i) the HAL QCD

potential correctly describes the energy shifts of two baryons in the finite volume for both

ground and excited states, and that (ii) these energy shifts can also be extracted in the

direct method if and only if interpolating operators are highly improved. Since the origins

of systematic uncertainties are generally quite different between the two methods, such a

“projection check” would be useful in future lattice QCD studies for two-baryon systems.
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In recent years, it has been argued that seemingly inconsistent results for the NN

systems at heavy pion masses between Lüscher’s finite volume method and the HAL QCD

method may indicate some theoretical deficits in one of the two methods. It is now clear

from our analysis that Lüscher’s method and the HAL QCD method agree quantitatively

with each other, as it should be so theoretically.

5 Summary

In our previous works [1, 2], it has been shown that the plateau fitting of the eigenenergies

at early Euclidean times t, employed in the direct method, is generally unreliable for multi-

baryon systems, due to the appearance of pseudo-plateaux caused by contaminations of

the excited states with small gap corresponding to the elastic scattering states on the

finite volume. In this paper, we quantified the degree of contaminations from such excited

states by decomposing the two-baryon correlation functions in terms of the finite-volume

eigenmodes of the HAL QCD Hamiltonian.

By taking ΞΞ (1S0) system at mπ = 0.51 GeV in (2+1)-flavor lattice QCD with the

wall and smeared quark sources for La = 3.6, 4.3, 5.8 fm, we showed that the excited state

contaminations are suppressed for the wall source, while those for the smeared source are

substantial and become severer on a larger spatial extent. For the smeared source, the

plateau-like structures at t = 1 ∼ 2 fm are shown to be pseudo-plateaux and the plateau

with the ground state saturation is realized only at t > 5 ∼ 15 fm corresponding to the

inverse of the lowest excitation energy. We also demonstrated that one can optimize the

two-baryon operator utilizing the finite-volume eigenmode of the HAL QCD Hamiltonian.

The effective energies from the temporal correlation functions with the optimized operators

are found to be consistent with the finite volume spectra obtained from the HAL QCD

Hamiltonian. This result establishes not only that the correct finite-volume spectra can be

accessed by employing highly optimized operators even in the direct method but also that

the HAL QCD method and the direct method agree in the finite volume spectra for the

two baryon systems. Thus the long-standing issue on the consistency between Lüscher’s

finite volume method and the HAL QCD method is positively resolved at least for the

particular system considered here. The next step is to carry out comprehensive studies of

baryon-baryon interactions around the physical quark masses in the HAL QCD method,

which are partly underway (see, e.g. [34–36]). Those will reveal not only the nature of

exotic dibaryons but also the equation of state of dense baryonic matter.
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A The finite volume spectra from the N2LO potential

In the main text (section 4), we study the finite volume spectra to be used for the spectral

decomposition of the R-correlator using the LO potential. In this appendix, we employ

the potential at the N2LO analysis (eq. (2.12)) and examine a stability of the finite volume

spectra against the order of the derivative expansion. The HAL QCD Hamiltonian with

the N2LO potential is given by

HN2LO = H0 + V N2LO
0 (r) + V N2LO

2 (r)∇2. (A.1)

Note that, while H is non-Hermitian, its eigenenergies are real since the eigen equation can

be rewritten as the definite generalized Hermitian eigenvalue problem [20]. The eigenener-

gies at L = 64 using V
LO(wall)

0 , V N2LO
0 , and V N2LO

0 + V N2LO
2 ∇2 are summarized in table 3.

The results from the different potentials are consistent with each other at low energies

within statistical errors and the N2LO correction remains to be small (at most ∼ 1% dif-

ference) even for higher energies. These results are in line with the observation that the LO

analysis from the wall source gives the correct phase shifts at low energies and the N2LO

analysis gives only small correction even at higher energies [20].

∆En [MeV] V
LO(wall)

0 V N2LO
0 V N2LO

0 + V N2LO
2 ∇2

n = 0 -1.5(0.3) -1.4(0.3) -1.4(0.3)

n = 1 28.4(0.3) 28.6(0.3) 28.7(0.3)

n = 2 60.4(0.4) 60.8(0.4) 61.2(0.4)

n = 3 93.2(0.4) 93.4(0.4) 93.7(0.4)

n = 4 124.1(0.3) 124.3(0.3) 124.6(0.3)

n = 5 155.8(0.3) 156.5(0.3) 157.7(0.4)

n = 6 186.5(0.3) 187.3(0.3) 189.1(0.4)

Table 3. The finite volume spectra using V
LO(wall)
0 , V N2LO

0 , and V N2LO
0 + V N2LO

2 ∇2 at L = 64

evaluated at t/a = 13.

– 20 –



J
H
E
P
0
3
(
2
0
1
9
)
0
0
7

B Eigenfunctions on various volumes

Figure 13 shows the shapes of eigenfunctions on various volume.

Figure 13. The low-lying eigenfunctions Ψn(~r) in the A+
1 representation of the HAL QCD Hamil-

tonian with V
LO(wall)
0 at t/a = 13 for L = 40, 48 and 64. The top-left, top-right, bottom-left,

bottom-right figure corresponds to n = 0, 1, 2, 3, respectively. The eigenfunction is normalized as∑
~r |Ψn(~r)|2 = 1 and its sign is fixed to satisfy Ψn(~0) > 0.

C Reconstruction of the R-correlator

In this appendix, we study how good the original R-correlator R(~r, t) is approximated by

the reconstructed R-correlator R(~r, t) given by

R(~r, t) =

nmax∑
n=0

anΨn(r)e−∆Ent, (C.1)

where nmax = 3, 4, 6 for L = 40, 48, 64, corresponding to the number of excited elastic

states below the inelastic threshold. Figure 14 shows the comparison between the original

(red squares) and the reconstructed (blue circles) R-correlators for the wall source (left)

and the smeared source (right) at t/a = 13. Shown together by black diamonds are the

difference between the two, R(~r, t)−R(~r, t). To estimate the magnitude of the difference,
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Figure 14. Comparisons between the original R-correlator (red squares) and the reconstructed

R-correlator using low-lying eigenstates below the inelastic threshold (blue circles) at t/a = 13 for

L = 40 (top), 48 (middle), 64 (bottom). The differences between the two R-correlators are shown

by black diamonds and the values for the corresponding residual norms are given in legend panels.

(Left) The wall source. (Right) The smeared source.
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we define the residual norm by ∑
~r |R(~r, t)−R(~r, t)|2∑

~r |R(~r, t)|2
, (C.2)

whose values are also shown in the panels in figure 14.

In the case of the wall source, it is found that the reconstruction works very well

and the residuals are negligible (. 10−5). In the case of the smeared source, while the

reconstruction is not as perfect as in the case of the wall source, the reconstructed R-

correlator well reproduces the overall behavior of the original one where the residuals are

only ∼ 0.4 − 5%. The main origin of the residuals is the small discrepancies at short

distances which become more apparent for a larger volume. This indicates that there

remain small contributions from excited states above inelastic threshold in the case of the

smeared source. In fact, since all elastic states couple to the smeared source with the same

order of magnitude (see figure 7), there could remain contributions from elastic as well

as inelastic states above the threshold for R(~r, t) even at t/a = 13, whose magnitude is

expected to be larger for a larger volume due to the larger density of states.

D Reconstructed effective energy shifts

We collect the results on the reconstructed effective energy shifts, eq. (4.6).

D.1 The results on various volumes

As shown in figure 15, we observe that the reconstruction generally works well. A small

deviation at early time slices on L = 64 for the smeared source is most likely due to the

statistical fluctuations and/or the systematics due to contaminations from the states above

the threshold discussed in appendix C.

D.2 Contributions from excited states to the effective energy shifts

We study how each elastic excited state contributes to the effective energy shift for the

smeared source, by changing the number of elastic excited states used in the reconstruction

(nmax) in eq. (4.6).

Figure 16 shows the nmax dependence of the reconstructed effective energy shifts for

the smeared source at L = 40, 48 and 64, which are compared with the lowest eigenen-

ergies ∆E0 (red bands). Due to the negative sign of bn/b0 < 0 (see figure 9 (right)), the

reconstructed effective energy shifts are smaller than ∆E0. For L = 40 and 48, the dom-

inant contribution comes from the first excited state (nmax = 1) besides the ground state

and higher modes give only minor corrections, while the second excited state (nmax = 2)

also gives significant contribution for L = 64. These results indicate that the pseudo-

plateau structures around t/a ∼ 15 are originated mostly from the scattering states below

∼ 90 MeV (see table 2).
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Figure 15. The reconstructed effective energy shifts ∆Eeff(t, t0 = 13a) for the wall source (red

bands) and the smeared source (blue bands) at L = 40, 48 and 64. The effective energy shifts in

the direct method are also shown for the wall (red circles) and smeared (blue squares) sources. The

black dashed lines are the energy shifts for the ground state of the HAL QCD Hamiltonian in the

finite volume evaluated at t0/a = 13. (Left) 0 ≤ t/a ≤ 24. (Right) 0 ≤ t/a ≤ 175.
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Figure 16. The mode number (nmax) dependence of the reconstructed effective energy shift

∆Eeff(t, t0 = 13a) for the smeared source at L = 40 (top), 48 (middle) and 64 (bottom).
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E Effective energy shifts from the improved sink operator based on

eigenfunctions

Figure 17 shows effective energy shifts on various volumes, which are obtained from the

improved two-baryon sink operator, projected to the ground state/first excited state in

eq. (4.7). Results are found to be consistent with the corresponding finite-volume eigenen-

ergies of the HAL QCD Hamiltonian. Small discrepancies for the smeared source on L = 64

are most likely due to the statistical fluctuations and/or the systematics due to contamina-

tions from the states above the threshold discussed in appendix C. Shown together in the

left figure are the effective energy shifts in the direct method (without projection), where

the significant deviation is observed for the smeared source.
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Figure 17. Same as figure 12 on L = 40 (top), 48 (middle) and 64 (bottom).
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