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SUMMARY

Current adoptive T cell therapies conducted in an autologous setting are costly,
time consuming, and depend on the quality of the patient’s T cells. To address
these issues, we developed a strategy in which cytotoxic T lymphocytes (CTLs)
are regenerated from iPSCs that were originally derived from T cells and suc-
ceeded in regenerating CTLs specific for the WT1 antigen, which exhibited ther-
apeutic efficacy in a xenograft model of leukemia. In this study, we extended our
strategy to solid tumors. The regenerated WT1-specific CTLs had a strong thera-
peutic effect in orthotopic xenograft model using a renal cell carcinoma (RCC) cell
line. To make our method more generally applicable, we developed an allogeneic
approach by transducing HLA-haplotype homozygous iPSCs with WT1-specific
TCR a/b genes that had been tested clinically. The regenerated CTLs antigen-spe-
cifically suppressed tumor growth in a patient-derived xenograft model of RCC,
demonstrating the feasibility of our strategy against solid tumors.

INTRODUCTION

Recent remarkable advances in cancer immunotherapy have taught us that cytotoxic T lymphocytes can kill

tumor cells. Immune checkpoint blockade therapies, such as with anti-CTLA-4 or anti-PD1 monoclonal an-

tibodies (mAbs), have been shown to be effective against various types of cancer by enhancing endoge-

nous anti-cancer immunity, and ultimately, cytotoxic T lymphocytes (CTLs) are thought to function as

effector cells to kill cancer cells (Pardoll, 2012; Gong et al., 2018). Some strategies in adoptive T cell therapy,

where T cells are collected from a patient and then given back to the patient after ex vivo activation, expan-

sion or genetic manipulation, have also shown therapeutic effects against cancer (Rosenberg and Restifo,

2015). For example, Rosenberg and colleagues have demonstrated that transfusion of ex-vivo expanded

tumor-infiltrating lymphocytes (TILs) was effective for patients with melanoma (Dudley et al., 2002; Rosen-

berg et al., 2011; Radvanyi et al., 2012; Besser et al., 2013). T cells that are genetically modified to express

exogenous antigen receptors by gene transfer have also been shown to be effective (Morgan et al., 2006;

Porter et al., 2011). One of such applications, in which peripheral T cells are transduced with a chimeric an-

tigen receptor (CAR) gene that targets CD19, has shown dramatic efficacy against B cell leukemia/lym-

phoma (June and Sadelain, 2018). Transfer of T cell receptor (TCR) a/b genes targeting NY-ESO-1 or

MART1 has also been shown to be effective against various tumors (Klebanoff et al., 2016).

These strategies of adoptive T cell therapy havemainly been conducted in an autologous setting. However,

such an autologous approach is costly and time consuming and depends on the quality of the patient’s

T cells, sometimes failing to produce effector cells. To resolve these issues, it would be advantageous to

develop a strategy conducted in an allogeneic setting, in other words, to prepare ‘‘off-the-shelf’’ therapeu-

tic T cells (O’Reilly et al., 2016; Qasim et al., 2017). To this aim, we previously devised a method in which

CTLs are cloned and expanded by using induced pluripotent stem cell (iPSC) technology. When iPSCs

are produced from antigen-specific T cells (T-iPSCs), the rearranged TCR a/b genes are inherited by

such T-iPSCs, and thus CTLs regenerated from the iPSCs should exhibit the same antigen specificity as

the original CTLs. As proof of concept, we previously succeeded in producing iPSCs from human CTLs
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Figure 1. Regenerated WT1-CTLs Exhibit Cytotoxic Activity against RCC Cells Expressing Endogenous WT1

Antigen In Vitro

(A) Illustration of the methods used to regenerate CTLs from T cell-derived iPSCs (T-iPSCs).

(B) Flow cytometric profiles of WT1-specific CD8ab T cells regenerated from clone #3-3 T-iPSCs. Results of one

experiment are shown as representative of three independent experiments.
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Figure 1. Continued

(C) In vitro 51Cr-release cytotoxicity assay of regenerated WT1-CTLs against peptide-loaded autologous LCL at different

peptide concentrations. Results are presented as mean G SD from biological triplicate experiments.

(D) RT-PCR showing expression of the WT1 and GAPDH genes in RCC cell lines. K562 was used as a positive control for

WT1 expression. H2O was used as a negative control.

(E) Immunohistochemical analysis for the expression of WT1 protein in cell lines. Scale bar, 50 mm.

(F) IFN-g production by WT1-CTLs in response to autologous LCL, K562, and three RCC cell lines. The effector-to-target

(E:T) ratio was fixed at 1:1. Results are presented as mean G SD from biological triplicate experiments.

(G) In vitro 51Cr-release cytotoxicity assay ofWT1-CTLs against RCCcell lines at different E:T ratios. HLA-negative K562 cells were

used as a control for NK-like cytotoxicity. Results are presented as meanG SD from biological triplicate experiments.

(H) Flow cytometric profiles of expression with HLA-A*24:02 and Venus as reporter gene between VMRC cells and

VMRC-A*24 cells.

(I) In vitro 51Cr-release cytotoxicity assay of WT1-CTLs against VMRC cells and VMRC-A*24 cells at different E:T ratios

(*p < 0.05). Results are presented as mean G SD from biological triplicate experiments.

(J) Flow cytometric profiles of expression with NK-related surface markers in peripheral CD8T cells of healthy donor, WT1-

CTLs, and peripheral NK cells of healthy donor.
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specific for the melanoma antigen MART1 and then in regenerating CTLs from the MART1-T-iPSCs (Viz-

cardo et al., 2013). We then improved our culture procedures and succeeded in inducing very potent

CD8ab type CTLs, and using this improved method, we regenerated WT1 antigen-specific CTLs (Maeda

et al., 2016). These regenerated CTLs were able to prolong the survival of mice in a xenograft leukemia

model where WT1-expressing human leukemia cells were inoculated into immunodeficient mice followed

by transfusion of the WT1-specific regenerated CTLs (WT1-CTLs) (Maeda et al., 2016).

As the next step, we wished to apply our approach to a solid tumor. We decided to focus on renal cell car-

cinoma (RCC). RCC is considered to be one of the most immunogenic tumors, along with malignant mel-

anoma and non-small cell lung cancer. In this context, even classical immunotherapies such as systemic

administration of IL-2 or IFNa have shown therapeutic efficacy against RCC (Medical Research Council

Renal Cancer Collaborators, 1999; Pyrhonen et al., 1999). Recent approval of anit-CTLA-4 and anti-PD1

mAb against RCC also supports the idea that RCC is immunogenic (Motzer et al., 2015, 2018).

In the present study, we applied our method to RCC. We first demonstrated that regeneratedWT1-specific

CTLs cloned by our group expressing an endogenous WT1-specific TCR exhibited therapeutic efficacy

against an RCC cell line inoculated into the kidney of immunodeficient mice. As a next step, we took advan-

tage of methods that are clinically applicable in an allogeneic transfer setting: we first regenerated CTLs

from HLA haplotype-homozygous iPSCs and transduced them with WT1-specific TCR a/b genes that had

already been tested clinically (Tawara et al., 2017). Transfusion of these CTLs significantly suppressed

growth of RCC in a patient-derived xenograft model, providing rationale for the clinical application of

our strategy to treat solid tumors.
RESULTS

RegeneratedWT1-CTLs Exhibit Cytotoxic Activity against RCC Cells Expressing Endogenous

WT1 Antigen In Vitro

As a cell source to produce effector CTLs, we first used WT1-specific T-iPSCs (WT1-T-iPSC, clone name #3-

3) that were originally established by reprogramming WT1-specific CTLs expanded from peripheral blood

T cells of a healthy volunteer, characterized well regarding profiles as pluripotent stem cells (Maeda et al.,

2016). CTLs were regenerated from #3-3WT1-T-iPSC as previously described. Briefly, WT1-T-iPSC were co-

cultured with OP9 cells and then transferred to OP9/DLL1 cells on day 13. CD4/8 double-positive (DP) cells

generated on day 35 were isolated and stimulated with anti-CD3 mAbs for 6 days, followed by expansion

using a WT1 peptide-loaded autologous B lymphoblastoid cell line (LCL) (Figure 1A). The regenerated

CTLs were almost exclusively CD4�CD8+, CD8ab-heterodimer, and WT1-tetramer+ (hereafter referred

to as WT1-CTLs) (Figure 1B). The WT1-CTLs efficiently killed peptide-loaded LCL (Figure 1C), confirming

our published results (Maeda et al., 2016).

To examine whether the WT1-CTLs are effective against solid tumors, we selected RCC as a target tumor

and used three RCC cell lines, A498, VMRC, and TUHR10. TUHR10 cells express HLA-A*24:02, to which the

#3-3 WT1-specific TCR is restricted, but the other two lines do not. The K562 erythroleukemia cell line,

which is known to express WT1 antigen, was used as a positive control for expression of the WT1 antigen
iScience 23, 100998, April 24, 2020 3



Figure 2. Regenerated WT1-CTLs Have Therapeutic Efficacy in an In Vivo Xenograft Model with a WT1-

expressing RCC Cell Line

(A) Establishment of orthotopic xenograft mouse model by using an RCC cell line expressing WT1 antigen and luciferase,

TUHR10-Luc.

(B) Immunohistochemistry of a kidney with the tumor lesion. Tumor cells were detected as HLA-A positive. Scale bar, 50 mm.

(C) The schedule of the in vivo therapeutic experiment.

(D) Bioluminescence imaging of control and treatment groups by using an in vivo imaging system (IVIS) (n = 5 per group).

Cell therapy was begun after the tumors had been allowed to grow for 4 days. Results of one experiment are shown as

representative of three independent experiments.

(E) Quantification of focal luminescence in the experiment shown in (C) and (D). p/s/cm2/sr stands for photons/

second/cm2/steradian.

(F) Immunofluorescence of tumor lesion from mice 2 days after last injection of WT1-CTLs. Tumor cells and CTLs were

identified as HLA-A and human CD8+ cells, respectively. Left is the image without primary antibody of CD8, and right is

with primary antibody of CD8. Right image was used as a negative control (N.C.). Scale bar, 50 mm.
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Figure 2. Continued

(G) Flow cytometry analysis of human CD3, CD45, CD8a, and PD1 expression by peripheral blood lymphocytes,

lymphocytes in the intact kidney, and lymphocytes in the RCC-bearing kidney from a treated mouse 2 days after last

injection of WT1-CTLs. CTLs from the RCC-bearing kidney had increased expression of PD1. Results of one experiment

are shown as representative of three independent experiments.

(H) Comparison of the ratio of PD1+hCD8+ cells normalized by mCD45+ cells determined by flow cytometry analysis of

peripheral blood cells, lymphocytes in normal intact kidney, and lymphocytes in RCC-bearing kidney from treated mice two

days after the last injectionofWT1-CTLs (*p<0.05). Results arepresentedasmeanGSD frombiological triplicateexperiments.
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and also as target cells for NK cell-like cytotoxic activity, because K562 is known to be sensitive to

NK cell-mediated cytotoxicity due to the lack of HLA expression. Among the three RCC lines, WT1 antigen

was detected in VMRC and TUHR10 cells by RT-PCR and immunohistochemical analysis (Figures 1D and

1E). We then examine the cytotoxic activity of WT1-CTLs by co-culturing them with these target cells.

Significant production of IFN-g by the CTLs was seen only in response to TUHR10 cells, which are

HLA-A*24:02+WT1+, but not against the other cells (Figure 1F). Furthermore, TUHR10 cells were far

more efficiently killed by WT1-CTLs compared with the other cell lines (Figure 1G). These results indicated

that WT1-CTLs were able to recognize and kill RCC cells in an antigen-specific manner. It could be pointed

out, however, that the WT1-CTLs retain some antigen-non-specific cytotoxic activity, because VMRC and

TUHR10 cells were also killed to some extent. Since the WT1-CTLs hardly show cytotoxic activity against

K562, which are usually used to assess general NK activity of effector cells, it is probable that VMRC and

TUHR10 cells express some molecules inducing NK activity that are not expressed in K562 cells. We thus

examined NK cell-associated markers including activating receptors but failed to find difference between

WT1-CTLs and peripheral NK cells from healthy donor (Figure 1J).

In order to independently confirm that the cytotoxic activity of the WT1-CTLs is antigen specific, we used a

lentivirus system to transduce VMRC cells, which express the WT1 antigen but are negative for HLA-

A*24:02, with an HLA-A*24:02 gene, and thus produced VMRC-A*24 cells expressing a reporter gene

(Venus) and HLA-A*24:02 (Figure 1H). A cytotoxic assay showed that VMRC-A*24 cells were more efficiently

killed than parental VMRC cells by WT1-CTLs (Figure 1I), further confirming that WT1-CTLs kill RCC cells

based on recognition of the WT1 antigen.
Regenerated WT1-CTLs Are Therapeutically Effective in an In Vivo Xenograft Model Using a

WT1-Expressing RCC Cell Line

We next investigated whether WT1-CTLs are effective in an in vivo xenograft model. TUHR10 cells were first

transduced with a luciferase gene (hereafter referred to as TUHR10-Luc cells) to make them detectable by a

bioluminescence imaging system. TUHR10-Luc cells were orthotopically inoculated inside the kidney of

immunodeficient NOG mice (Figure 2A), where they became engrafted and formed a tumor lesion (Fig-

ure 2B). In the treatment model, 2.5 3 106 WT1-CTLs plus IL-2, IL-7, and IL-21 were administered intraper-

itoneally to the tumor-bearing mice a total of seven times from day 4 to day 18 (Figure 2C). Control mice

received only cytokines. Reduction of tumor size was clearly seen on day 10, and the tumors remained small

until day 28; however, tumor regrowth began to be seen on day 35 (Figures 2D and 2E). Thus, the treatment

was highly effective in reducing tumor size and further suppressing tumor growth, although the tumor cells

were not completely eliminated.

Some mice in another similarly designed experiment were sacrificed on day 20 (2 days after the last CTL in-

jection), and tumor lesions were histologically examined. Infiltration of CD8T cells was observed in the area,

visualized as HLA-A+ cells (Figure 2F). Mononuclear cells were harvested from the tumor-bearing and

contralateral kidneys and also from peripheral blood and analyzed by flow cytometry. PD1+ CD8T cells

were detected in the tumor-bearing kidney but not in the control kidney or in peripheral blood (Figures

2G and 2H), suggesting that CTLs in the tumor-bearing kidney had been activated by encountering cognate

target cells. CD8T cells detected in the intact kidney were considered to represent circulating CD8T cells,

because the profile of these cells was very similar to that of CD8T cells in peripheral blood.
WT1-TCR-CTLs Regenerated from iPSCs Transduced with TCR a/b Genes

Thus far we have produced CTLs from T-iPSCs that had been originally derived from T cells. Very recently,

we have developed a method in which iPSCs originally derived from non-T cells are transduced with
iScience 23, 100998, April 24, 2020 5
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exogenous TCR a/b genes (hereafter referred to as TCR-iPSCs). This method made it easier to produce

iPSCs equivalent to T-iPSCs; hence, hereafter, we used it to produce CTLs.

The use of the TCR-iPSCmethod enabled us tomove our study closer to clinical application, since we could

use clinical grade iPSCs and TCR a/b genes. We thus selected materials that can be directly applied to clin-

ical settings: (1) iPSCs homozygous for the most frequent Japanese HLA-haplotype (HLA-homo), which had

been established for clinical use by the Center for iPS cell Research and Application (CiRA) at Kyoto Uni-

versity, and (2) WT1-specific TCR a/b enes (clone name: TAK1) that had already been tested clinically

(Tawara et al., 2017). It is expected that CTLs derived from HLA-homo iPS cells encounter minimal immune

reaction when they are given to HLA haplotype-heterozygous (HLA-hetero) recipients, since HLA is

matched for T cells in recipient in such case.

HLA-homo iPSCs were transduced with WT1-specific TCR a/b genes (TAK1-WT1-TCR) (Figure 3A). WT1-

TCR-iPSCs maintained several gene expressions related to pluripotent stem cells (Figure 3B). CTLs regen-

erated as in Figure 1A were found to almost exclusively express a CD8ab heterodimer and a WT1-specific

TCR (WT1-TCR-CTL) (Figure 3C). TheWT1-TCR-CTLs were evenmore efficient than #3-3 cloneWT1-CTLs at

killing TUHR10-Luc cells in an in vitro cytotoxicity assay (Figure 3D).

WT1-TCR-CTLs Derived from TCR-iPSCs Have Preclinical Therapeutic Effect against RCC PDX

Expressing WT1 Antigen

We then histologically analyzed a total of 16 resected RCC specimens fromAkita University forWT1 antigen

expression and 13 cases were found to beWT1+ (Figures 4A and 4B), confirming previous reports that RCC

express WT1 antigen (Nakatsuka et al., 2006; Iiyama et al., 2007). For the treatment model, we took the

advantage of RCC-PDX, in which tumor tissue resected from a patient with RCC is subcutaneously inocu-

lated into an NOG mouse (Figure 4C). Such RCC-PDX can be maintained by serial transplantation in NOG

mice, and several RCC-PDX lines have been established by our group (Inoue et al., 2017). The histological

features of the engrafted tumor tissue resemble the original clear cell RCC tissue (Figure 4D) (Pavia-Jime-

nez et al., 2014). We subcutaneously inoculated an HLA-A*24:02+WT1+ PDX tumor and an HLA-

A*24:02+WT1� one, the former expressing WT1 antigen at a moderate level and the latter expressing

no WT1 antigen as a specificity control, into the right side and left side, respectively, on the back of a

NOG mouse (Figure 4E). Regenerated WT1-TCR-CTLs (1 3 107 cells) were then injected intraperitoneally

a total of 12 times from week 1 to week 4 (Figure 4F). Suppression of tumor growth, as assessed by tumor

volume and visual observation of the surgically resected tumors at the end of the experiment, was seen with

theWT1+ tumors but not with theWT1� tumors (Figures 4G–4J). Mice were sacrificed on the fifth week, and

tumor lesions were histologically examined. Number of infiltrated CD8T cells observed in rightWT1+ tumor

was larger than that in left WT1� tumor (Figures 4K and 4L). These results demonstrated that regenerated

CTLs are effective against solid tumors in a PDX model.

DISCUSSION

In the present study, we have shown that the CTLs produced by using clinical grade iPSCs and clinically

tested TCR a/b genes are effective against a solid tumor in a PDX model, which is considered to be close

to the physiological tumor state (Inoue et al., 2017). The present results thus encourage us to apply our

approach to clinical settings.

As the starting cells for the production of CTLs, we utilized two different types of iPSCs, namely, T-iPSCs

and TCR-iPSCs, the former being produced by reprogramming antigen-specific T cells and the latter by

transducing iPSCs derived from non-T hematopoietic cells with exogenous TCR a/b genes. The T-iPSC

method can be used both in autologous and allogeneic settings. When the T-iPSC method is used in an

allogeneic setting, the original antigen-specific CD8+ T cells should be collected from a donor who is

HLA-homo, expecting that the CTLs regenerated from the T-iPSCs can be given to a patient heterozygous

for the HLA-haplotype (HLA-hetero) (Sugita et al., 2016a, 2016b). However, such HLA-homo donors are very

rare (Okita et al., 2011) and the process to establish a usable T-iPSC clone is expensive and time consuming.

In order to address these issues, we have very recently developed an alternative method, the TCR-iPSC

method, where iPSCs are transduced with exogenous TCR a/b genes. The merit of this method is that it

becomes possible to use iPSCs and TCR a/b genes whose quality is guaranteed for clinical use. Hence,

in the present study, we decided to use the TCR-iPSC method in our final PDX model experiments, and
6 iScience 23, 100998, April 24, 2020



Figure 3. RegeneratedWT1-TCR-CTLs from TCR-transduced iPSCs Exhibited Cytotoxic Activity against RCC Cells

In Vitro

(A) Illustrated methods showing the transduction with TCR a/b genes specific for WT1 into iPSCs and their differentiation

into CTLs.

(B) Immunofluorescence analysis for the expression of SSEA4, TRA-1-60, Nanog, and Oct4. DAPI was used as nuclear

counter-staining. Scale bar, 50 mm.

(C) Flow cytometric profiles of WT1 antigen-specific CD8ab heterodimer T cells regenerated from HLA-homo iPSCs with

WT1-specific TCR a/b genes TAK1. Venus was used as a reporter gene. Results of one experiment are shown as

representative of three independent experiments.

(D) Cytotoxic activity of regenerated CTLs with #3-3WT1-TCR or TAK1-WT1-TCR against TUHR10-Luc cells at different E:T

ratios. Results are presented as mean G SD from biological triplicate experiments.
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Figure 4. WT1-TCR-CTLs Derived from TCR-iPSCs Have Preclinical Therapeutic Effect Against RCC PDX

Expressing WT1 Antigen and HLA-A*24:02

(A) WT1 antigen expression in clinical samples of clear cell RCC.

(B) Immunohistochemical analysis of WT1 expression (negative, weak, moderate, and strong) in clinical samples of clear

cell RCC. Scale bar, 50 mm.

(C) Illustrated methods showing establishment of subcutaneous RCC-PDX.

(D) Comparison of WT1 expression by primary RCC and PDX. Scale bar, 50 mm.
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Figure 4. Continued

(E) The preclinical experimental therapeutic setting. Establishment of RCC-PDX by using WT1+ (right) or WT1� (left)

tumors from HLA-A*24:02+ patients (n = 3 per group).

(F) Schedule of the in vivo therapeutic experiment in the PDX model.

(G) The WT1� tumor (left) volume in the in vivo experiment to examine the therapeutic effect of WT1-TCR-CTLs against

RCC-PDX. Results of one experiment are shown as representative of two independent experiments.

(H) The WT1+ (right) tumor volume in the in vivo experiment to examine the therapeutic effect of WT1-TCR-CTLs against

RCC-PDX (*p < 0.05). Results of one experiment are shown as representative of two independent experiments.

(I) The WT1+ tumor (right) volume normalized by the WT1� tumor (left) volume (*p < 0.05). Results of one experiment are

shown as representative of two independent experiments.

(J) An image of resected tumors after treatments. Results of one experiment are shown as representative of two

independent experiments.

(K) Comparison of infiltrated human CD8T cells in the WT1� tumor (left) and the WT1+ tumor (right). Scale bar, 50 mm.

(L) Comparison of number of infiltrated human CD8-positive cells per field of view (320) in the WT1� tumor (left) and the

WT1+ tumor (right) (*p < 0.05).
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used an HLA-homo iPSC line provided by CiRA. We also usedWT1-specific TCR a/b genes (TAK1) that had

already been used in a clinical trial (Tawara et al., 2017), rather than the #3-3WT1-TCR cloned by our group.

The regenerated CTLs in this setting were found to exert a strong therapeutic effect in the RCC-PDXmodel.

Based on the literature and the results presented here, we can estimate the proportion of patients with RCC that

could benefit from our TCR-iPSC-derived CTLs. The HLA-homo iPSC line we used can cover ~17% of the Japa-

nese population (Ikeda et al., 2015). Since this haplotype contains HLA-A*24:02, to which TAK1-WT1-TCR is

restricted, thisWT1-TCR is always usablewhen the regeneratedCTLs aregiven toHLA-heteropatients. As shown

in the present study, ~80% of RCC specimens expressed the WT1 antigen, but moderately/strongly expressing

oneswere limitedto~20%.Thus, if regeneratedCTLsareappliedonly tomoderately/stronglyexpressingcases, it

can be calculated that 3% of patients with RCC are candidates for the treatment. If we extend our approach by

utilizing other HLA-homo iPSC stock lines, covering 33% of Japanese people with the four lines available at pre-

sent, the proportion of candidate patients would be increased accordingly.

In the present, as well as in our previous studies, we have very carefully investigated whether or not the re-

generated CTLs kill target cells in an antigen-specific manner, since it is generally known that CTLs, upon

activation, come to express activating receptors associated with NK cells (Themeli et al., 2013; Maeda et al.,

2016). Moreover, it was previously shown that CTLs regenerated from iPSCs exhibit a gdT cell-like pheno-

type (Themeli et al., 2013), endowing them with the potential to kill target cells just like NK cells do. How-

ever, in our previous study, we resolved this issue by developing a novel culture method; the CTLs regen-

erated by the method exhibited only marginal NK cell-like cytotoxicity (Maeda et al., 2016). Even so, we

always check whether the observed killing is antigen specific or not. Indeed, the CTLs used in the present

study showed virtually no cytotoxic activity against K562 cells, whereas some other HLA-A*24:02- RCC lines

were killed at low frequency (Figure 1G), suggesting that these CTLs retain some NK-like cytotoxicity.

Nevertheless, we would argue that RCC cell killing in our PDXmodel experiment was antigen specific, since

the growth of the WT1-negative tumor was not suppressed, whereas that of the WT1-positive tumor in the

same mouse was suppressed (Figures 4G–4J).

Recently, another group has reported that they regenerated CTLs expressing the same TAK1-WT1-TCR as

we used in the present study, by using a similar TCR-iPSCmethod. The regenerated CTLs were shown to be

effective in suppressing the growth of NCI-H266 (human lung adenocarcinoma cell line) cells in a xenograft

model (Minagawa et al., 2018). However, the studies did not assess whether suppression of tumor growth

was antigen specific or not. Moreover, a cancer cell line was used while we used themore physiological PDX

model. Thus, the advantages of the present study are (1) antigen-specific cytotoxicity was demonstrated

and (2) a PDX model instead of cell line was used.

In summary, in the present study, we demonstrated that the CTLs regenerated by the T-iPSCmethod effec-

tively inhibited the growth of an RCC cell line in a xenograft model and CTLs regenerated by the TCR-iPSC

method utilizing clinically applicable materials were capable of suppressing the growth of RCC tumors in a

patient-derived xenograft model. We propose that this method to produce CTLs from pluripotent stem

cells is applicable against solid tumors.
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Limitations of the Study

There are some limitations of our method that are worth discussing here. In our treatment model, tumors

were not completely eliminated but survived in both the RCC cell line and PDX models. Since this kind of

limitation is generally seen in any immunotherapies that target a specific tumor antigen, resolution of this

issue is beyond the scope of the present study. In this context, we are now developing adjunct therapy that

can enhance the anti-tumor effect in our PDX treatment model, such as blocking immune checkpoint

signals. In addition, it is important to think of tumormicroenvironment, which is generally immuno-suppres-

sive, mainly by regulatory T cells. In the present study, however, we transferred only CD8+ CTLs into xeno-

graft model and we used NOG mice as recipients, which do not have any T cells. Therefore, it is possible

that we will face this issue when our strategy goes into clinical application.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.100998.
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Transparent Methods 

 

Study approval 

This study was approved by the institutional review board of the Graduate School of 

Medicine, Kyoto University (approval number: G52, G761, G793), Akita University 

(approval number: 1479) and abided by the tenets of the Declaration of Helsinki. All 

specimens from healthy individuals and patients were collected after written informed 

consent was obtained. 

 

Cell lines 

OP9, OP9/DLL1, A498, VMRC-RCW (VMRC), and TUHR10-TKB (TUHR10) were 

purchased from RIKEN BRC. LCLs were established from the same healthy volunteer 

from which the T-iPSCs were derived. K562 was a gift from Dr. Kiyotaka Kuzushima 

(Aichi Cancer Center). The cell lines were authenticated by morphology, growth rate and 

surface phenotype, and especially expression of HLA class I, except for K562, which is 

HLA-negative. 

 

Flow cytometry 

Single cell suspensions from the regenerated CTLs, cell lines, mouse peripheral blood, 

spleen and kidney were stained with the following: PE-Cy7- or APC- or V450-hCD3e 

(UCHT1), FITC- or APC- or APC-Cy7- or V450-hCD8α (HIT8α, RPA-T8), BV421-

hCD56 (HCD56), APC-DNAM1 (11A8), PE-NKG2D (1D11), PE-NKp30 (P30-15) and 

BV421-hPD1 (EH12.2H7) were purchased from BioLegend. APC-hCD8β, FITC-

mCD45 were purchased from BD Bioscience. PE-Cy7-hCD4 (RPA-T4) was purchased 



from TONBO. PE-HLA-A*24:02 modified WT1 tetramer and anti-HLA-A24 mAbs 

(17A10) were obtained from MBL. Alexa Fluor488-NKG2C (134591), APC-KIR2DL1 

(143211) and PE-KIR2DL3 (180701) were purchased from R&D. Data was acquired by 

FACSCanto™ and were analyzed with FlowJo software (BD Biosciences). 

 

Isolation of hematopoietic cells from kidney 

Systemic mouse blood was refluxed with 50ml PBS prior to collecting infiltrating 

hematopoietic cells in the kidney. The kidney was then harvested and dissociated using 

scissors and gentleMACSTM Dissociators (Miltenyi Biotec). 30% Percoll gradient 

centrifugation was used to exclude cells except hematopoietic cells (GE Healthcare Life 

Sciences). 

 

Establishment of exogenous gene expressing cell lines 

VMRC-A*24 cells were established by lentiviral transduction. In brief, HLA-A*24:02:01 

cDNA clones were provided by the RIKEN BRC through the National Bio-Resource 

Project of the MEXT, Japan and cloned by methods described previously (Akatsuka et al., 

2002). We prepared lentivirus vector CS-UbC-RfA-IRES2-Venus (a gift from Hiroyuki 

Miyoshi, Keio University and Atsushi Miyawaki, RIKEN) including the HLA-

A*24:02:01 (Ichise et al., 2017). cDNA clone of HLA- A*24:02:01 was subcloned into 

the pENTR/D-TOPO vector and further subcloned into an expression vector, CS-UbC-

RfA-IRES2-Venus using pENTR Directional TOPO Cloning Kits (Thermo Fisher 

Scientific). Lentiviruses were collected 48 hr after transfection of Lenti-X 293T cells 

(Clontech) with appropriate amounts of lentiviral vectors, pRSV-Rev, pMDLg/pRRE, and 

pMD2.G (Addgene) using ViaFect (Promega). 5×104 VMRC cells were transduced and 



Venus-expressing cells were sorted by FACSAriaII™ (BD Bioscience) and seeded onto 

culture dishes. TUHR10-Luc cells were established by lentiviral transduction of pHIV-

Luc-ZsGreen (Plasmid #39196, Addgene) and ZsGreen-expressing cells were sorted by 

FACSAriaII™ (BD Bioscience) and seeded onto culture dishes. 

 

RNA Extraction and cDNA synthesis by reverse transcription 

Total RNA from cell lines was isolated using the RNeasy Mini Kit following the 

manufacturer's instructions (Qiagen). The concentration and 260:280 nm ratio of the 

extracted RNA was determined using spectrophotometry NanoDrop (Thermo Fisher 

Scientific). cDNA synthesis was performed using a SuperScript VILO cDNA Synthesis 

Kit (Thermo Fisher Scientific) from 2.5 μg of total RNA template following the 

manufacturer's instructions. 

 

RT-PCR 

The PCR reactions were performed using KOD -Plus- ver.2 (TOYOBO) as follows: 10 

min at 95 °C followed by 35 cycles consisting of 15 s at 95 °C, 60 s at 63 °C and 30 s at 

68 °C, and finally 10 min at 68°C. Amplified products were analyzed by agarose gel 

electrophoresis. The primers and probes were synthesized by Sigma-Aldrich. WT1: 

forward; 5’-ACAGGGTACGAGAGCGATAACCA-3’, reverse; 5’-

CACACGTCGCACATCCTGAAT-3’ (Willasch et al., 2009). GAPDH: forward; 5’-

GAAGGTGAAGGTCGGAGTC-3’, reverse; 5’-GAAGATGGTGATGGGATTTC-3’. 

 

Immunohistochemical staining 

For figure 1E, each cell line was inoculated subcutaneously into a NOD/Shi-scid,IL-



2RγKO Jic (NOG) mouse on day 0. When the tumor size reached around 1cm in diameter, 

tumors were resected, formalin-fixed and paraffin-embedded (FFPE). For figure 2B, 

TUHR10-Luc was orthotopically inoculated into the NOG mouse kidney. On day 7, the 

tumor-bearing kidney was resected. For figure 4B, FFPE tissues from 16 clear cell RCC 

patients were retrieved from archive sources at Akita University Hospital. For figure 4D, 

FFPE tissues from primary clear cell RCC or from PDX were retrieved from archive 

sources at Kyoto University Hospital. Immunohistochemistry was performed on 4-μm-

thick FFPE sections as previously described in (Nakatsuka et al., 2006) with slight 

modifications. Briefly, sections were treated with a 0.3% H2O2 solution to reduce 

endogenous peroxidase activity. After incubation with 10% proteinase K at RT, sections 

were subjected to heat-induced epitope retrieval in Target Retrieval Solution (Code No. 

S1699; Dako), followed by incubation with anti-WT1 antibody (clone 6F-H2; Dako) 

diluted as 1:100, negative control mouse IgG1 (Code No. X0931; Dako) diluted as 1:130, 

anti-HLA-A antibody (clone EP1395Y; abcam) diluted as 1:200 or negative control rabbit 

IgG (clone EPR25A; abcam) diluted as 1:100 overnight at 4°C. WT1 staining 

visualization was performed by using HRP-DAB (Code No. K5007; Dako) and 

counterstaining with hematoxylin. DAB staining was stopped when a positive signal was 

detected in podocytes of mouse kidney as a positive control. Hematoxylin and eosin 

staining was performed by the Kyoto Institute of Nutrition & Pathology or the Center for 

Anatomical Studies in Kyoto University Graduate School of Medicine. Images were 

obtained using a Keyence BZ-9000. WT1 positive area was calculated using BZ-II 

Analyzer Ver. 1.42 (KEYENCE). 

 

Immunofluorescence staining 



For Figure 2F, tumor inoculated kidney from mice were embedded in Tissue-Tek OCT 

compound (SAKURA FINETEK), and snap frozen in liquid nitrogen. 4-µm-thick 

cryostat sections were prepared and placed on APS-coated glass slides. Sections were 

fixed with acetone (nacalai tesque) for 4 min at 4°C, dried, and kept at −80°C until use. 

For Figure 3B, iPS cells colonies were seeded on chamber slides (IWAKI), and then fixed 

with acetone (nacalai tesque) for 4 min at 4°C and dried. After blocking with Blocking 

One Histo (nacalai tesque) for 30 min at RT, sections were incubated for 1 h at RT with 

anti-hCD8 (Dako), anti-HLA-A (Abcam), anti-SSEA4 (Abcam), anti-TRA-1-60 

(Abcam), anti-Nanog (Abcam), or anti-Oct4 (Abcam) mAbs or isotype control diluted as 

1:100 (hCD8, HLA-A and Oct4), 1:200 (SSEA4 and TRA-1-60) and 1:1000 (Nanog) by 

0.5 % tween 20 PBS with blocking buffer, and washed with PBS five times. Sections 

were incubated for 30 min at RT with DAPI diluted as 1:1000 and Alexa fluor 546 or 

Alexa fluor 488 diluted as 1:200 or 1:100 by 0.5 % tween 20/PBS with blocking buffer, 

and washed with PBS five times. In figure 4L, the number of CD8-positive cells was 

counted in a field of view (x20) at three different locations in the WT1- tumor (left) and 

the WT1+ tumor (right). Images were obtained using a Keyence BZ-9000.  

 

Construction of WT1-TCR lentivirus vector and transduction to HLA haplotype-

homozygous iPSCs 

WT1-specific TCR α and β genes of TAK1 clone were obtained from Dr. Yasukawa in 

Ehime University. TCR α and β cDNAs were linked with the self-cleaving P2A sequence 

and subcloned into pENTR/D-TOPO vector and further subcloned into an expression 

vector, CS-UbC-RfA-IRES2-Venus (gifted from Hiroyuki Miyoshi, Keio University and 

Atsushi Miyawaki, RIKEN) using pENTR Directional TOPO Cloning Kits (Thermo 



Fisher Scientific). Culture supernatant containing lentiviruses were collected 48–72 h 

after transfection of Lenti-X 293T cells (Clontech) with appropriate amounts of lentiviral 

vectors, pRSV-Rev, pMDLg/pRRE and pMD2.G (Addgene) using ViaFect (Promega). 

The HLA homozygous iPSC (clone name: FFI14s04) was obtained from CiRA, Kyoto 

University. 5×104 iPSCs were transduced with lentivirus by centrifugation (32 °C, 600G, 

1h) and seeded on a 6 well-plate with StemFit AK02 medium (Ajinomoto). TAK1-TCR-

transduced iPSCs as venus-positive cells were single-cell-sorted by FACSMelody™ (BD 

Bioscience) into 96 well-plate and established as independent lines. 

 

Regeneration of CD8+ T cells from iPSCs in vitro 

CD8 single-positive T cells were regenerated from iPSCs using the OP9 and OP9/DLL1 

stromal cell co-culture systems (Vizcardo et al., 2013; Maeda et al., 2016). About 600 

human iPSC clumps were plated on gelatin pre-coated OP9 overconfluent 10 cm dishes 

filled with 10 ml of OP9 medium, i.e. α-MEM (Invitrogen) with 20% FCS, penicillin (100 

U/mL), and streptomycin (100 μg/mL). On the next day, medium was replaced by 20 ml 

of fresh medium and thereafter changed every 4 days. On day 13, colonies were treated 

for 45 minutes with 10 ml of collagenase Type IV (50 U/ml) (Invitrogen) and 

subsequently dissociated for 30 minutes at 37°C using trypsin-EDTA (0.05%) (Nacalai 

tesque). To remove stromal cells, dissociated cells were resuspended by adding 5 times 

v/v OP9 medium and then plated on plastic at 37°C for one hour and floating cells were 

collected. To remove any remaining stromal cells and aggregated cells, the cell 

suspensions were passed through a 100 μm filter. Cells were plated in an OP9/DLL1 semi-

confluent dish in OP9 medium containing hIL-7 (5 ng/ml), hFlt-3L (5 ng/ml), and hSCF 

(5 ng/ml). On day 16, semi-adherent cells were collected and passaged into a new dish 



layered with OP9/DLL1 cells. From this point, passage was done every 7 days. On day 

35, floating cells were collected. CD4/8 DP cells were enriched by using CD4 microbeads 

(Miltenyi Biotec). DP cells were stimulated with 50 ng/ml CD3 antibody (OKT-3) 

(eBioscience) in the presence of hIL-2 (100 U/ml) and hIL-7 (5 ng/ml). Regenerated 

CTLs were expanded by co-culture with modified WT1 peptide (CYTWNQMNL, 

Eurofins Genomics) (Tsuboi et al., 2002) loaded LCL in the presence of and hIL-7 (5 

ng/ml), hL-21 (10ng/ml) and vitamin C (100 uM) once a week. 

 

In vitro cytokine release assay using ELISA 

The regenerated CTLs were tested for reactivity in IFNγ release assays with a Human 

IFN gamma ELISA Ready-SET-Go!™ Kit (Code No. 88-7316; Affymetrix), following 

the manufacturer’s instructions. Effector cells and target cells (1 × 105 cells for each) were 

co-cultured for 5h in ninety-six-well V-bottomed plates with technical-triplicate wells. 

Cytokine secretion was measured in culture supernatants diluted to fall within the linear 

range of the assay. Absorbance at 450 nm was measured using a SpectraMax i3 

(Molecular Devices). 

 

In vitro cytotoxicity assay using a 51Cr release assay 

Regenerated CTLs were used as effector cells in 51Cr release assays against target cells, 

LCL or RCC cell lines. LCLs were pulsed with WT1 peptide at various concentrations. 

51Cr-labeled target cell number was fixed 5,000 cells. Target cells and effector cells were 

co-cultured in 96 well V-bottomed plates (Nunc) at various E:T ratios as indicated. After 

co-culture, culture supernatant was applied to Picoplates (PerkinElmer) and analyzed by 

TopCount NXT (PerkinElmer). The percentage of specific lysis was calculated as follows: 



Specific lysis (%) = (sample lysis with CTLs (%) − basal lysis without CTLs (%)) / (100 

− basal lysis without CTLs (%)). 

 

In vitro cytotoxicity assay using a luciferase assay 

The comparison of cytotoxic activity by regenerated CTLs with #3-3 TCR or TAK1-TCR 

was determined by a standard luciferase-based assay (Eyquem et al., 2017). TUHR10-

Luc were used as target cells at different E:T ratio. The effector and target cells were co-

cultured in triplicates at the indicated E: T ratio using black-walled 96- well plates with 1 

× 105 target cells in a total volume of 100 μl per well. Target cells alone were plated to 

determine the maximal luciferase expression (relative light units; RLUmax). 16 h later, 

luciferase substrate (Bright-Glo™ Luciferase Assay System, Promega) was directly 

added to each well. Emitted light was detected in a luminescence plate reader GloMaxTM 

(Promega). Lysis was determined as (1 − (RLUsample)/(RLUmax)) × 100. 

 

In vivo treatment model using a cell line-derived xenograft mouse 

NOG female mice were purchased from In-Vivo Science Inc. All mice were 6 to 10 weeks 

old at the beginning of each experiment. Animal studies were performed in compliance 

with the Institutional Animal Care and Use Committee regulations of Kyoto University 

(approval number: K-16-11-5). Orthotopic transplantation with RCC cell lines was 

performed as previously reported (Karashima et al., 2017). On day 0, 4 × 106 TUHR10-

Luc cells were injected in the right kidney of mice. #9 mouse was excluded before the 

treatment, because the tumor of the mouse was very low intensity of radiance. On day 4, 

tumor engraftment was confirmed using an in vivo imaging system (IVIS) with Living 

Image software (PerkinElmer). Then each mouse uniformly allocated to control group or 



CTL treatment group based on the radiance score of the region of interest. After allocation, 

the mice in the treatment group were intraperitoneally injected with 2.5 × 106 WT1-CTLs 

and cytokines (IL-2 160U, IL-7 40ng and IL-21 40ng /body), and the mice in control 

group were intraperitoneally injected with cytokines three times a week for a total of 

seven times. We used the method of intraperitoneal (i.p.) injection to mice based on the 

previous report showing that intravenous injection is comparable i.p. injection in cancer 

immunotherapy model (Petersen et al., 2006; Friedrich et al., 2012; Minagawa et al., 

2018). The radiance scores of tumors were measured every week on the IVIS. Two days 

after the last treatment day, tumor infiltrating cells in the right kidney, left normal kidney 

infiltrating cells and peripheral blood were analyzed by flow cytometry.  

 

In vivo treatment model using the RCC-PDX mouse 

RCC tumor samples were obtained from patients after obtaining informed consent for 

sample procurement as approved by Kyoto University Hospital. Eligibility criteria were 

based on preoperative computed tomography (CT) scan and included tumor samples 

greater than 1 cm. A tumor sample was subcutaneously inoculated into mice. Tumor size 

was measured by a digital caliper once per week. When the tumor size reached around 1 

cm diameter, mice were anesthetized with isoflurane and sacrificed for ethical 

considerations. When tumor passage was needed, fragmented tumors were transplanted 

into mice. On day 0, 5 × 5 × 5 mm tumor fragments were inoculated into 6-14 weeks old 

NOG female mice. A WT1-positive tumor was inoculated in the right flank and a WT1-

negative tumor was inoculated in the left flank. On day 7, tumor engraftment was 

confirmed and then each moue was allocated to the control group or WT1-TAK1-CTL 

treatment group. After allocation, the mice in the treatment group were intraperitoneally 



injected with 1 × 107 CTLs and cytokines (IL-2 160U, IL-7 40ng and IL-21 40ng /body) 

and the mice in the control group were intraperitoneally injected with the cytokines every 

other day for a total of 12 times. The tumor size was measured by a digital caliper once 

per week. On the seventh day after the last treatment day, mice were euthanized and 

tumors were resected. 

 

Statistical analysis 

All statistical analyses were performed using Statcel (OMS Ltd., Tokyo, Japan). 

Comparisons between groups were performed with student’t test or χ2 test, as appropriate. 
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