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has a specific form, which however contains an undetermined function of the supersymmet-

ric derivatives D and D̄. Taking the most simple choice, we propose a flow equation for

this model. As an application of the flow equation, we give the solution of the equation at

the leading order in the large N expansion. The result shows that the flow of the superfield

in the model is dominated by the scalar term, since the supersymmetry is unbroken in the

original model. It is also shown that the two point function of the superfield is finite at

the leading order of the large N expansion.
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1 Introduction

Recently, the method of the gradient flow [1–3] has been the focus of research in lattice

QCD. The attractive properties of this method lies in the ultraviolet (UV) finiteness of

the composite operators constructed from the fields at finite flow time t, which was shown

in refs. [2, 3]. Based on this remarkable properties, there have been a lot of applications

to the studies of physical observables. In ref. [4], nonperturbative renormalization and

O(a) improvement of the axial current as well as the accurate determination of the chiral

condensate were studied using the chiral Ward-Takahashi identities. In ref. [5], the per-

turbatively renormalized energy momentum tensor in the continuum theory was extracted

from the composite operator at finite flow time t. The energy momentum tensor so defined

was used to compute the equation of state in the Yang-Mills theory [6]. Nonperturbative

renormalization of the energy momentum tensor was obtained in ref. [7].

Being finite, the correlation fucntions at finite flow time are regularization indepen-

dent and shares the same symmetry properties as the continuum theory. Therefore, even if

the lattice regularization breaks the global symmetries such as chiral symmetry or transla-

tion/dilatation symmetry, they can serve as natural probes of Ward-Takahashi identities.
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One of the most difficult but interesting problems is the lattice regularization of the

supersymmetry and the nonperturbative studies of its dynamics. In the N = 1 supersym-

metric pure Yang-Mills theory, naive lattice regularization breaks the supersymmetry, so

that the fermion mass parameter should be fine-tuned to recover the supersymmetry in the

continuum limit [8], by imposing the chiral Ward-Takahashi identity. Even after this fine-

tuning, it is still hard to confirm the recovery of the supersymmetry in the continuum limit

via supersymmetric Ward-Takahashi identity in nonperturbative lattice simulations due to

various systematic errors [9]. This suggests that the fine-tuning program for more general

supersymmetric theories such as N = 1 supersymmetric QCD, where there exist five su-

persymmetry breaking parameters that are needed to be fine-tuned, is hopelessly difficult.

In view of this situation, it is natural to expect that once the flow equation is extended to

supersymmetric theories, they may help us to improve the study of supersymmetric lattice

field theories.

For historical reasons, the flow equation has been called the “gradient” flow equation,

since the Yang-Mills flow equation, which is a typical example of the flow equations, is

constructed by the gradient of the action. Flow equations, however, are not always obtained

by the gradient of the action. For example, the flow equation for the quarks in QCD cannot

be obtained by the gradient of the action [3]. Also, in the N = 1 supersymmetric pure

Yang-Mills theory, the flow equation can no longer be a simple gradient of the action

and the generalized gradient flow equation has to be introduced [10], in order to keep the

supersymmetry.

What do we need for the flow equation? Actually, it depends on the purpose. Our

ultimate goal is to use the flow equation in order to construct the lattice supersymmetry

and study its dynamics through Monte-Carlo simulations, following the success for the

chiral dynamics in QCD and the energy momentum tensor in Yang-Mills theory. For this

goal, we require that the flow equation should respect the supersymmetry and should have

the remarkable properties of the UV finiteness for the composite operators at finite flow

time t. While the former properties can be imposed by construction, whether or not the

latter property is satisfied can only be seen after studying the resulting equation. Since

the flow equation may not be unique, the construction of a desirable flow equation may

require a trial-and-error process. Only after the latter properties are established, one can

use it as a good probe for supersymmetric Ward-Takahashi identities.

In this paper, we carry out the construction of the flow equation for a supersymmetric

theory as a first step towards the study of lattice supersymmetric theories, taking theN = 1

supersymmetric O(N) nonlinear sigma model in two dimensions as a toy model. Since this

model is analytically solvable in the large N limit, one can also address the question

whether the UV finiteness at finite time t is realized or not. Imposing the condition

that the flow equation respect the O(N) symmetry and SUSY, and requiring that only

four supersymmetric derivative operators appear in the equation, we can restrict the flow

equations to a specific form. Choosing the simplest example as our choice of the flow

equation, we give the solution of the equation at the leading order in the large N expansion.

We show that the flow equation of the superfield in this model is dominated by the flow of

its scalar term, since the SUSY is dynamically unbroken in the large N limit. We show that
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the two point function in terms of the superfield is finite in the large N limit. Although

the UV finiteness for operators including sub-leading terms are not shown yet, our finding

can give a promising test ground towards the study of lattice supersymmetric theories.

This paper is organized as follows. In section 2 we give general requirements to con-

struct the flow equation. In section 3, using the requirements, we construct the flow

equation of the N = 1 supersymmetric O(N) nonlinear sigma model (SNLSM) in two di-

mensions as a concrete example, which is compatible with the SUSY. We show the finiteness

of the two point function in the large N limit in section 4. We summarize our results of this

paper in section 5. Some general properties for SUSY in two dimensions are presented in

appendix A, while the dynamics of SNLSM in two dimensions is discussed in appendix B.

2 The flow equation

We here propose two conditions for the flow equation to satisfy.

I. Properties of the system are preserved by the flow equation.

In particular, we consider two properties as

a) the constraint of the system,

b) the symmetry of the system.

We refer the conditions corresponding to these properties as “I-a” and “I-b”

respectively.

II. The linear part of the flow equation for a field Ω should be given by a diffusion

equation as

∂Ω

∂t
= �Ω+ · · · (2.1)

to keep the smearing property of the flow equation. This means that the mass

dimension of the flow time is −2.1

We here consider the condition II. If the kinetic part of the action is given by

S0(Ω) =

∫

dDxΩ(x)K(x)Ω(x), (2.2)

where K is an inverse propagator whose mass dimension is [K] = D−2[Ω], and the gradient

of this action has the mass dimension D − [Ω], while the mass dimension of the left-hand

side (L.H.S.) of eq. (2.1) is [Ω] + 2. Therefore, if

[Ω] =
D − 2

2
(2.3)

is satisfied, the gradient flow equation is given by the gradient of the action.

1There is also an interesting extention to a wider class of the flow equation with higher derivatives in

λφ4 theory in ref. [11], which we will not discuss in this paper.
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The condition eq. (2.3) is satisfied for the Yang-Mills field and the scalar field, while

can not be satisfied for the fermion such as the quark field in QCD [4]. Even if the

condition eq. (2.3) is satisfied, the condition I sometimes requires the generalized gradient

flow equation in order to keep the nonlinearly realized symmetry [10]. The O(N) nonlinear

sigma model (NLSM) is such an example.

If the system has a SUSY, the condition has to be modified slightly. The mass dimen-

sion of the right-hand side (R.H.S.) of the gradient flow equation given by the variation

of the action are shifted by N/2, where N is a number of supercharges. In fact, the

supersymmetric action is provided by

S(Ω) =

∫

dDxdN θΩ(x, θ)K(x, θ)Ω(x, θ), (2.4)

where [dθ] = 1/2 and the mass dimension of an inverse super propagator K(x, θ) is given by

[K] = D − 2[Ω]−
N

2
. (2.5)

Imposing the condition that the mass dimension of the L.H.S. and R.H.S. of the gradient

flow equation match, i.e. [Ω] + 2 = [K] + [Ω], one obtains

[Ω] =
D − 2

2
−

N

4
. (2.6)

Eq. (2.6) is the condition that the flow equation can be obtained by the gradient of

the action in the supersymmetric theory, and it reduces to eq. (2.3) when there is no

SUSY (N =0).

For a field theory with N supercharges (including the case N = 0), if the condition

eq. (2.6) is not satisfied, the flow equation can not be obtained by the gradient of the

action. While the flow equation of the NLSM in two dimensions without SUSY satisfies

the condition eq. (2.6) with N = 0 (i.e. eq. (2.3)), and thus has been extensively studied

in refs. [10, 12–14], its N = 1 supersymmetirc extension does not satisfy the condition

eq. (2.6), so we cannot obtain the flow equation by the gradient of the action. In the next

section, we construct the flow equation of the SNLSM in two dimensions which satisfies

two requirements I and II.

3 The model

As a concrete example, we analyze the flow equation of the N = 1 SNLSM in two dimen-

sions, whose action is provided by

S(Φ) =
1

2g2

∫

x,θ

D̄ΦDΦ, (3.1)

where the superfield Φ(x, θ) = ϕ(x) + θ̄ψ(x) + 1
2 θ̄θF (x) is a N components vector field,

which satisfies

N
∑

α=1

(Φα(x, θ))2 = 1. (3.2)

The detailed analysis of the model is given in the appendix B.
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We demand the condition I-a that the flow equation keeps the constraint. We extend

the constraint eq. (3.2) to the one in terms of the flowed field at any flow time such that

N
∑

α=1

(Φα(t, x, θ))2 = 1. (3.3)

If we differentiate both sides of eq. (3.3) with respect to the flow time, we obtain

N
∑

α=1

Φα(t, x, θ)
dΦα(t, x, θ)

dt
= 0. (3.4)

Since this equation means that the l.h.s. of the flow equation of the model is orthogonal

to the superfield Φ, the r.h.s. of the flow equation should be proportional to the projection

operator such that

dΦα(t, x, θ)

dt
=

(

δαβ − ΦαΦβ
)

F β , (3.5)

which, together with eq. (3.2), leads to eq. (3.3) as follows. We modify eq. (3.5) a little as

dΦα(t, x, θ)

dt
=

(

Φ2δαβ − ΦαΦβ
)

F β , (3.6)

so that

d

dt

N
∑

α=1

(Φα(t, x, θ))2 = 0, (3.7)

which implies

N
∑

α=1

(Φα(t, x, θ))2 =

N
∑

α=1

(Φα(0, x, θ))2 =

N
∑

α=1

(Φα(x, θ))2 = 1. (3.8)

Since eq. (3.3) now holds, eq. (3.6) reduces to eq. (3.5).

We also impose the condition I-b that the flow equation retains the supersymmetry,

which implies that Fα should be constructed by the super field Φ as well as the covari-

ant derivative operators D̄ and D. Since these covariant derivative commute with super

transformation operator ξ̄Q, then the R.H.S. of (3.5) with F β(Φ, D̄,D) transforms as

F β(Φ, D̄,D) → F β(Φ, D̄,D) + ξ̄QF β(Φ, D̄,D) (3.9)

under the infinitesimal super transformation

Φ → Φ+ ξ̄QΦ. (3.10)

This is because 1) a product of arbitrary superfields Φ and Ξ is another superfield and ξ̄Q

satifsfies the Leibnitz rule

ξ̄Q(ΦΞ) = ξ̄Q(Φ)Ξ + Φξ̄Q(Ξ), (3.11)

– 5 –
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2) for any superfield Φ, DαΦ is another superfield, and 3) Q and D anticommutes so that

Dα(ξ̄QΦ) = ξ̄Q(DαΦ) (3.12)

holds. By repeatedly using 1),2),3) one can show that any function F made of Φ, DαΦ,

and higher D derivatives obey the transformation rule in eq. (3.9). The same property

1),2),3) can also holds for the product of the projection operator
(

δαβ − ΦαΦβ
)

and the

Field F β so that the R.H.S. transforms as
(

δαβ − ΦαΦβ
)

F β →
(

δαβ − ΦαΦβ
)

F β + ξ̄Q
[(

δαβ − ΦαΦβ
)

F β
]

. (3.13)

The L.H.S. transforms as

dΦα(t, x, θ)

dt
→

dΦα(t, x, θ)

dt
+ ξ̄Q

(

dΦα(t, x, θ)

dt

)

, (3.14)

if ξ and ξ̄ are t independent. Thus the flow equation (3.5) keeps the supersymmetry.

Since the mass dimension of the super field Φ must be zero due to eq. (3.3), the mass

dimension of F β should be equal to two. Let us finally impose the condition II eq. (2.1),

i.e. the linear part of the flow equation should include diffusion part. The simplest choice

of F β ,2 is given by

F β = D̄DD̄DΦβ , (3.15)

which leads to the flow equation of SNLSM in two dimensions as

dΦα

dt
= (δαβ − ΦαΦβ)D̄DD̄DΦβ , (3.16)

where the superfield Φα automatically satisfies the constraint eq. (3.3), as shown before.

If we solve this constraint, the flow equation becomes

dΦa

dt
= (δab − ΦaΦb)D̄DD̄DΦb − Φa

√

1− Φ2D̄DD̄D
√

1− Φ2, (3.17)

where we take α = 1, 2, . . . , N while a = 1, 2, . . . , N − 1. After a little algebra and the

redeinition of 4t to t, we obtain

dΦa

dt
= ∂2Φa +Φa∂Φb∂Φb +

Φa(Φb∂Φb)2

1− Φ2
, (3.18)

which is identical to the gradient flow equation of the two dimensional O(N) NLSM if the

superfield Φ is replaced by the scalar field φ [10].

We can also show that the equation is invariant under the global O(N) rotation by

transforming both sides of eq. (3.18) by operating δ, which is defined by

δΦα(t, x, θ) =
N
∑

β=1

ωαβΦβ (3.19)

=

N−1
∑

b=1

ωαbΦb ± ωαN

√

√

√

√1−
N−1
∑

b=1

(Φb)
2
, (3.20)

where ω’s are the infinitesimal parameters for the O(N) rotation.

2The term (ΦαD̄DΦα)D̄DΦβ is also allowed, but we take the most simple choice here.
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4 Results

4.1 Solution to the flow equation

We solve the flow equation at the large N limit and examine whether the solutions are UV

finite or not, using the same method in ref. [13]. The flow equation (3.18) in the momentum

space is written by

dΦa(t,p,θ)

dt
=−p2Φa(t,p,θ)−

∫ 3

p

Φa(t,p1, θ)(p2 ·p3)Φ
b(t,p2, θ)Φ

b(t,p3, θ)

−
∞
∑

n=0

∫ 2n+5

p

Φa(t,p1, θ)
p2+p3

2
·
p4+p5

2

n+2
∏

j=1

Φb(t,p2j , θ)Φ
b(t,p2j+1, θ), (4.1)

where we use the abbreviation as

∫ n

p

≡
n
∏

i=1

∫

d2pi
(2π)2

δ̂

(

n
∑

i=1

pi − p

)

, δ̂(p) ≡ (2π)2δ(2)(p). (4.2)

Let us consider the flow time dependence of the two point function. In the contraction

with any operators, the leading term in the large N expansion in eq. (4.1) is obtained from

self-contraction, so the flow equation is reduced to

dΦa(t,p,θ)

dt
=−p2Φa(t,p,θ)−

∫ 3

p

Φa(t,p1, θ)(p2 ·p3)〈Φ
b(t,p2, θ)Φ

b(t,p3, θ)〉

−
∞
∑

n=0

∫ 2n+5

p

Φa(t,p1, θ)
p2+p3

2
·
p4+p5

2

n+2
∏

j=1

〈Φb(t,p2j , θ)Φ
b(t,p2j+1, θ)〉, (4.3)

which means that the equation is valid in the contraction with any operators at the large

N limit. Note that the third term of the R.H.S in eq. (4.3) vanishes at the large N limit

because of the momentum preservation.

In order to solve eq. (4.3), we employ the following ansatz,

Φa(t, p, θ) = F (t, θ)e−tp2Φa(0, p, θ), (4.4)

where F is a superfield function given by F (t, θ) = f(t) + θ̄g(t) + 1
2 θ̄θH(t). As shown in

appendix B, the two point function of the superfield Φ at t = 0 and θ = θ′ is given by

〈Φa(0, p, θ)Φb(0, q, θ)〉 =
κ

N
δabδ̂(p+ q)

1

p2 +m2
+O

(

1

N2

)

, (4.5)

where κ = g2N is the t’Hooft coupling. Using this, we obtain the equation for the superfield

F as

dF (t, θ)

dt
= κF 3(t, θ)I(t,m), F (0) = 1, (4.6)

where

I(t,m) ≡

∫

q

q2e−2q2t

(

1

q2 +m2

)

. (4.7)
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In the component field expression, eq. (4.6) reads,

df(t)

dt
= κf3(t)I(t,m) , (4.8)

dg(t)

dt
= 0 , (4.9)

dH(t)

dt
= 3κf2(t)H(t)I(t,m) , (4.10)

with the initial conditions

f(0) = 1, g(0) = 0, H(0) = 0. (4.11)

We can easily solve these differential equations as

f(t) = e−m2t

√

ln Λ2+m2

m2

Ei{−2t(Λ2 +m2)} − Ei(−2tm2)
, (4.12)

g(t) = 0, H(t) = 0, (4.13)

where we use eq. (B.23) and Ei(x) is the exponential integral function defined by

Ei(x) =

∫ x

−∞

dt
et

t
= −

∫ ∞

−x

dt
e−t

t
. (4.14)

Thus the solution of the flow equation finally becomes

Φa(t, p, θ) = f(t)e−tp2Φa(0, p, θ). (4.15)

A remarkable feature is that the flow time dependence of the fields are common for

all components of the superfield. This manifestly shows that the flow equations keeps the

supersymmetry in the sense that the flow time evolution and supersymmetry transforma-

tion commute with each other. It is also interesting to see that the scalar component of

the solution has the same form as in non-supersymmetric O(N) NLSM.

4.2 Finiteness of two point function

Using the same discussion in ref. [13], we show the finiteness of the two point function in

terms of the flowed superfield at the leading order in the large N expansion as

〈Φa(t, p, θ)Φb(t′, p′, θ′)〉 = f(t)f(t′)e−tp2e−t′p′2〈Φa(0, p, θ)Φb(0, p′, θ′)〉 (4.16)

= f(t)f(t′)
κ

N
δabe−(t+t′)p2 δ̂(p+ p′)

×

(

1 + 1
2m(θ̄θ + θ̄′θ′)− 1

4p
2θ̄θθ̄′θ′

p2 +m2
−

θ̄(−i/p+m)θ′

p2 +m2

)

, (4.17)

where the coefficient is given by

lim
Λ→∞

κf(t)f(t′) = 4π
e−m2(t+t′)

√

−Ei(−2tm2)
√

−Ei(−2t′m2)
, (4.18)
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which is finite as long as tt′ 6= 0. We finally obtain the two point function in terms of the

flowed superfield as

〈Φa(t, p, θ)Φb(t′, p′, θ′)〉 =
4πe−(p2+m2)(t+t′)δabδ̂(p+ p′)

N
√

−Ei(−2tm2)
√

−Ei(−2tm2)

×

(

1 + 1
2m(θ̄θ + θ̄′θ′)− 1

4p
2θ̄θθ̄′θ′

p2 +m2
−

θ̄(−i/p+m)θ′

p2 +m2

)

. (4.19)

The fact that the flow equation preserves the supersymmetry and the two point func-

tions (or hopefully n-point functions) is finite can open a possibility of future applications

to lattice supersymmetries. Although the supersymmetry is violated by the lattice regu-

larization like the continuous translation symmetry, one may be able to construct the su-

persymmetric current from the composite operators of flowed fields in the small time limit,

following the study of Suzuki [5] for the energy momentum tensor. Another interesting ap-

plication is to use the flowed fields as a good probe for the supersymmetric Ward-Takahashi

identity, which is used as a measure for the fine-tuning of lattice parameters in order to

recover the supersymmetry in the continuum limit [7]. These studies are in progress.

5 Summary and discussion

In this paper, we study requirements for the flow equation to satisfy, which are summarized

as follows.

I. Properties of the system such as the constraint and the symmetry are preserved by

the flow equation.

II. The linear part of the flow equation is given by a diffusion equation.

On the bases of these requirements, we obtain the flow equation of the N = 1 SNLSM in

two dimensions. The flow equation we constructed has the manifest O(N) symmetry and

SUSY, while keeping the constraint Φ2 = 1 at any flow time. We give the solution of the

equation at the leading order of the large N expansion.

There are two results in the analysis. First of all, the flow of the superfield in the model

is dominated by the flow of its scalar term, since the SUSY is not broken dynamically in

the original theory in two dimensions. Secondly, we show that the two point function of the

superfield is finite at the leading order in the large N expansion. In particular, this result

means that the two point function of the fermion field is also finite. Although we have so

far studied the two point functions only, it is worth mentioning that our study is the first

case to show the finiteness of the two point function for flowed fields in the supersymmetric

theory non-perturbatively. In order to complete the proof for the finiteness of flowed fields,

one has to consider the analysis including the sub-leading order in large N expansion [15].

It is important to construct the supercurrent in the lattice field theory, using this SUSY

flow equation. It is also interesting to analyze properties of other models, e.g. NLSMs with

the extended SUSY or ones in the difference dimensions. More general method to construct

the flow equation is needed. Finally, one may consider the induced metric discussed in

ref. [15–17] using the supersymmetric flowed field analyzed in this paper.
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A N = 1 SUSY in two dimensions

This appendix summarizes some notations for N = 1 SUSY in two dimensions, based on

ref. [18].

Integrations over the coordinate x, momentum p and the supercoodinate θ are given by
∫

x

=

∫

d2x,

∫

p

=

∫

d2p

(2π)2
,

∫

θ

=

∫

d2θ =
i

2

∫

dθ2dθ1 . (A.1)

We consider the two dimensional Euclidean theory, whose metric is ηµν ≡ (+,+) for

µ, ν = 1, 2. The scalar superfield is

Φ(x, θ) = ϕ(x) + θ̄ψ(x) +
1

2
θ̄θF (x) , (A.2)

where ψ and θ are two component spinors given by

ψ =

(

ψ1

ψ2

)

, θ =

(

θ1
θ2

)

, (A.3)

and the Dirac conjugate is defined by

θ̄ ≡ Tθσ2 =
(

iθ2, −iθ1

)

, (A.4)

ψ̄ ≡ Tψσ2 =
(

iψ2, −iψ1

)

. (A.5)

The gamma matrix in two dimensions is given by

γµ ≡ σµ, (A.6)

where σµ is the Pauli matrices defined as

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

. (A.7)

We thus obtain for arbitrary two component spinors ψ and χ

ψ̄χ = χ̄ψ , (A.8)

ψ̄γµχ = −χ̄γµψ , (A.9)

ψ̄γµγνχ = χ̄γνγµψ . (A.10)

– 10 –



J
H
E
P
0
2
(
2
0
1
8
)
1
2
8

The super covariant derivative is defined by

Dα ≡
∂

∂θ̄α
− (/∂θ)α, D̄α ≡

∂

∂θα
− (θ̄/∂)α, (A.11)

while the supercharge is given by

Qα =
∂

∂θ̄α
+ (/∂θ)α, Q̄α =

∂

∂θα
+ (θ̄/∂)α. (A.12)

We use here the Feynman slash notation,

/∂ ≡ γµ∂µ . (A.13)

Note that

D̄ = T (σ2D) (A.14)

holds. Considering the super covariant derivative of the scalar superfield, we obtain

DαΦ = ψα + θαF − (/∂θ)α(ϕ+ θ̄ψ), (A.15)

D̄αΦ = −ψ̄α − θ̄αF − (θ̄/∂)α(ϕ+ ψ̄θ), (A.16)

Then we obtain

{Dα, D̄β} = −2/∂αβ , (A.17)

{Dα, Qβ} = 0. (A.18)

It is also easy to see that the following relation holds.

(D̄αDα)
2 = 4∂2. (A.19)

B SNLSM in two dimensions in the large N limit

We consider the N = 1 SNLSM in two dimensions [19]. This appendix is the review of

refs. [18, 20]. We derive the same result by the different method.

B.1 Action

The action is

S(Φ) =
1

2g2

∫

x,θ

D̄ΦDΦ, (B.1)

where the superfield Φ(x, θ) = ϕ(x) + θ̄ψ(x) + 1
2 θ̄θF (x) is a N components vector field,

which satisfies

N
∑

α=1

(Φα(x))2 = 1. (B.2)
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The generating function Z(J) with a source J is given by

Z(J) =

∫

DLDΦe−Stot(Φ,L,J), (B.3)

where

Stot(Φ, L, J) =
1

2g2

∫

x,θ

D̄ΦDΦ+
1

g2

∫

x,θ

L(Φ2 − 1)−
1

g2
J · Φ . (B.4)

Here we introduce L(x, θ) = M(x)+ θ̄l(x)+ 1
2 θ̄θλ(x) as the Lagrange multiplier superfield.

Integrating out Φ, we obtain

Z(J) =

∫

DLe−Seff(L,J), (B.5)

where

Seff(L, J) =
N

2
Str logK −

N

κ

∫

x,θ

L(x, θ)−
N

2κ
J ·K−1 · J, (B.6)

K = −D̄D + 2L, (B.7)

and κ ≡ g2N is the t’Hooft coupling.

B.2 Saddle point equation

Since the effective action Seff is proportional to N , the path integral over the superfield L

is dominated by the saddle point of the effective action in the large N limit as

Z(J) = e−S̄eff(J), (B.8)

where S̄eff(J) = Seff(L̄(J), J) and L̄(J) is the solution to the saddle point equation given by

1

N

δSeff

δL(x, θ)
= 〈x, θ|(−D̄D + 2L)−1|x, θ〉 −

1

κ
+

1

κ
(K−1 · J)2

= 0. (B.9)

Here, L̄(J) can be expanded in J as

L̄(J)(x, θ) = L0(x, θ) + L2(x, θ) + · · · , (B.10)

where L0 = L̄
∣

∣

J=0
is the J independent part and L2 is quadratic in J , and so on. The two

point function at large N is given by differentiating the effective action as

〈Φ(x, θ)Φ(x′, θ′)〉 =
κ2

N2

δ2Seff(L̄(J), J)

δJ(x, θ)δJ(x′, θ′)

∣

∣

∣

∣

J=0

. (B.11)

In principle, although the differentiation with respect to J can also act on L̄(J), a straight-

forward calculation shows that such contributions cancels between the differentiations of
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the first term and the second term in eq. (B.6) due to the saddle point equation. Therefore,

the propagator turns out to be

〈Φ(x, θ)Φ(x′, θ′)〉 =
κ

N
〈x, θ|(−D̄D + 2L0)

−1|x′, θ′〉. (B.12)

If there are two or more different solutions to the saddle point equation, the true vacuum

can be found as the solution which minimizes the effective action at J = 0. For this

reason, in order to obtain the propagator in the true vacuum, it suffices to know only the

J-independent part of L̄, namely L0.

From eq. (B.9), L0 is given by the saddle point equation

〈x, θ|(−D̄D + 2L0)
−1|x, θ〉 −

1

κ
= 0. (B.13)

Since the vacuum does not break the translational invariance and Lorentz invariance, L0

is independent of x and can be written as

L0 = M +
1

2
θ̄θλ , (B.14)

where M is some constant.

In order to solve the saddle point equation eq. (B.13) for L0, let us compute the

quantity ∆̃x,θ,x′,θ′ for general Lorentz invariant constant background field L = M + 1
2 θ̄θλ,

∆x,θ,x′,θ′ ≡ 〈x, θ|(−D̄D + 2L)−1|x′, θ′〉 . (B.15)

From the translational invariance it can be parameterized as

∆x,θ,x′,θ′ =

∫

k

eik(x−x′)∆̃(k, θ, θ′) . (B.16)

∆̃(k, θ, θ′) satisfies the relation

(−D̄D + 2L(θ))∆̃(k, θ, θ′) = δ2(θ′ − θ). (B.17)

We take the explicit form of ∆̃x,θ,x′,θ′ as

∆̃(k, θ, θ′) = a1 + a2θ̄θ + a3θ̄
′θ′ + a4θ̄θ

′ + a5iθ̄/kθ
′ + a6θ̄θθ̄

′θ′. (B.18)

Using eq. (B.17), we obtain coefficients as

a1 =
1

k2 +m2
, a2 = a3 =

1
2M

k2 +m2
, a4 = −

M

k2 +M2
,

a5 =
1

k2 +M2
, a6 = −

1

4

k2 + λ

k2 +m2
, (B.19)

where we introduce the boson mass as

m ≡
√

λ+M2. (B.20)
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Thus ∆̃x,θ,x′,θ′ is given by

∆̃(k, θ, θ′) =
1 + 1

2M(θ̄θ + θ̄′θ′)− 1
4(k

2 + λ)θ̄θθ̄′θ′

k2 +m2
−

θ̄(−i/k +M)θ′

k2 +M2
. (B.21)

Now, let us go back to the saddle point equation for L0. In momentum representation,

the saddle point equation reads

∫

k

∆̃(k, θ, θ) =
1

κ
. (B.22)

This equation reduces to

1

4π
log

Λ2 +m2

m2
=

1

κ
, (B.23)

M

4π
log

M2(Λ2 +m2)

m2(Λ2 +M2)
= 0, (B.24)

where Λ is the momentum cut-off, and the second equation implies that 1) M = m or 2)

M = 0. Using the first equation, the solutions in the large Λ limit are given as

M = m = Λe−
2π
κ , (B.25)

M = 0,m = Λe−
2π
κ . (B.26)

B.3 Action density

We calculate the action density, which is defined by ǫ/N = S̄eff/(NV ), as

ǫ/N =
1

8π

(

m2 −M2 + 2M2 log
M

m

)

. (B.27)

Using this result, we find that the true vacuum is realized at

ǫ = 0, M = m. (B.28)

B.4 Super propagator

Using eq. (B.21) and eq. (B.28), and setting θ′ = θ, we finally obtain the super propagator

at large N as

∆̃(k, θ, θ) =
1

k2 +m2
. (B.29)
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