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Abstract This article conducts a systematic comparison of three methods
for predicting the direction (+/-) of financial time series using over ten years
of DAX 30 and the S&P 500 datasets at daily and hourly frames. We choose
the methods from representative machine learning families, particularly super-
vised versus unsupervised. The methods are Support Vector Machines (SVM),
Artificial Neural Networks, and k-Nearest Neighbor (k-NN). We explore the
influence of different training window lengths and numbers of out-of-sample
predictions. Furthermore, we investigate whether Kernel Principle Component
Analysis (KPCA) improves prediction, through reducing data dimensional-
ity. Additionally, we verify whether combining machine learning methods by
Bootstrap Aggregating outperforms single methods. Key insights from the ex-
periment are: All machine learning methods are in principle useful to predict
the direction of (+/-) financial time series. But to our surprise, increasing the
window size only helps to a certain extent for hourly data, before it actually re-
duces the performance. The number of out-of-sample predictions had a small
impact, while KPCA made a strong difference for SVM and k-NN. Finally,
backtesting selected machines with a trading system on daily data revealed
the the lazy learner k-NN outperforms the supervised approaches.
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1 Introduction

Financial time series (e .g., stock price, index) forecasting is an important task
for the financial industry. Even small improvements in predictive performance
can be profitable. Although a lot of works have dealt with forecasting financial
time series, it is still regarded as one of the most challenging tasks [33]. Ac-
cording to the prominent Efficient Market Hypothesis (EMH), market prices
(in efficient markets) reflect all available information of a stock at any time.
Prices only adapt on the arrival of new information. Hence, forecasting future
stock price movements based on historical information should be impossible
in the long run.[26] Despite the prominence of the EMH, numerous researches
question its validity [38, 23, 36, 16].

Also, Timmermann et al. [36] consider a possible existence of a “file drawer”
bias in published studies, because publishing empirical results that are barely
or just statistically insignificant may be out of interest for researchers. Mean-
while, the continuous advance of machine learning techniques and computa-
tional power gave birth to machine learning approaches applied to financial
forecasting problems. Encouraging results have been obtained by artificial neu-
ral networks (ANNs) [25], support vector machines (SVMs) [33], and k-nearest
neighbor method (k-NN) [34]. Krollner et al. [22] provide a survey of recent
literature of machine learning approaches applied to financial time series fore-
casting.

Existing studies usually do not use data with higher than daily sampling
rates, with some notable exemptions such as Qu and Zhang [27] and Sirignano
and Cont [31]. Finally, we apply further techniques such as dimensionality
reduction or ensemble methods, to improve the predicting power of the learning
machines. Dimentionality reduction has been used, e. g., by Cao and Tay [7]
but only on SVMs. In summary, the contributions given by this paper are:

– We analyze and compare the three machine learning methods in terms of
their predictive performance. As representative methods, we select k-NN,
ANN, and SVM.

– We investigate what are the optimal training window lengths and numbers
of out-of-sample (OOS) forecast per training. This is done on both, the
DAX 30 and the S&P 500 datasets at daily and hourly time frames.

– We analyze the impact of Kernel Principle Component Analysis (KPCA),
when conducted on the training data, before training our algorithms. We
intend to find out if the KPCA can improve the forecasting performance
of our algorithms through reducing the dimensionality of the input data.

– We combine our algorithms with the Bootstrap Aggregating (also known
as Bagging) algorithm. More specifically, we investigate, if this ensemble
method can outperform the single machine learning method.
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Comparison of Machine Learning Methods for Financial Time Series Forecasting 3

– We close our experiments by providing a backtesting and benchmarking of
the experimental results for a selection of trained machines. To this end, we
apply a simple trading decision method based on our machines’ predictions
on daily data and compare their performances with a buy-and-hold strategy
in the respective index.
Based on our experimental results, we conclude that in principle all three

considered machine learning methods are useful for the forecasting financial
time series. For all methods, we usually observe more than 50% of all predic-
tions made by the machines have the same sign as the actual value. Regarding
the optimal window length, we can state that compared to daily data, a larger
window helps only to certain extend for hourly data. The rationale is simply
that too many smaller changes observed on hourly data have no impact on the
final index of a trading day, before the prediction quality drops. Regarding the
number of OOS predictions that are conducted before a machine is retrained,
we can state that it only has a marginal impact on the results. However, we
observe that dimensionality reduction with KPCA has a strong impact on the
prediction performance when using the SVM and k-NN. Given the observation
that the smaller changes on hourly data have no impact on the index at the
end of the trading day, we run a backtesting of selected machines in a simple
trading system on daily returns. To our surprise, we obtained the best pre-
diction performance by the unsupervised lazy learner k-NN compared to the
supervised methods.

The remainder of this paper is organized as follows: Subsequently, we pro-
vide an overview of related work on financial time series forecasting and ma-
chine learning. Section 3 briefly introduces the machine learning algorithms
we compare in this work, namely SVMs, ANNs, and k-NN. Furthermore, we
provide an introduction to KPCA and the Bootstrap Aggregating algorithm.
Section 4 describes our experimental approach and research questions. The
results of our comparison of the three machine learning methods are docu-
mented in Section 5. Section 6 presents the results of our backtesting of se-
lected trained machines. In Section 7, we discuss our empirical results in order
to draw inferences regarding our research questions, before we conclude.

2 Related Work

In this section, we review related works in the field of machine learning for
financial time series forecasting. While there have been a lot of machine learn-
ing methods developed and experimented for financial time series forecasting,
these studies usually differ regarding the applied machine learning methods,
the datasets, the forecasting time-frame, the input variables, and the evalu-
ation method [22]. There is a broad variety of promising applications of Ar-
tificial Neural Networks (ANNs) for forecasting financial time series. Among
these applications, the accuracy of ANNs varies significantly due to differ-
ent input variables, data preparation methods and network architecture [17].
Pacelli et al. [25] utilized a genetic algorithm to find the optimal architecture
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for a multilayer perceptron ANN (MLP-ANN). They used the MLP-ANN for
forecasting daily EUR/USD price movements based on fundamentals and his-
torical price data with promising results. Guresen et al. [14] evaluated the
predictive performance of a MLP-ANN, a dynamic artificial neural network
and a hybrid neural network for forecasting daily closing levels of NASDAQ.
Among the three compared methods, the MLP-ANN achieved the best results
in terms of mean square error (MSE) and mean absolute deviation.

Tay and Cao [33] evaluated the performance of a Support Vector Machine
(SVM) for forecasting five real future contracts. The authors used lagged his-
torical price returns as well as a technical indicator as input variables. In their
experiment, the SVM outperformed the ANN in terms of the normalized MSE
(NMSE). Furthermore, in a later work, Cao and Tay [6] validated the dom-
inance of SVM over MLP-ANN, while additionally comparing it to a radial
basis function neural networks, which produced comparable results. Addition-
ally, they showed that a SVM with adaptive parameters can achieve better
generalization performance as well as needed fewer support vectors than the
standard SVM. The results of Cao and Tay are in line with Kim [21] who
compared a SVM, a neural network, and the k-NN algorithm for predicting
the daily directional change of the Korean stock index.

Teixeira et al. [34] proposed an automatic stock trading system combin-
ing technical analysis and nearest neighbor classification based on daily stock
prices and volumes. Their model was able to outperform a buy-and-hold strat-
egy for most companies in terms of profitability. Furthermore, Brasileiro et
al. [4] also elaborated a trading system where buy and sell signals are pro-
duced by k-NN. Their system was able to outperform thirteen out of 15 stocks
compared to a buy-and-hold and another strategy.

Cao et al. [7] apply PCA, KPCA, and Independent Component Analysis
(ICA) to a SVM for feature reduction. They examined the sunspot data, the
Santa Fe dataset A, and five real future contracts and found out that their
SVM can perform better with than without feature reduction, while the best
performance was accomplished by KPCA followed by ICA. However, they did
not apply the feature reduction method to machine learning approaches other
than the SVM. Furthermore, performance was only measured by NMSE.

Furthermore, most studies on financial time series data analyse daily changes
of the financial data. Hsu et al. use daily and hourly simulations to predict the
return of financial indices [16] and determine which factors (such as market
maturity, model simulation methodology, covariate composition, and forecast
horizon based on daily vs hourly return) explain the disagreement between
current machine learning approaches and the EMH. Qu and Zhang [27] used
minute-based data to predict the Chinese CSI 300 index. A notable exception
is Sirignano and Cont [31], who applied a 3-layer LSTM on high-frequency
trading data from 500 stocks. Specific goal of this research was to demonstrate
that the combination of 500 stocks yields to good generalization results. How-
ever, the computational costs for training the LSTM with the high-frequency
trading data is extremely high, too. Thus, in contrast to the works of Qu and
Zhang [27] and Hsu et al. [16], we compare the performance of machine learn-
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Comparison of Machine Learning Methods for Financial Time Series Forecasting 5

ing methods between daily and hourly data. Furthermore, we are investigating
which window length is optimal for learning the prediction model, while Sirig-
nano and Cont [31] focused on identifying the universal features in financial
time series prediction.

In summary, to the best of our knowledge, there is no empirical compari-
son of SVMs, neural networks, and k-NN applied to hourly stock data. Conse-
quently the datasets in previous works are relatively small, with the exception
of Qu and Zhang [27]. Not many previous experiments utilized a walk-forward
training routine, where the machine is retrained after a predetermined number
of OOS predictions is done.

3 Selected Methods for Financial Time Series Forecasting

We briefly introduce the applied machine learning methods and parameters
that we selected for our experiments to compare forecasts of financial time
series.
Support Vector Machine. A Support Vector Machine (SVM) is a super-
vised machine learning method originally for pattern recognition and binary
classification [9]. It learns nonlinear separation, which maximizes the margin
between given two classes from training data, by employing kernels. It can
be applied to classification as well as regression. In this paper, we specifically
employ a Support Vector Regression Machine [10], which outputs a real value
y ∈ R.
Artificial Neural Network. An Artificial Neural Network (ANN) is a ma-
chine learning method inspired by the functioning of the human brain. Basi-
cally the aim of an ANN is to learn a nonlinear mapping FNN : X 7→ Y , pro-
ducing a real-valued, discrete-valued or vector-valued function, where X repre-
sents a d-dimensional input matrix and Y denotes the output variable [24, 11].
For more details of ANNs, we refer to references [24, 11]. In our experiments,
we use 3-layer MLP-ANN with middle layer having 8 hidden nodes.
k-Nearest Neighbor. Both SVMs and ANNs learn a function that infers
a real value y ∈ R during training process from training data. Thus, they
are called supervised machine learning methods. In contrast, the k-Nearest
Neighbor (k-NN) simply stores all training data and does not generalize them.
Thus, it requires no training process (unsupervised or so-called lazy learning).
For a given data which we would like to make regression, the k-NN searches the
k closest training data and outputs a real value y ∈ R using the closest data.
In this paper, we use the Euclidean distance to compute distance between data
to find the k closest training data and calculate mean of them as an output
value.
Kernel Principle Component Analysis. The aim of Principle Component
Analysis (PCA) is to transform the original input data, such that the dimen-
sion of the data is reduced to a smaller set, that still contains most of the
information [19]. The Kernel Principle Component Analysis (KPCA) [30] can
perform a nonlinear form of PCA. In contrast to the previous mentioned ma-
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6 Deniz Ersan, Chifumi Nishioka, Ansgar Scherp

chine learning methods, KPCA involves unlabeled data. In order to enable
nonlinearity, KPCA employs the kernel trick which is used for the nonlinear
SVM as well. Using the kernel trick, KPCA can reduce the dimensionality of
the input data nonlinearly.
Bootstrap Aggregating. Bootstrap aggregating, often referred to as “bag-
ging”, belongs to the class of ensemble methods. It is the most prominent
independent method of ensemble methods [29]. As the name of the method
suggests, bootstrap aggregating consists of bootstrapping and aggregating [5].
Bootstrapping is resampling a training set T containing n paired observations
of input and output combinations, into subsamples with t observations, where
t ≤ n. This can be done by randomly drawing n observations with replace-
ment from T and repeating this procedure for a predetermined number of
times. After bootstrapping, the idea is to use the subsamples for training su-
pervised machine learning methods for multiple times and then use the trained
machines to predict the outputs, given new input data. Subsequently, aggre-
gation is performed. Via aggregation, the predictions coming from multiple
trained machines will be combined. There are numerous ways to aggregate
the predictions. A simple and unbiased way to aggregate is to calculate the
mean average over all predictions for a particular point in time. Thus, the
predictions of all the trained machines are equally weighted. In the end, the
predictions are supposed to be less erroneous, since we average over multiple
single trained machines.

4 Experiment Design

We first describe the selected datasets of daily and hourly DAX 30 and S&P
500 indices. Subsequently, we describe the features that are used for the finan-
cial time series forecasting. Furthermore, we provide information about the
data preprocessing, training method, evaluation metrics, as well as our choice
of hyper-parameters for the machine learning methods.

4.1 Datasets

The datasets used in our experiment covers the period of over ten years from
02/01/2004 08:00 GMT - 06/03/2015 20:00 GMT at an hourly sampling rate.
We use hourly as well as daily sampling rates. It contains open-high-low-close
index levels of the German stock index (DAX 30) and the American Standard
& Poor’s 500 index (S&P 500). The datasets are provided by courtesy of
OANDA Corporation. In Figures 1 and 2, we see the index-level evolution
of both data for the whole length of our experiment. We observe that over
long periods both indexes show similar index level development. Both indexes
reveal up and down trends, while the up trends tend to be more consistent in
terms of their length.

The output variable of the machine learning methods is the logarithmic
rate of change based on the close level. It is common to transform absolute

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



Comparison of Machine Learning Methods for Financial Time Series Forecasting 7

Fig. 1 DAX 30 index-level chart

Fig. 2 S&P 500 index-level chart

price changes into relative price changes in order to deal with more symmetric
distributed data which will follow a normal distribution more closely [35].
By using logarithmic returns instead of arithmetic returns, we may increase
performance in training process, since multiplicative relationships turn into
additive, which are also simpler to handle for later calculations [20].

rt = ln(pt+1)− ln(pt). (1)

Eq. (1) shows the logarithmic price change with pt denoting the close index-
level at a point in time t. The index-level DAX 30 data, which is transformed
to logarithmic rate of changes by Eq. (1), can be found in Figure 3.

Table 1 provides the descriptive statistics for the transformed data. Please
note that due to hours of low trading activity, hourly data contain hours with
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Fig. 3 The rate of changes (ROC) of the DAX 30 daily data, of which we aim at predicting
the time series

Hourly sampled data Daily sampled data
DAX S&P DAX S&P

Number of observations 37, 160 61, 085 2, 836 3, 384
Mean 2.84e − 05 1.01e − 05 0.00037 0.00018
Std. dev. 0.00380 0.0026 0.0146 0.0113
Skewness −0.1243 0.6780 0.0744 −0.2072
Kurtosis 17.04 50.98 11.89 14.46
Minimum −0.0551 −0.0479 −0.1041 0.1051
Maximum 0.0472 0.0668 0.1578 0.1121
AD test p-value < .001 < .001 < .001 < .001
KS test p-value < .001 < .001 < .001 < .001

Table 1 Descriptive statistics for the return series (a) hourly and (b) daily

zero returns regularly which have been removed from the datasets. The reason
is that according to Figure 3 the ROC at vast majority of points in time in
the data are closed to zero. In this paper, we rather want the machine learning
methods to learn and train for outputs with a non-zero value.

The difference in the number of observations for the DAX and the S&P
datasets is a consequence of different trading hours and days, since both cover
the same time span. All time series have means of a value close to zero paired
with tails, which are heavier compared to the normal distribution, quanti-
fied by the kurtosis measure being greater than 3.00. Our tests for normality,
namely the Anderson-Darling (AD) test and the Kolmogorov-Smirnov (KS)
test clearly neglect normality with very low p-values. These are prominent fea-
tures of financial time series, which are well documented in literature [12, 13].

4.2 Feature Selection

The choice of input variables plays an important role in forecasting and has
a large impact on the prediction performance. Since we aim at comparing
different machine learning methods rather than finding a combination of input
variables that maximizes the prediction performance, we select similar input
variables to those of previous works.
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Comparison of Machine Learning Methods for Financial Time Series Forecasting 9

The input variables for our models are lagged technical indicators, which
can be extracted from our output time series. All indicators are at least lagged
for one time-step, as we want to avoid look-ahead bias. For our experiment, we
can only use data that would have been observable or known during training
and testing in order to obtain the true forecasting capability. Table 2 gives an
overview of the calculations of the selected input variables and lags, as well as
the parameters for some of the input variables. We have four types of input
variables. The first one is the lagged logarithmic rates of change (log ROC).
It allows the machines to search for patterns in the history of the output
variable. In addition, we added lagged exponential moving average rates of
change (EMA ROC) in order to obtain smoothed ROCs. The third type of
the input variables is the n-period ROC, which computes the rate of change
for a specified length n. For the last one, we computed differences between the
current price and the current simple moving average (MA difference), again
for multiple lags. We expect the MA difference to capture some of potential
inter-temporal index-level trends, as it will take larger (or smaller) values when
the current index-level departs upwards (or downwards) from the current 20-
period moving average index-level. In total, we have 19 input variables for
training machine learning methods to predict the log ROC of the next point
in time.

Feature name Parameter Selected lags Calculation
Log ROC 1,2,3,4,5 ln(pt+1) − ln(pt)

EMA ROC n = 3 1,2,3,4,5 EMAt+1
EMAt

n-period ROC 2,3,4,5 pt+1
pt−n

− 1
MA difference n = 20 1,2,3,4,5 pt+1 − MAt+1

Table 2 List of the input variables, their calculations, and parameters

4.3 Data Preprocessing and Walk-forward Routine

Important for a fair comparison of the machine learning methods is to cre-
ate a systematic approach for data preprocessing, training, and prediction.
We use a walk-forward routine for all of the machine learning methods. In
the walk-forward routine, we divide the whole data into smaller and equally
sized subsets, which are used for training and test. A subsample contains n+ i
observations, with n denoting the window length for training and i the num-
ber of desired out-of-sample (OOS) predictions. Once the respective machine
learning method is trained with the window length n, it will produce i OOS
predictions. Afterwards, the training window moves i points in time forward.
Then the machine learning methods run training with the new training win-
dow and generate new predictions. Basically, the data for training the machine
learning methods is simply “walking-forward”, while adding new observations
and dropping old observations. The walk-forward routine continues to move
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10 Deniz Ersan, Chifumi Nishioka, Ansgar Scherp

forward until the entire data is consumed. More specifically, until there are
not enough observations to produce the desired number of OOS predictions.
Since the machine learning methods are retrained using the “walking-forward”
method after each step, we expect them to well adapt to different market
regimes.

Furthermore, for comparing different machine learning methods, it is manda-
tory to ensure that all methods use exactly the same data as well as avoid
look-ahead bias. Otherwise, the results would lack validity. For example, the
look-ahead bias can be introduced during normalizing or scaling the data (see,
e. g., [7, 33, 6]). If one seeks to use scaled or normalized data in a walk-forward
environment, the scaling of the data has to strictly occur for each subsample
separately. If one scales the whole data prior to subsampling and applies a
walk-forward routine after scaling, each subset will contain information which
originally have not been available at that point in time. The reason is that scal-
ing and normalizing functions contain elements of order theory, e .g., global
minima or global maxima.

Thus, it is important to note that in our experiments, we do not apply scal-
ing. This keeps the level of comparability among the machine learning methods
as high as possible. However, it also introduces a restriction regarding the ac-
tivation function for the ANN, which is described in Section 4.5. Moreover,
as mentioned earlier, we remove all zero valued ROC before computing sub-
samples and inputs. It can hedge the risk of different treating of zero-values
in the different machine learning methods, which could influence or bias the
comparability. However, this will only affect our hourly data, as they contain
considerably more zero valued ROCs.

4.4 Performance Measures

The forecasting performance of the methods is evaluated by three measures.
The first one is the root-mean-square error (RMSE), which measures the mag-
nitude of the deviation between a predicted value and the true observable
value. A smaller RMSE indicates a better prediction performance. Formally,
RMSE is defines as:

RMSE =

√√√√ 1
n

n∑
t=1

(yt − ŷt)2 (2)

with yt denoting the actual value and ŷt the predicted value.
The second measure focuses on directions of predictions. The directional

symmetry (DS) measure calculates the proportion of correctly predicted changes
of ROC in direction from ti−1 to ti from the total number of predictions as
defined in Eq. (3).

DS = 100
n

n∑
t=1

dt with dt =
{

1 if (yt − yt−1)(ŷt − ŷt−1) ≥ 0
0 otherwise

. (3)
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The higher the values of DS, the better is the method in predicting directional
changes. We multiply 100 in Eq. (3), in order to represent the DS measure in
percentage.

The third measure is the sign symmetry, which simply measures the per-
centage of total predictions that have the same sign as the actual value. It is
defined as Eq. (4).

SS = 100
n

n∑
t=1

st with st =
{

1 if sign(yt) = sign(ŷt)
0 otherwise

. (4)

The higher SS measures suggest a better prediction performance. Again, we
multiply 100 in Eq. (4) to represent the DS measure in percentage.

Both, the DS measure and SS measure are rather important for traders,
since one of their goals is to anticipate the correct direction of the indices at
next point in time. Please note that even a very high value of the DS measure
and SS measure cannot guarantee sustainable profits or alternatively a higher
value of the DS measure and SS measure does not necessarily result in a higher
trading profit. Nevertheless, a higher DS measure and SS measure should be
preferred from an investors’ point of view, ceteris paribus.

4.5 Selected Hyper-parameters

It is important to select the optimal set of parameters for machine learning
methods. Improper parameters can lead to overfitting or underfitting [6], which
in return negatively influences the generalization performance. The method-
ologies for finding the optimal parameters have been investigated, but yet not
successfully answered. Typical suggested methodologies are Grid Search [2],
Random Search [2], Bayesian Optimization [32, 18], and Gradient Based Op-
timization [8]. In addition, optimizing hyper-parameters with large datasets,
i .e., financial time-series at hourly sampling rates, combined with a walk-
forward routine, can easily become unfeasible for standard desktop multi-core
central processing units. The same holds true for the required memory, which
can easily exceed the standard 8 or 16 GB. As the focus of this work is to
compare various machine learning methods, we do not cover the optimization
of parameters. Instead, we use similar hyper-parameters to those from exper-
iments in related works (see Section 2). The selected parameters with respect
to each machine learning method are: In terms of SVM, we employ the Radial
basis function kernel (i .e., Gaussian kernel). We set the cost C = 100, γ = 0.1,
ε = 0.001, and choose ε-regression as regression type. Regarding ANN, stan-
dard backpropagation is employed as learning function. We set the learning
parameter η = 0.1 and ANN has 8 hidden nodes.At the initial iteration, we
randomly set weights. We use a linear function as activation function instead
of a more commonly used sigmoid function. The reason is that the sigmoid
function strictly results in the range of [0, 1] and our data cannot be fit in the
range of [0, 1]. For k-NN, we set the number of neighbors k = 5. In KPCA,
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we employ the Radial basis function kernel (i .e., Gaussian kernel). We set the
number of features 100 and σ = 0.025

5 Results of the Experiments

This section presents the results of our experiments. It is organized in sub-
sections according to the research questions (i) to (iv) described in the intro-
duction. We begin with the (i) performance comparison of the three machine
learning methods, on both daily and hourly data. Subsequently, we determine
the (ii) optimal window lengths for training the machines as well as the (iii) op-
timal number of OOS predictions. Finally, we investigate the (iv) influence of
Kernel Principle Component Analysis on the prediction performance. Please
note, the research question (v) on the backtesting of selected trained machines
is documented in the Section 6.

5.1 Performance Comparison of SVM, ANN, and k-NN

Daily Data Tables 3 and 4 provide the performance of the three machine
learning methods (i .e., SVM, ANN, k-NN) with respect to each of the daily-
basis DAX 30 and S&P 500 data. The RMSEs of the three machine learning
methods range from 0.015 to 0.024 in the DAX 30 data and slightly lower from
0.010 to 0.017 in the S&P 500 data. All machine learning methods achieve on
average lower RMSEs for the S&P 500 data compared to the DAX 30 data. In
terms of the minimum RMSE, the k-NN achieved the lowest minimum RMSE
in the DAX 30 data, followed by the ANN with a slightly higher minimum
RMSE of 0.016, while the SVM ranks last with a higher minimum RMSE of
0.019. The same order pertains for the maximum RMSE. In the S&P 500 data,
the ANN outperforms on average the k-NN by a 0.001 margin, while the SVM
generates the highest RMSE.

RMSE DS SS
Window # OOS SVM ANN KNN SVM ANN KNN SVM ANN KNN

100 10 (10%) 0.021 0.021 0.016 50.262 59.288 53.109 49.213 51.536 49.700
100 25 (25%) 0.021 0.019 0.016 49.944 58.879 55.402 48.710 50.729 50.953
100 50 (50%) 0.021 0.020 0.016 50.604 61.321 58.906 49.434 49.509 48.642
200 20 (10%) 0.021 0.018 0.016 50.625 59.570 52.188 49.492 48.945 49.922
200 50 (25%) 0.021 0.019 0.017 51.686 61.804 54.000 49.412 51.412 50.784
200 100 (50%) 0.021 0.018 0.016 50.760 59.240 58.680 49.560 49.680 51.400
400 40 (10%) 0.021 0.017 0.017 51.653 61.949 50.847 51.653 52.712 49.492
400 100 (25%) 0.021 0.018 0.017 51.609 60.478 51.043 51.087 48.783 49.826
400 200 (50%) 0.021 0.017 0.017 52.727 63.682 59.364 51.136 50.045 50.773
800 80 (10%) 0.022 0.018 0.018 50.781 62.031 51.771 50.990 50.885 51.250
800 200 (25%) 0.022 0.019 0.019 50.167 65.278 52.500 49.111 50.722 49.389
800 400 (50%) 0.024 0.020 0.019 49.563 61.438 59.875 48.625 50.063 49.625

1600 160 (10%) 0.019 0.017 0.015 51.250 64.732 47.500 50.357 50.625 52.143
1600 400 (25%) 0.019 0.016 0.016 50.250 61.000 52.625 50.125 49.000 53.750
1600 800 (50%) 0.019 0.019 0.016 49.625 63.875 55.875 50.250 50.875 49.250

Avg. 0.021 0.018 0.017 50.767 61.638 54.246 49.944 50.368 50.460
Min 0.019 0.016 0.015 49.563 58.879 47.500 48.625 48.783 48.642
Max 0.024 0.021 0.019 52.727 65.278 59.875 51.653 52.712 53.750

Table 3 Results of the three machine learning methods on the daily DAX 30 data for
varying windows lengths and different numbers of OOS predictions per training.
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RMSE DS SS
Window # OOS SVM ANN KNN SVM ANN KNN SVM ANN KNN

100 10 (10%) 0.016 0.016 0.013 51.672 51.115 53.313 49.721 49.164 49.319
100 25 (25%) 0.016 0.016 0.013 52.093 53.891 55.659 49.860 50.419 50.140
100 50 (50%) 0.016 0.015 0.013 51.969 52.281 58.844 51.125 50.031 50.938
200 20 (10%) 0.016 0.014 0.013 52.276 52.756 52.083 50.833 50.385 50.513
200 50 (25%) 0.016 0.013 0.013 51.677 52.774 54.194 51.290 50.290 51.000
200 100 (50%) 0.016 0.013 0.013 52.548 52.871 59.355 50.742 49.161 50.452
400 40 (10%) 0.016 0.013 0.013 51.130 52.123 50.171 49.829 51.438 50.068
400 100 (25%) 0.016 0.013 0.013 51.690 53.207 52.414 50.655 49.690 50.000
400 200 (50%) 0.016 0.014 0.013 50.857 52.929 57.643 50.107 50.250 49.893
800 80 (10%) 0.017 0.014 0.014 50.806 53.347 50.685 49.919 50.524 48.750
800 200 (25%) 0.016 0.014 0.014 50.833 51.042 53.500 49.875 51.292 50.375
800 400 (50%) 0.016 0.014 0.014 50.833 56.250 58.625 50.958 47.083 50.167

1600 160 (10%) 0.013 0.011 0.011 53.125 53.500 51.313 51.438 48.938 51.188
1600 400 (25%) 0.013 0.010 0.011 52.188 59.188 50.875 51.563 49.688 49.063
1600 800 (50%) 0.013 0.011 0.011 51.813 59.750 57.188 52.750 53.688 49.500

Avg. 0.016 0.013 0.013 51,701 53,802 54,391 50,711 50,136 50,091
Min 0.013 0.010 0.011 50,806 51,042 50,171 49,721 47,083 48,750
Max 0,017 0,016 0,014 53,125 59,750 59,355 52,750 53,688 51,188

Table 4 Results of the three machine learning methods on the daily S&P 500 data for
varying windows lengths and different numbers of OOS predictions per training.

The direction performance measures show a different ranking. Referring to
the DS measure, the ANN achieved on average the highest DS measure of 61.64
in the DAX 30 data. Whereas the k-NN holds the lead on the S&P 500 data,
but only by a small margin. In contrast, the SVM shows the worst average
performance among the three machine learning methods. However, in terms
of predicting directional changes of the daily ROC, all of the three machine
learning methods are able to produce on average more correct predictions than
wrong ones in both data.

In addition, all methods—with one exceptional case—are able to produce
more correct predictions than incorrect predictions for the sign of the next
day’s index level change. The SVM has the highest average SS overall in the
S&P 500 data. At the same time, the SVM is the one exception with a SS
smaller than 50, namely 49.43 for the DAX 30. The performance of the other
two machine learning methods is very similar with the SS measure of 50.40 for
the DAX 30 and the SS measure of 50.10 for the S&P 500. Furthermore, the
k-NN has the highest maximum SS measure with 53.75 in the DAX 30 data,
whereas the ANN obtains the peak maximum SS measure of 53.69 in the S&P
500 data. The k-NN produces the lowest maximum SS measure in the S&P
500 data.

Considering the average scores of all three performance measures for the
three machine learning methods, the ANN and the k-NN outperform the SVM
under the vast majority of cases in both data.

Hourly Data The results of the machine learning methods for hourly data are
depicted in Tables 5 and 6. Again, we observe smaller RMSEs values for the
S&P 500 data compared to the DAX 30 data. Overall, the RMSEs are smaller
than in the daily dataset, which is due to the shorter time frame. The mean
and standard deviation of the hourly data are also lower than those of the
daily data according to Table 1.

Furthermore, we observe that the k-NN classifier achieves the best RMSE
results for both datasets, considering the average, minimum and maximum
RMSEs. The second best method is ANN, while the SVM produces the highest
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RMSEs again. In contrast to the daily data, we have a clear cut order regarding
the RMSEs of our three learning machines.

The DS of our algorithms on the hourly data are lower on average than for
the daily dataset, except for the SVM, which has slightly higher average DS
on hourly data. Even the minimums of the SVM are greater than 50. The k-
NN produces the best average DS values with 52.9995 (S&P 500) and 53.9754
(DAX 30) while the highest average SS values are obtained by the SVM with
50.6663 (DAX 30) and 50.5848 (S&P 500). Furthermore, all algorithms can
correctly predict the sign of the next hour’s logarithmic return more often
than every second time, meaning their average SS exceed 50.

5.2 Determining the Optimal Training Window Lengths

We increased the window length by factor two, for four times, starting at 100
days for the daily data and 800 hours for the hourly data. The longest window
lengths for training are 1, 600 days for the daily data and 12, 800 hours for
the hourly data. Tables 3, 4, 5 and 6 show the performance for the different
window lengths.

Daily Data All machine learning methods reach their lowest RMSEs with the
longest window length consisting of 1, 600 latest observations in the training
data. Therefore, the RMSE improves when a window length is increased. How-
ever, the k-NN is able to obtain low levels of RMSEs already from the shortest
window length of 100 days. In the daily S&P 500 data, the RMSE of the k-NN
with the window length of 100 days is equal to the minimum RMSE of the
SVM. In the daily DAX 30 days data, the RMSE of the k-NN with the window
length of 100 days is even smaller than the minimum RMSE of the SVM.

However, in terms of the DS measure and SS measure, they fluctuate un-
steadily over different window lengths. Thus, they do not show a systematic
pattern for the different window lengths.

Hourly Data We observe that increasing the window length improves the
RMSE only until window lengths reach 3, 200 or 6, 400 hours. Advancing to
12, 800 often causes the RMSEs of our learning machines to steepen up to their
average RMSEs or higher. This holds particularly true for the k-NN algorithm,
which validates its capability to produce low levels of RMSEs from short train-
ing window lengths as against the SVM and ANN, as well on hourly data. In
terms of the DS measure, the SVM output results in higher values when the
window length is increased. In both data, the SVM reaches the maximum
DS measures when using window length of 12, 800 hours. In addition, ANN
outputs the maximum DS measures when using the longest window length in
both data, as well. When using k-NN, the DS measures vary unsteadily over
different window lengths. Referring to the SS measure, we observe almost no
correlation between the SS measure and the window length.
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Compared to the daily data, a larger window helps only to certain extend
for hourly data. This is possibly because too many smaller changes observed
on hourly data have no impact on final index of a trading day.

5.3 Determining the Optimal Number of Out-of-sample Predictions

In order to gain an intuition about how many out-of-sample (OOS) predictions
to produce before retraining of the model should be triggered, we choose three
different window lengths for testing. These window lengths are always 10%,
25% and 50% of the training window lengths as shown in Tables 3 to 6.

Considering all experiments on both the daily data and hourly data, we ob-
serve that variations in the number of OOS predictions only have a marginal
impact on the RMSE of the three machine learning methods. This can be
concluded by keeping the training window length constant and analyzing the
variations in RMSEs for the 10%, 25% and 50% OOS proportions of training
window length. Furthermore, our experiments cannot highlight a certain pro-
portion, which systematically outperforms other proportions across all data
and machine learning methods.

5.4 Influence of the Kernel Principle Component Analysis on the Prediction
Performance

Finally, we examine whether the Kernel Principle Component Analysis (KPCA)
can further enhance the prediction performance of the three machine learning
methods. In Table 7, we compare the prediction performance of the machine
learning methods shown in Section 5.1 to the machine learning methods when
KPCA is applied to the input data prior to each training process. For the sake
of brevity, we only show results for selected window lengths in Table 7. The
selected window lengths are 1, 600 days for the daily data and 3, 200 hours for
the hourly data.

The RMSEs of the SVM and k-NN decrease or remain close to the RMSEs
without KPCA in the vast majority of cases. This holds particularly true for
the SVM, as its RMSEs decreases in all cases through KPCA. For k-NN, we
observe that the RMSEs remain constant, slightly decreasing, or slightly in-
creasing occasionally. On the other hand, KPCA has no effect or even negative
effect on RMSEs when using the ANN. The RMSEs mostly rise or stay close
to the RMSEs without KPCA.

In terms of the DS measure, the results demonstrate that KPCA enhances
the prediction performance a lot for the SVM and k-NN. Both the SVM and
k-NN result in DS values higher than 80 or even 90, when trained on the
extracted features. Divisively, their SS measures usually decreases, when the
DS measures increase by great margins.

Different from the SVM and k-NN, we observe a different result for the
ANN with KPCA in terms of the DS measure and SS measure. In most cases,
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RMSE DS SS
Window # OOS SVM ANN KNN SVM ANN KNN SVM ANN KNN

DAX 30 daily
1600 160 0.0190 0.0169 0.0152 51.25 64.73 47.50 50.36 50.63 52.14

KPCA 1600 160 0.0190 0.0141 0.0148 56.43 54.11 49.82 48.66 49.20 51.52
1600 400 0.0191 0.0161 0.0162 50.25 61.00 52.63 50.13 49.00 53.75

KPCA 1600 400 0.0171 0.0171 0.0165 52.38 51.50 53.38 47.50 50.38 48.63
1600 800 0.0194 0.0188 0.0162 49.63 63.88 55.88 50.25 50.88 49.25

KPCA 1600 800 0.0152 0.0268 0.0157 53.13 55.25 59.75 48.63 54.63 54.13

S&P 500 daily
1600 160 0.0132 0.0107 0.0106 53.13 53.50 51.31 51.44 48.94 51.19

KPCA 1600 160 0.0095 0.0114 0.0098 99.56 51.69 73.56 48.38 51.00 49.56
1600 400 0.0132 0.0103 0.0109 52.19 59.19 50.88 51.56 49.69 49.06

KPCA 1600 400 0.0095 0.0119 0.0099 99.88 52.50 81.69 49.00 52.00 49.75
1600 800 0.0128 0.0113 0,0107 51.81 59.75 57.19 52.75 53.69 49.50

KPCA 1600 800 0.0095 0.0112 0.0100 99.94 47.31 85.31 45.00 46.13 49.31

DAX 30 hourly
3200 320 0.0050 0.0043 0.0042 51.42 51.82 50.29 50.99 50.41 50.09

KPCA 3200 320 0.0039 0.0042 0.0043 99.83 50.46 53.73 50.93 49.64 49.80
3200 800 0.0049 0.0043 0.0042 51.54 51.88 51.26 50.76 50.12 50.20

KPCA 3200 800 0.0039 0.0043 0.0043 99.93 50.27 56.39 50.87 50.30 50.27
3200 1600 0.0048 0.0042 0.0042 51.26 53.88 57.03 50.59 50.57 50.10

KPCA 3200 1600 0.0039 0.0042 0.0043 99.96 50.71 62.77 51.09 50.30 50.08

S&P 500 hourly
3200 320 0.0034 0.0029 0.0029 51.28 50.20 50.14 50.95 50.49 50.06

KPCA 3200 320 0.0027 0.0030 0.0027 99.84 49.11 99.79 50.36 50.13 50.18
3200 800 0.0033 0.0029 0.0029 51.45 51.13 51.85 50.88 49.76 50.05

KPCA 3200 800 0.0027 0.0029 0.0028 99.93 49.22 99.91 50.24 50.49 50.38
3200 1600 0.0033 0.0030 0.0029 51.41 49.29 57.07 50.76 50.23 50.23

KPCA 3200 1600 0.0027 0.0030 0.0028 99.97 50.40 99.93 50.04 50.47 50.32

Table 7 Results of the three machine learning methods with KPCA compared to those
without KPCA

the DS measures decrease in utilization of KPCA, while the SS measures
fluctuate bidirectionally revealing no systematic pattern.

For RMSE, one can assume that even without KPCA the machine learning
algorithms already recognize most of the pattern in the data and the dimension
reduction has no significant influence on the reduction of the estimation error.
This is one of reasons why KPCA does not improve RMSE.

In summary, we observe dimensionality reduction done by KPCA has a
strong impact on the prediction performance measured by DS when using the
SVM and k-NN.

5.5 Influence of Bootstrap Aggregating on the Prediction Performance

Finally, we employ an ensemble method, namely bootstrap aggregating. As for
the KPCA, we use the same training window lengths that yielded better pre-
diction performance results relative to the other training window lengths. Ta-
ble 8 summarizes the prediction performance of the machine learning methods
when using the bootstrap aggregating. Through the utilization of the boot-
strap aggregating, the RMSEs of the three machine learning methods is only
slightly reduced for both daily data and hourly data. Specifically, the boot-
strap aggregating algorithm reduces the RMSEs of the three machine learning
methods on average by 0.0023 in the daily DAX 30 and S&P 500 data.

In the hourly data, we achieve a difference of 0.00038 on average. The
reductions of the RMSEs come along with fluctuations in the DS measure
and SS measure upwards as well as downwards varying in magnitude. The
magnitudes of the fluctuations in the DS measure and SS measure are the
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RMSE DS SS
Window # OOS SVM ANN KNN SVM ANN KNN SVM ANN KNN

DAX 30 daily
1600 160 0.0190 0.0169 0.0152 51.25 64.73 47.50 50.36 50.63 52.14

Bagging 1600 160 0.0143 0.0134 0.0133 52.77 55.89 50.27 51.88 50.63 47.77
1600 400 0,0191 0.0161 0.0162 50.25 61.00 52.63 50.13 49.00 53.75

Bagging 1600 400 0.0159 0.0149 0.0145 49.88 59.13 45.88 49.63 48.13 48.13
1600 800 0.0194 0.0188 0.0162 49.63 63.88 55.88 50.25 50.88 49.25

Bagging 1600 800 0.0156 0.0146 0.0145 50.50 57.25 50.38 49.25 48.63 51.25

S&P 500 daily
1600 160 0.0132 0.0107 0.0106 53.13 53.50 51.31 51.44 48.94 51.19

Bagging 1600 160 0.0104 0.0097 0.0095 51.63 57.00 51.00 51.06 48.00 52.69
1600 400 0.0132 0.0103 0.0109 52.19 59.19 50.88 51.56 49.69 49.06

Bagging 1600 400 0.0105 0.0096 0.0096 51.63 58.31 49.69 50.13 49.88 49.25
1600 800 0.0128 0.0113 0.0107 51.81 59.75 57.19 52.75 53.69 49.50

Bagging 1600 800 0.0104 0.0097 0.0095 51.31 61.81 50.19 50.69 47.50 49.06

DAX 30 hourly
3200 320 0.0050 0.0043 0.0042 51.42 51.82 50.29 50.99 50.41 50.09

Bagging 3200 320 0.0041 0.0039 0.0039 51.59 50.69 50.05 50.86 50.78 50.06
3200 800 0.0049 0.0043 0.0042 51.54 51.88 51.26 50.76 50.12 50.20

Bagging 3200 800 0.0041 0.0040 0.0039 51.76 47.88 49.93 50.93 50.18 50.77
3200 1600 0.0048 0.0042 0.0042 51.26 53.88 57.03 50.59 50.57 50.10

Bagging 3200 1600 0.0041 0.0040 0.0039 51.08 50.78 49.84 50.88 49.79 50.73

S&P 500 hourly
3200 320 0.0034 0.0029 0.0029 51.28 50.20 50.14 50.95 50.49 50.06

Bagging 3200 320 0.0028 0.0027 0.0027 51.21 52.31 49.93 50.78 50.38 50.19
3200 800 0.0033 0.0029 0.0029 51.45 51.13 51.85 50.88 49.76 50.05

Bagging 3200 800 0.0028 0.0027 0.0027 51.35 53.21 49.90 50.68 50.74 50.22
3200 1600 0.0033 0.0030 0.0029 51.41 49.29 57.07 50.76 50.23 50.23

Bagging 3200 1600 0.0028 0.0027 0.0027 51.26 52.37 49.86 50.54 50.38 49,95

Table 8 Results of the three machine learning methods with bootstrap aggregating (“bag-
ging”) compared to those without bootstrap aggregating

lowest for the SVM in both daily and hourly data with average differences
ranging from 0.02 to 0.64. This represents a slight worsening through bootstrap
aggregating.

Our ensembles of ANN and k-NN produce changes of greater magnitude
in the DS measure in both directions. For instance, the DS measures of the
ANN decrease a lot in both daily and hourly DAX 30 data, while the DS
measures rather increase in the S&P 500 data. The DS measure of the k-NN
with bagging is significantly reduced in all data, except for one out of twelve
cases. In contrast, the SS measures increase slightly in seven cases. Overall, a
clear statement on the influence of the bootstrap aggregating algorithm cannot
be made.

6 Backtesting of the Results for Selected Machines using a Simple
Trading Systems

In order to provide an impression on the profitability of the machine learning
methods, we embed predictions generated by the machine learning methods
into a simple trading system on daily data. In the trading system, we thereafter
simulate using the data used in the experiment. Based on the one-step ahead
ROC prediction, our system decides to be either fully invested in a long trade
or in a short trade for the next point in time. It keeps the position until a
change in the sign of the next period prediction is forecasted. In this case,
it instantly liquidates the position and opens another according to the new
predicted direction. We choose to predict the return on daily data, as from
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the investigation of the optimal training window length in Section 5.2, we
found out that compared to daily data, a larger window helps only to certain
extend for hourly data. With other words, our rationale to backtest using
daily data is simply that the smaller hourly changes have no impact on the
final index of a trading day.

Of course, this is not a a valid backtesting approach nor proper trading
system. Both contain multiple shortcomings. However, it is beyond scope of
this work to delve deep into algorithmic trading. The results are presented
solely for the purpose of providing an impression of the profitability. We com-
pute multiple performance measures along with [1] for the selected machine
learning methods. The results of the performance is documented in Table 9.

We selected two machine learning methods, one for the DAX 30 and one for
the S&P 500, which performed well in the experiment in terms of performance
measures. Especially a high level of the SS measure is important for the trading
systems. Along with this principle, we choose one method from the experiment
in terms of KPCA and one utilized bootstrap aggregating. In addition, we pick
the same two machine learning methods but without the KPCA and bootstrap
aggregating, respectively, for the sake of comparison.

Among the selected trading strategies, the best prediction performance
was achieved by the k-NN as shown in column (1) in Table 9 with the highest
annualized risk adjusted returns, measured by the Sharpe-Ratio. It clearly out-
performs the DAX buy-and-hold strategy in every measure. Comparison of the
methods shown at columns (3) and (4) reveals that the application of KPCA
made the poor algorithm (4) more profitable algorithm (i .e., the algorithm
(3)). It enabled the algorithm to clearly outperform the other over DAX 30.
However, the bootstrap aggregating SVM shown in column (5) even worsened
the performance of the standard SVM (6). We enclose the performance charts
of the methods shown in the column (1) to (6) and the two additional SVMs
for the hourly DAX 30 and S&P 500 data in the Appendix.

7 Discussions and Limitations

In our performance comparison for the daily data, the SVM brought out the
poorest predictions among the three learning algorithms in terms of average
RMSEs. Both, the k-NN and the ANN result on average in lower RMSEs.
Regarding the SS, we found the SVM to produce stable results considering
the levels of SS. Partially, our results contradict with previous related exper-
iments, which merely found the SVM to be superior over k-NNs and ANNs
on daily data by the RMSE, or similar squared error measures [33, 6]. This
may be due to the usage of different input variables and hyper-parameters and
methodological deviations from our approaches. We believe, the latter plays a
greater role, as related experiments often made use of scaling and smoothed
output variables. This can easily affect comparability of the machines, if not
conducted with high diligence. Scaling has to take place before training to
avoid look-ahead bias. If the entire data is scaled or normalized in advance and
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then subsampled, every decision made by a learning system would be based on
data comprising sure information about the future. The reason is that scaling
and normalizing functions contain information about the global minima or
global maxima of the dataset. This information is only available when when
has access to the full dataset, i. e., in our case one would even have access
to financial data of a future point in time. That would, non-controversially,
break the rules for financial-time series forecasting. Related papers, usually
do not provide detailed information on their scaling approaches or scale the
entire dataset prior to subsampling, which may be due to unawareness of this
pitfall [7, 33, 6]. However, it must be explained in detail at least for the sake
of reproducibility.

Through the analysis of optimal window lengths, we found out that the
performance of our learning machines depend to some extend on the training
window length. For daily data, the longest training window length under study
of 1,600 yielded the best results. In the hourly datasets, the best performances
were achieved with 3,200 to 6,400 training observations. Overall, for the pur-
pose of financial time series forecasting with machine learning algorithms, we
recommend to use at least 1,000 training observations, as shorter training win-
dows tend to produce inferior performances. We find this particularly relevant
with regard to SVMs and ANNs. The k-NN method approaches its maximum
potential faster, meaning it needs less observations to come close to its best
performances.

The high values of DS achieved through the application of KPCA shed
light on a weakness of this performance measure in its calculation. We recall
Eq. (3):

DS = 100
n

n∑
t=1

dt with dt =
{

1 if (yt − yt−1)(ŷt − ŷt−1) ≥ 0
0 otherwise

. (5)

The weakness origins from the term dt, which will take the value of one if
(yt−yt−1)(ŷt− ŷt−1) is greater or equal than zero. This means that the change
in direction was correctly predicted. Please note, the term (yt−yt−1)(ŷt−ŷt−1)
will be zero if either (yt− yt−1) or (ŷt− ŷt−1) equals zero. Hence, if the actual
value y or the predicted value ŷ does not change at all in value from t− 1 to
t, then dt will judge this as correctly predicted directional change, which is
wrong in any different case than for: (yt−yt−1) = 0 and (ŷt− ŷt−1) = 0. Thus,
the DS will increase in some situations, when it actually should decrease.

Cao and Tay compared different algorithms for financial time series fore-
casting utilizing the DS and three other measures [6, 33]. Cao et al. [7] an-
alyzed the impact of KPCA for SVMs on financial time series data, among
other datasets. However this time, only measured by the NMSE. They summa-
rized that KPCA can improve generalization performance, which we cannot
confirm without limitations. Formally, a lower MSE through KPCA endorses
this work. However it turns out that in some cases a lower MSE is accompa-
nied by an undesirable effect, which is the predicting machine producing only
two values. In Figure 4, we show that a lower RMSE through KPCA may not
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generally be preferable for financial forecasting. In Figures 4(a) and 4(b), we
observe that the histograms of the predicted outputs remain quite symmetric,
containing predictions with positive and negative values. However, in the neg-
ative example in Figures 4(c) and 4(d) we notice that after the application of
KPCA the predicted outputs only contain two classes of outputs, while both
classes being negative in value.

Clearly, this is not a desirable feature for a predicting machine in financial
time series forecasting such a particular machine becomes useless as it only
contains negative predictions. One could argue that it produced lower RMSEs,
but in financial time series forecasting we also care about the correct direction
of a forecast. In the negative example, we see that the SVM with KPCA only
models the left half of the true output histogram. If one only seeks to minimize
the RMSE of a prediction, one can simply use the training sample mean of
the output variable as a constant predictor, which is very likely to produce a
low RMSE. Additionally, this predictor is certain to obtain a DS of 100. That
leads to conclude that—in the domain of financial time series forecasting—
the application of KPCA should not only be evaluated on RMSE. In this
example, the wrong interpretation of RMSE could have been prevented if the
SS measure had been taken into consideration. In the positive example the SS
values increased through the KPCA and vice versa in the negative example.1

Our bootstrap aggregation algorithms could produce lower RMSEs than
the single learning machines. In contrast to the KPCA, it did not introduce
the aforementioned undesirable features. However, the bootstrap aggregating
resulted in both improvements and worsening of the SS values. But the fluc-
tuations are usually small. Considering the reductions in RMSE and the small
changes in SS, we found the bootstrap aggregation helpful for forecasting fi-
nancial time series forecasting. Nevertheless one has to take into account that
bagging introduces new free parameters to the learning problem, which have
to be determined by the supervisor in the optimization process. For the objec-
tive of improving a learning machine’s generalization performance, we prefer
bootstrap aggregating over KPCA.

We believe our trading systems to rather represent a lower bound on the
general profitability potential. First, we did not optimize our algorithms nor
did we try different input variables. Second, our trading strategy is quite naive
and omits risk and money management. Further, in a real-world application,
one must not require the machine to be invested with every prediction it pro-
duces. However, we have not taken bid/ask spreads and transactions costs
into account which both would diminish the trading performance in a real-
world application to some extend. Nevertheless, we strongly believe that our
backtesting of the results for selected machines is of high value since it pro-
vides insights into the actual impact of the trained machines on the financial
time series forecasting task. However, future work with more advanced trading
systems will be clearly required.

1 In the positive example, we used the k-NN 1,600/800 DAX 30 daily from our experi-
ments. In the negative example, we used the SVM 1,600/800 S&P 500 daily.
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(a) Positive Example: k-NN before KPCA
(RMSE = 0.0162)
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(b) Positive Example: k-NN with KPCA
(RMSE = 0.0157)
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(c) Negative Example: SVM before KPCA
(RMSE = 0.0128)
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(d) Negative Example: SVM with KPCA
(RMSE = 0.0095)

Fig. 4 Histograms before and after utilization of KPCA for the true output, the predicted
output and the prediction error

Since the results of ANN are between SVM or k-NN or slightly above,
we have yet not investigated further neural networks. As our experiments
show, an optimal window size for hourly data is already reached with 1, 600
regarding RMSE (depending on the number of OOS). Using other types of
neural networks like LSTMs (long short-term memory) [15] does require a lot
of training data [31], for which the optimal window sizes we determinded may
be too small.

Even if trained on the entire history of the financial time series, one assume
may assume that this had not a positive effect on the performance as the
network may simply learn to ignore “older” information in the data stream as
it does not help further optimizing the prediction output. But, as the ANN
outputs the maximum DS measures when using the longest window length,
it will be interesting to investigate methods such as LSTMs with attention.
Existing research on using LSTMs for predicting the E-mini S&P [37] do not
seem to outperform the methods considered in this paper. However, a direct
comparison is difficult as the datasets, their time spans, measures applied etc.
differ.
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Finally, we acknoledge that in recent years a growing number of text-mining
approaches have been applied to publicly available text-data like news articles,
and tweets on Twitter or social media in general in order to correlate it with fi-
nancial data. For instance, Bollen et al. [3] investigated whether the sentiment
of large-scale Twitter feeds are correlated to the value of the Dow Jones In-
dustrial Average (DJIA) over time. The authors explored that daily variations
in sentiment in the Twitter data have a statistically significant correlation to
daily Dow Jones Industrial Average close price movements. However, correla-
tions may improve predictions, but they do not represent a causation between
the two. Rao et al. [28] combined Twitter data and search volume index data
collected from Google trends. Their results are in line with Bollen et al. [3].

However, the combination of news or sentiment paired with technical in-
dicators as input variables in training predictive machine learning models is
beyond scope of this work. The reason is that so far there is not sufficient
text-data publicly available that covers the 10 years of our daily and hourly
DAX 30 and S&P 500 data from 2004 to 2015 (see description of the datasets in
Section 4.1). To the best of our knowledge, the so far largest publicly available
text-data is the New York Times Annotated Corpus (NYTAC). The NYTAC
dataset contains 1.8 million new articles from the New York Times published
between January 1987 and June 2007. Thus, the overlap with our datasets is
rather small.

8 Conclusion

We empirically compared three machine learning methods k-NN, SVM, and
ANN for their usefulness on forecasting non-linear financial time series. Fur-
thermore, optimal training window lengths and the impact of KPCA and the
bootstrap aggregating algorithm were investigated. We measured the perfor-
mance of the machine learning methods by RMSE, DS, and SS. Our research
revealed that the DS measure has a general weakness, which can significantly
impact and mislead interpretations of the experiment results. Regarding the
RMSE, the k-NN and the ANN outperformed the SVM in most cases, whereas
the SVM produced the most stable performance in terms of SS. For forecasting
daily directions, a training window length of 1, 600 days yielded in lower RMSE
values than for shorter training windows. For hourly predictions, training win-
dow lengths of 3, 200 and 6, 400 hours were preferable to shorter and longer
training window lengths. Overall, we consider all the three machine learning
methods useful for the forecasting financial time series, since the levels of SS
were usually higher than 50. Additionally, we investigated the influence of
KPCA, when applied to the learning algorithms in training. Our results show
that it often reduced RMSEs, while the effect on the SS was ambiguous. Addi-
tionally, the decrease in RMSE was often accompanied with the introduction
of an undesirable side effect, exposed by DS approaching 100. In summary,
KPCA can be helpful for financial forecasting, when handled with caution. It
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is insufficient to evaluate the influence of KPCA only by RMSEs for forecasting
financial time.
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Appendix

(a) Standard k-NN, 1600 window length,
400 OOS, DAX 30 daily data

(b) Standard ANN, 1600 window length,
800 OOS, S&P 500 daily data

(c) KPCA k-NN, 1600 window length,
800 OOS, DAX 30 daily data

(d) Standard k-NN, 1600 window length,
800 OOS, DAX 30 daily data

(e) Bagging SVM, 1600 window length,
160 OOS, DAX 30 daily data

(f) Standard SVM, 1600 window length,
160 OOS, DAX 30 daily data

Fig. 5 Performance Benchmark Charts for Trading Strategy
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window length, there is some merit to further investigate methods such as LSTMs and we will leave 

them for future extensions.  

In addition, we added related works that use LSTMs to Section 2.  
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Abstract This article conducts a systematic comparison of three machine
learning methods for

:::::::
methods

::::
for

::::::::::
predicting

:::
the

:::::::::
direction

::::::
(+/-)

:::
of

:
finan-

cial time series forecasting, which
:::::
using

::::
over

::::
ten

:::::
years

:::
of

:::::
DAX

:::
30

::::
and

::::
the

::::
S&P

::::
500

::::::::
datasets
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at

:::::
daily

::::
and
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hourly

:::::::
frames.

:::
We

:::::::
choose

::::
the

::::::::
methods

:::::
from

::::::::::::
representative

::::::::
machine

:::::::
learning

::::::::
families,

::::::::::
particularly

::::::::::
supervised

::::::
versus

::::::::::::
unsupervised.

:::
The

::::::::
methods

:
are Support Vector Machines (SVM), Artificial Neural Networks,

and k-Nearest Neighbor (k-NN), using DAX 30 and the S&P 500 datasets at
daily and hourly frames. We explore

:::
We

:::::::
explore

::::
the

:
influence of different

training window lengths and numbers of out-of-sample predictions. Further-
more, we investigate whether Kernel Principle Component Analysis (KPCA)
improves prediction, through reducing data dimensionality. Additionally, we
verify whether combining machine learning methods by Bootstrap Aggregating
outperforms single methods. Key insights from the experiment are: First, all
:::
All machine learning methods are in principle useful to predict

:::
the

::::::::
direction

:::
of

:::::
(+/-) financial time series. Second, a larger window length

:::
But

::
to

::::
our

::::::::
surprise,

:::::::::
increasing

:::
the

::::::::
window

::::
size

:
only helps to a certain extend

::::::
extent

:
for hourly

data. Third, the ,
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before

:::
it

:::::::
actually

::::::::
reduces

:::
the

:::::::::::::
performance.

::::
The

:
number

of out-of-sample predictions had a small impact, while KPCA made a strong
difference for SVM and k-NN. Finally, backtesting selected machines with
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a trading system revealed
::
on

:::::
daily

:::::
data

::::::::
revealed

:::
the

::::
the

::::
lazy

:::::::
learner

:
k-NN

performs best.
:::::::::::
outperforms

:::
the

::::::::::
supervised

:::::::::::
approaches.

:

Keywords Financial time series forecasting · Prediction · Machine learning ·
Temporal analysis

1 Introduction

Financial time series (e .g., stock price, index) forecasting is an important task
for the financial industry. Even small improvements in predictive performance
can be profitable. Although a lot of works have dealt with forecasting financial
time series, it is still regarded as one of the most challenging tasks [33]. Accord-
ing to the prominent Efficient Market Hypothesis

::::::
(EMH), market prices (in

efficient markets) reflect all available information of a stock at any time. Prices
only adapt on the arrival of new information. Hence, forecasting future stock
price movements based on historical information should be impossible in the
long run.[26] Despite the prominence of the Efficient Market Hypothesis

:::::
EMH,

numerous researches question its validity [38, 23, 36]
:::::::::::::
[38, 23, 36, 16].

Also, Timmermann et al. [36] consider a possible existence of an ”file
drawer”

:
a

::::
“file

::::::::
drawer” bias in published studies, because publishing empir-

ical results that are barely or just statistically insignificant may be out of
interest for researchers. Meanwhile, the continuous advance of machine learn-
ing techniques and computational power gave birth to machine learning ap-
proaches applied to financial forecasting problems. Encouraging results have
been obtained by artificial neural networks (ANNs) [25], support vector ma-
chines (SVMs) [33],

:
and k-nearest neighbor method (k-NN) [34]. Krollner et

al. [22] provide a survey of recent literature of machine learning approaches
applied to financial time series forecasting. However, existing

:::::::
Existing

:
studies usually do not use data with higher than daily sampling

rates. Further, only few studies
:
,
::::
with

:::::
some

:::::::
notable

::::::::::
exemptions

::::
such

:::
as

:::
Qu

::::
and

:::::
Zhang

:::::
[27]

:::
and

:::::::::
Sirignano

::::
and

::::
Cont

::::
[31]

:
.
:::::::
Finally,

:::
we apply further techniques ,

for example
:::
such

:::
as dimensionality reduction or ensemble methods, to improve

the predicting power of the learning machines.
:::::::::::::
Dimentionality

:::::::::
reduction

::::
has

::::
been

:::::
used,

:::::
e. g.,

:::
by

:::::
Cao

::::
and

::::
Tay

::::
[7]

:::
but

:::::
only

:::
on

:::::::
SVMs.

:
In summary, the

contributions given by this paper are:

– We analyze and compare the three machine learning methods in terms of
their predictive performance. As

::::::::::::
representative

:
methods, we select k-NN,

ANN, and SVM.
– Given various

:::
We

::::::::::
investigate

:::::
what

:::
are

:::
the

:::::::
optimal

:
training window lengths

and different numbers of out-of-sample (OOS) forecast per training, we
investigate the suitable values of the two parameters. This is done on both,
the DAX 30 and the S&P 500 datasets at daily and hourly time frames.

– We analyze the impact of Kernel Principle Component Analysis (KPCA),
when conducted on the training data, before training our algorithms. We
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intend to find out if the KPCA can improve the forecasting performance
of our algorithms through reducing the dimensionality of the input data.

– We combine our algorithms with the Bootstrap Aggregating (also known
as Bagging) algorithm. More specifically, we investigate, if this ensemble
method can outperform the single machine learning method.

– We close our experiments by providing a backtesting and benchmarking of
the experimental results for a selection of trained machines. To this end, we
apply a simple trading decision method based on our machines’ predictions
::
on

:::::
daily

::::
data

:
and compare their performances with a buy-and-hold strategy

in the respective index.

Based on our experimental results, we conclude that in principle all three
considered machine learning methods are useful for the forecasting financial
time series. For all methods, we usually observe more than 50% of all predic-
tions made by the machines have the same sign as the actual value. Regarding
the optimal window length, we can state that compared to daily data, a larger
window helps only to certain extend for hourly data. The rationale is sim-
ply that too many smaller changes observed on hourly data have no impact
on the final index of a trading day

:
,
::::::
before

:::
the

::::::::::
prediction

:::::::
quality

:::::
drops. Re-

garding the number of OOS predictions that are conducted before a machine
is retrained, we can state that it only has a marginal impact on the results.
However, we observe that dimensionality reduction with KPCA has a strong
impact on the prediction performance when using the SVM and k-NN. In terms
of backtesting the trained

:::::
Given

::::
the

:::::::::::
observation

::::
that

:::
the

:::::::
smaller

::::::::
changes

:::
on

::::::
hourly

::::
data

:::::
have

:::
no

:::::::
impact

:::
on

:::
the

::::::
index

::
at

::::
the

::::
end

::
of
::::

the
:::::::
trading

:::::
day,

:::
we

:::
run

::
a
:::::::::::
backtesting

::
of

::::::::
selected

:
machines in a simple trading system

::
on

::::::
daily

:::::::
returns.

:::
To

:::
our

::::::::
surprise, we obtained the best prediction performance by

:::
the

:::::::::::
unsupervised

:::::
lazy

::::::
learner

:
k-NN

:::::::::
compared

::
to

::::
the

:::::::::
supervised

:::::::::
methods.

The remainder of this paper is organized as follows: Subsequently, we pro-
vide an overview of related work on financial time series forecasting and ma-
chine learning. Section 3

:::::
briefly

:
introduces the machine learning algorithms

we compare in this work, namely SVMs, ANNs, and k-NN. Furthermore,
we provide a brief

::
an

:
introduction to KPCA and the Bootstrap Aggregat-

ing algorithm. Section 4 explains
::::::::
describes

:
our experimental approach for

comparing our algorithms and highlights
:::
and

:
research questions. The results

of the experiment are outlined
:::
our

:::::::::::
comparison

::
of

::::
the

:::::
three

::::::::
machine

::::::::
learning

:::::::
methods

::::
are

:::::::::::
documented in Section 5. Section 6 reports

:::::::
presents the results of

our backtesting of selected trained machines. In Section 7, we interpret
::::::
discuss

our empirical results in order to draw inferences regarding our research ques-
tions, before we conclude.

2 Related Work

In this section, we review related works in the field of machine learning for a
financial time series forecastingtask. While there have been a lot of machine
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learning methods developed and experimented for the financial time series fore-
castingtask, these studies usually differ regarding the applied machine learning
methods, the datasets, the forecasting time-frame, the input variables

:
, and the

evaluation method [22]. There is a broad variety of promising applications of
Artificial Neural Networks (ANNs) for forecasting financial time series. Among
these applications, the accuracy of ANNs varies significantly due to differ-
ent input variables, data preparation methods and network architecture [17].
Pacelli et al. [25] utilized a genetic algorithm to find the optimal architecture
for a multilayer perceptron ANN (MLP-ANN). They used the MLP-ANN for
forecasting daily EUR/USD price movements based on fundamentals and his-
torical price data with promising results. Guresen et al. [14] evaluated the
predictive performance of a MLP-ANN, a dynamic artificial neural network
and a hybrid neural network for forecasting daily closing levels of NASDAQ.
Among the three compared methods, the MLP-ANN achieved the best results
in terms of mean square error

::::::
(MSE)

:
and mean absolute deviation. Cao and

Tay
:::
Tay

::::
and

::::
Cao [33] evaluated the performance of a Support Vector Machine

(SVM) for forecasting five real future contractscompared to a MLP-ANN.
:
. The

authors used lagged historical price returns as well as a technical indicator as
input variables. In their experiment, the SVM outperformed the ANN in terms
of the normalized mean square error

:::::
MSE (NMSE). Furthermore, in a later

work
:
,
:
Cao and Tay [6] validated the dominance of the SVM over the

:::::
SVM

::::
over

:
MLP-ANN, while additionally comparing it to a radial basis function

NN
:::::
neural

:::::::::
networks, which produced comparable results. Additionally, they

showed that a SVM with adaptive parameters can achieve better generalization
performance as well as need

::::::
needed

:
fewer support vectors than the standard

SVM. The results of Cao and Tay are in line with Kim [21] who compared a
SVM, a NN

::::::
neural

::::::::
network, and the k-NN algorithm for predicting the daily

directional change of the Korean stock index.
Teixeira et al. [34] proposed an automatic stock trading system combin-

ing technical analysis and nearest neighbor classification based on daily stock
prices and volumes. Their model was able to outperform a buy-and-hold strat-
egy for the most companies in terms of profitability. Furthermore, Brasileiro et
al. [4] also elaborated a trading system where buy and sell signals are produced
by the k-NN algorithm

::::
k-NN. Their system was able to outperform thirteen

out of 15 stocks compared to a buy-and-hold and another strategy.
Cao et al. [7] apply PCA, KPCA, and Independent Component Analysis

(ICA) to a SVM for feature reduction. They examined the sunspot data, the
Santa Fe dataset A, and five real future contracts and found out that their
SVM can perform better with than without feature reduction, while the best
performance was accomplished by KPCA followed by ICA. However, they did
not apply the feature reduction method to machine learning approaches other
than the SVM. Furthermore, performance was only measured by NMSE.

To the
:::::::::::
Furthermore,

:::::
most

:::::::
studies

::
on

::::::::
financial

::::
time

::::::
series

::::
data

:::::::
analyse

:::::
daily

:::::::
changes

::
of

::::
the

::::::::
financial

:::::
data.

::::
Hsu

:::
et

::
al.

::::
use

:::::
daily

::::
and

::::::
hourly

:::::::::::
simulations

:::
to

::::::
predict

:::
the

::::::
return

::
of
::::::::
financial

:::::::
indices

::::
[16]

:::
and

:::::::::
determine

::::::
which

::::::
factors

:::::
(such

:::
as
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::::::
market

:::::::::
maturity,

::::::
model

::::::::::
simulation

::::::::::::
methodology,

:::::::::
covariate

::::::::::::
composition,

::::
and

:::::::
forecast

:::::::
horizon

::::::
based

:::
on

:::::
daily

:::
vs

::::::
hourly

:::::::
return)

::::::::
explain

:::
the

:::::::::::::
disagreement

:::::::
between

:::::::
current

:::::::
machine

::::::::
learning

::::::::::
approaches

::::
and

:::
the

::::::
EMH.

:::
Qu

:::
and

::::::
Zhang

::::
[27]

::::
used

:::::::::::::
minute-based

::::
data

:::
to

:::::::
predict

::::
the

::::::::
Chinese

::::
CSI

::::
300

:::::::
index.

::
A

::::::::
notable

::::::::
exception

::
is

:::::::::
Sirignano

:::
and

:::::
Cont

::::
[31],

::::
who

:::::::
applied

:
a
:::::::
3-layer

::::::
LSTM

::
on

::::::::::::::
high-frequency

::::::
trading

:::::
data

::::
from

::::
500

::::::
stocks.

::::::::
Specific

::::
goal

::
of

::::
this

:::::::
research

::::
was

::
to

::::::::::::
demonstrate

::::
that

:::
the

:::::::::::
combination

::
of

::::
500

:::::
stocks

::::::
yields

::
to

:::::
good

::::::::::::
generalization

:::::::
results.

::::::::
However,

:::
the

:::::::::::::
computational

::::
costs

:::
for

::::::::
training

:::
the

::::::
LSTM

::::
with

::::
the

:::::::::::::
high-frequency

:::::::
trading

::::
data

::
is

:::::::::
extremely

::::
high,

::::
too.

::::::
Thus,

::
in

:::::::
contrast

:::
to

:::
the

:::::
works

::
of

:::
Qu

::::
and

::::::
Zhang

::::
[27]

:::
and

::::
Hsu

::
et
:::
al.

::::
[16],

:::
we

::::::::
compare

::::
the

:::::::::::
performance

::
of

::::::::
machine

::::::::
learning

::::::::
methods

:::::::
between

:::::
daily

:::
and

:::::::
hourly

::::
data.

::::::::::::
Furthermore,

:::
we

:::
are

::::::::::::
investigating

:::::
which

:::::::
window

:::::
length

::
is
:::::::
optimal

:::
for

::::::::
learning

:::
the

:::::::::
prediction

::::::
model,

:::::
while

:::::::::
Sirignano

::::
and

::::
Cont

:::::
[31]

::::::
focused

:::
on

::::::::::
identifying

:::
the

:::::::::
universal

:::::::
features

::
in

::::::::
financial

::::
time

::::::
series

::::::::::
prediction.

::
In

:::::::::
summary,

::
to

:::
the

:
best of our knowledge, there is no empirical comparison

of the SVM, the NN
::::::
SVMs,

::::::
neural

:::::::::
networks, and k-NN approaches applied to

hourly stock data. Consequently the datasets in previous works are relatively
small,

:::::
with

:::
the

:::::::::
exception

:::
of

:::
Qu

::::
and

:::::::
Zhang

:::
[27]. Not many previous experi-

ments utilized a walk-forward training routine, where the machine is retrained
after a predetermined number of OOS predictions is done.

3 Selected Methods for Financial Time Series Forecasting

We briefly introduce the applied machine learning methods and parameters
that we selected for our experiments to compare forecasts of financial time
series.
Support Vector Machine. A Support Vector Machine (SVM) is a super-
vised machine learning method originally for pattern recognition and binary
classification [9]. It learns nonlinear separation, which maximizes the margin
between given two classes from training data, by employing kernels. It can
be applied to classification as well as regression. In this paper, we specifically
employ a Support Vector Regression Machine [10], which outputs a real value
y ∈ R.
Artificial Neural Network. An Artificial Neural Network (ANN) is a ma-
chine learning method inspired by the functioning of the human brain. Basi-
cally the aim of an ANN is to learn a nonlinear mapping FNN : X 7→ Y , pro-
ducing a real-valued, discrete-valued or vector-valued function, where X repre-
sents a d-dimensional input matrix and Y denotes the output variable [24, 11].
For more details of ANNs, we refer to references [24, 11].

::
In

::::
our

::::::::::::
experiments,

::
we

::::
use

::::::
3-layer

:::::::::::
MLP-ANN

::::
with

:::::::
middle

::::
layer

:::::::
having

::
8

::::::
hidden

::::::
nodes.

:

k-Nearest Neighbor. Both SVMs and ANNs learn a function that infers
a real value y ∈ R during training process from training data.

:::::
Thus,

:::::
they

:::
are

::::::
called

::::::::::
supervised

::::::::
machine

::::::::
learning

::::::::
methods.

:
In contrast, the k-Nearest

Neighbor (k-NN) simply stores all training data and does not generalize them.
Thus, it requires no training process .

:::::::::::::
(unsupervised

::
or

::::::::
so-called

::::
lazy

:::::::::
learning).
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For a given data which we would like to make regression, the k-NN searches the
k closest training data and outputs a real value y ∈ R using the closest data.
In this paper, we use the Euclidean distance to compute distance between data
to find the k closest training data and calculate mean of them as an output
value.
Kernel Principle Component Analysis. The aim of Principle Component
Analysis (PCA) is to transform the original input data, such that the dimen-
sion of the data is reduced to a smaller set, that still contains most of the
information [19]. The Kernel Principle Component Analysis (KPCA) [30] can
perform a nonlinear form of PCA. In contrast to the previous mentioned ma-
chine learning methods, KPCA involves unlabeled data. In order to enable
nonlinearity, KPCA employs the kernel trick which is used for the nonlinear
SVM as well. Using the kernel trick, KPCA can reduce the dimensionality of
the input data nonlinearly.
Bootstrap Aggregating. Bootstrap aggregating, often referred to as “bag-
ging”, belongs to the class of ensemble methods. It is the most prominent
independent method of ensemble methods [29]. As the name of the method
suggests, bootstrap aggregating consists of bootstrapping and aggregating [5].
Bootstrapping is resampling a training set T containing n paired observations
of input and output combinations, into subsamples with t observations, where
t ≤ n. This can be done by randomly drawing n observations with replace-
ment from T and repeating this procedure for a predetermined number of
times. After bootstrapping, the idea is to use the subsamples for training su-
pervised machine learning methods for multiple times and then use the trained
machines to predict the outputs, given new input data. Subsequently, aggre-
gation is performed. Via aggregation, the predictions coming from multiple
trained machines will be combined. There are numerous ways to aggregate
the predictions. A simple and unbiased way to aggregate is to calculate the
mean average over all predictions for a particular point in time. Thus, the
predictions of all the trained machines are equally weighted. In the end, the
predictions are supposed to be less erroneous, since we average over multiple
single trained machines.

4 Experiment Design

We first describe in detail the selected datasets of daily and hourly DAX 30
and S&P 500 indices. Subsequently, we describe the features that are used
for the financial time series forecasting. Furthermore, we provide information
about the data preprocessing, training method, evaluation metrics, as well as
our choice of hyper-parameters for the machine learning methods.

4.1 Datasets

The datasets used in our experiment covers the period of over 10
:::
ten

:
years from

02/01/2004 08:00 GMT - 06/03/2015 20:00 GMT at an hourly sampling rate.
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Fig. 1 DAX 30 index-level chart

Fig. 2 S&P 500 index-level chart

It can be converted to any lower frequency. We use hourly as well as daily sam-
pling rates. It contains open-high-low-close index levels of the German stock
index (DAX 30) and the American Standard & Poor’s 500 index (S&P 500).
The datasets are provided by courtesy of OANDA Corporation. In Figures 1
and 2, we see the index-level evolution of both data for the whole length of
our experiment. We observe that over long periods both indexes show similar
index level development. Both indexes reveal up and down trends, while the
up trends tend to be more consistent in terms of their length.

The output variable of the machine learning methods is the logarithmic
rate of change based on the close level. It is common to transform absolute
price changes into relative price changes in order to deal with more symmetric
distributed data which will follow a normal distribution more closely [35].
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Fig. 3 The rate of changes (ROC) of the DAX 30 daily data, of which we aim at predicting
the time series

By using logarithmic returns instead of arithmetic returns, we may increase
performance in training process, since multiplicative relationships turn into
additive, which are also simpler to handle for later calculations [20].

rt = ln(pt+1)− ln(pt). (1)

Eq. (1) shows the logarithmic price change with pt denoting the close index-
level at a point in time t. The index-level DAX 30 data

:
, which is transformed

to logarithmic rate of changes by Eq. (1),
:
can be found in Figure 3.

Hourly sampled data Daily sampled data
DAX S&P DAX S&P

Number of observations 37, 160 61, 085 2, 836 3, 384
Mean 2.84e − 05 1.01e − 05 0.00037 0.00018
Std. dev. 0.00380 0.0026 0.0146 0.0113
Skewness −0.1243 0.6780 0.0744 −0.2072
Kurtosis 17.04 50.98 11.89 14.46
Minimum −0.0551 −0.0479 −0.1041 0.1051
Maximum 0.0472 0.0668 0.1578 0.1121
AD test p-value < .001 < .001 < .001 < .001
KS test p-value < .001 < .001 < .001 < .001

Table 1 Descriptive statistics for the return series (a) hourly and (b) daily

Table 1 provides the descriptive statistics for the transformed data. Please
note that due to hours of low trading activity, hourly data contain hours with
zero returns regularly which have been removed from the datasets. The reason
is that according to Figure 3 the ROC at vast majority of points in time in
the data are closed to zero. In this paper, we rather want the machine learning
methods to learn and train for outputs with a non-zero value.

The difference in the number of observations for the DAX and the S&P
datasets is a consequence of different trading hours and days, since both cover
the same time span. All time series have means of a value close to zero paired



Comparison of Machine Learning Methods for Financial Time Series Forecasting 9

with tails, which are heavier compared to the normal distribution, quanti-
fied by the kurtosis measure being greater than 3.00. Our tests for normality,
namely the Anderson-Darling (AD) test and the Kolmogorov-Smirnov (KS)
test clearly neglect normality with very low p-values. These are prominent fea-
tures of financial time series, which are well documented in literature [12, 13].

4.2 Feature selection
::::::::
Selection

The choice of input variables plays an important role in forecasting and has
a large impact on the prediction performance. Since we aim at comparing
different machine learning methods rather than finding a combination of input
variables that maximizes the prediction performance, we select similar input
variables to those of previous works.

The input variables for our models are lagged technical indicators, which
can be extracted from our output time series. All indicators are at least lagged
for one time-step, as we want to avoid look-ahead bias. For our experiment, we
can only use data that would have been observable or known during training
and testing in order to obtain the true forecasting capability. Table 2 gives an
overview of the calculations of the selected input variables and lags, as well as
the parameters for some of the input variables. We have four types of input
variables. The first one is the lagged logarithmic rates of change (log ROC).
It allows the machines to search for patterns in the history of the output
variable. In addition, we added lagged exponential moving average rates of
change (EMA ROC) in order to obtain smoothed ROCs. The third type of
the input variables is the n-period ROC, which computes the rate of change
for a specified length n. For the last one, we computed differences between the
current price and the current simple moving average (MA difference), again
for multiple lags. We expect the MA difference to capture some of potential
inter-temporal index-level trends, as it will take larger (or smaller) values when
the current index-level departs upwards (or downwards) from the current 20-
period moving average index-level. In total, we have 19 input variables for
training machine learning methods to predict the log ROC of the next point
in time.

Feature name Parameter Selected lags Calculation
Log ROC 1,2,3,4,5 ln(pt+1) − ln(pt)

EMA ROC n = 3 1,2,3,4,5 EMAt+1
EMAt

n-period ROC 2,3,4,5 pt+1
pt−n

− 1
MA difference n = 20 1,2,3,4,5 pt+1 − MAt+1

Table 2 List of the input variables, their calculations, and parameters
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4.3 Data preprocessing
::::::::::::
Preprocessing and walk-forward routine

::::::::::::
Walk-forward

:::::::
Routine

An important step before implementing and comparing

:::::::::
Important

:::
for

::
a
::::

fair
:::::::::::
comparison

:::
of the machine learning methods is to

create a systematic approach for data preprocessing, training, and prediction.
We use a walk-forward routine for all of the machine learning methods. In
the walk-forward routine, we divide the whole data into smaller and equally
sized subsets, which are used for training and test. A subsample contains n+ i
observations, with n denoting the window length for training and i the num-
ber of desired out-of-sample (OOS) predictions. Once the respective machine
learning method is trained with the window length n, it will produce i OOS
predictions. Afterwards, the training window moves i points in time forward.
Then the machine learning methods run training with the new training win-
dow and generate new predictions. Basically, the data for training the machine
learning methods is simply “walking-forward”

:
”, while adding new observations

and dropping old observations. The walk-forward routine continues to move
forward until the entire data is consumed. More specifically, until there are
not enough observations to produce the desired number of OOS predictions.
Since the machine learning methods are retrained using the “walking-forward”
:
”
:
method after each step, we expect them to well adapt to different market

regimes.

For
:::::::::::
Furthermore,

:::
for

:
comparing different machine learning methods, it is

mandatory to ensure that all methods use exactly the same data as well as
avoid look-ahead bias. Otherwise, the results would lack validity. For example,
the look-ahead bias can be introduced during normalizing or scaling the data
.
::::
(see,

:::::
e. g.,

::::::::
[7, 33, 6]

:
).

:
If one seeks to use scaled or normalized data in a walk-

forward environment, the scaling of the data has to strictly occur for each
subsample separately. If one scales the whole data prior to subsampling and
applies a walk-forward routine after scaling, each subset will contain informa-
tion which originally have not been available at that point in time. The reason
is that scaling and normalizing functions contain elements of order theory,
e .g., global minima or global maxima.

Thus, it is important to note that in our experiments, we do not apply scal-
ing. This keeps the level of comparability among the machine learning methods
as high as possible. However, it also introduces a restriction regarding the ac-
tivation function for the ANN, which is described in Section 4.5. Moreover,
as mentioned earlier, we remove all zero valued ROC before computing sub-
samples and inputs. It can hedge the risk of different treating of zero-values
in the different machine learning methods, which could influence or bias the
comparability. However, this will only affect our hourly data, as they contain
considerably more zero valued ROCs.
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4.4 Performance measures
::::::::
Measures

The forecasting performance of the methods is evaluated by three measures.
The first one is the root-mean-square error (RMSE), which measures the mag-
nitude of the deviation between a predicted value and the true observable
value. A smaller RMSE indicates a better prediction performance. Formally,
RMSE is defines as:

RMSE =

√√√√ 1
n

n∑
t=1

(yt − ŷt)2 (2)

with yt denoting the actual value and ŷt the predicted value.
The second measure focuses on directions of predictions. The directional

symmetry (DS) measure calculates the proportion of correctly predicted changes
of ROC in direction from ti−1 to ti from the total number of predictions as
defined in Eq. (3).

DS = 100
n

n∑
t=1

dt with dt =
{

1 if (yt − yt−1)(ŷt − ŷt−1) ≥ 0
0 otherwise

. (3)

The higher the values of DS, the better is the method in predicting directional
changes. We multiply 100 in Eq. (3), in order to represent the DS measure in
percentage.

The third measure is the sign symmetry, which simply measures the per-
centage of total predictions that have the same sign as the actual value. It is
defined as Eq. (4).

SS = 100
n

n∑
t=1

st with st =
{

1 if sign(yt) = sign(ŷt)
0 otherwise

. (4)

The higher SS measures suggest a better prediction performance. Again, we
multiply 100 in Eq. (4) to represent the DS measure in percentage.

Both
:
,
:
the DS measure and SS measure are rather important for traders,

since one of their goals is to anticipate the correct direction of the indices at
next point in time. Please note that even a very high value of the DS measure
and SS measure cannot guarantee sustainable profits or alternatively a higher
value of the DS measure and SS measure does not necessarily result in a higher
trading profit. Nevertheless, a higher DS measure and SS measure should be
preferred from an investors’ point of view, ceteris paribus.

4.5 Selected hyper-parameters
::::::::::::::::
Hyper-parameters

It is important to select the optimal set of parameters for machine learning
methods. Improper parameters can lead to overfitting or underfitting [6], which
in return negatively influences the generalization performance. The method-
ologies for finding the optimal parameters have been investigated, but yet not
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successfully answered. Typical suggested methodologies are Grid Search [2],
Random Search [2], Bayesian Optimization [32, 18], and Gradient Based Op-
timization [8]. In addition, optimizing hyper-parameters with large datasets,
i .e., financial time-series at hourly sampling rates, combined with a walk-
forward routine, can easily become unfeasible for standard desktop multi-core
central processing units. The same holds true for the required memory, which
can easily exceed the standard 8 or 16 GB. As the focus of this work is to
compare various machine learning methods, we do not cover the optimization
of parameters. Instead, we use similar hyper-parameters to those from exper-
iments in related works (see Section 2). The selected parameters with respect
to each machine learning method are: In terms of SVM, we employ the Ra-
dial basis function kernel (i .e., Gaussian kernel). We set the cost C = 100,
γ = 0.1, ε = 0.001,

:
and choose ε-regression as regression type. Regarding

ANN, Standard Backpropagation
:::::::
standard

::::::::::::::::
backpropagation is employed as

learning function. We set the learning parameter η = 0.1 and ANN has 8
hidden nodes.At the initial iteration, we randomly set weights. We use a lin-
ear function as activation function instead of a more commonly used sigmoid
function. The reason is that the sigmoid function strictly results in the range
of [0, 1] and our data cannot be fit in the range of [0, 1]. For k-NN, we set the
number of neighbors k = 5. In KPCA, we employ the Radial basis function
kernel (i .e., Gaussian kernel). We set the number of features 100 and σ = 0.025

5 Results of the Experiments

This section presents the results of our experiments. It is organized in sub-
sections according to the research questions (i) to (iv) described in the intro-
duction. We beginn

:::::
begin

:
with the (i) performance comparison of the three

machine learning methods, on both daily and hourly data. Subsequently, we
determine the (ii) optimal window lengths for training the machines as well
as the (iii) optimal number of OOS predictions. Finally, we investigate the
(iv) influence of Kernel Principle Component Analysis on the prediction per-
formance. Please note, the research question (v) on the backtesting of selected
trained machines is documented in the Section 6.

5.1 Performance comparison
:::::::::::
Comparison

:
of SVM, ANN, and k-NN

Daily Data Tables 3 and 4 provide the performance of the three machine
learning methods (i .e., SVM, ANN, k-NN) with respect to each of the daily-
basis DAX 30 and S&P 500 data. The RMSEs of the three machine learning
methods range from 0.015 to 0.024 in the DAX 30 data and slightly lower from
0.010 to 0.017 in the S&P 500 data. All machine learning methods achieve on
average lower RMSEs for the S&P 500 data compared to the DAX 30 data. In
terms of the minimum RMSE, the k-NN achieved the lowest minimum RMSE
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in the DAX 30 data, followed by the ANN with a slightly higher minimum
RMSE of 0.016, while the SVM ranks last with a higher minimum RMSE of
0.019. The same order pertains for the maximum RMSE. In the S&P 500 data,
the ANN outperforms on average the k-NN by a 0.001 margin, while the SVM
generates the highest RMSE.

RMSE DS SS
Window # OOS SVM ANN KNN SVM ANN KNN SVM ANN KNN

100 10 (10%) 0.021 0.021 0.016 50.262 59.288 53.109 49.213 51.536 49.700
100 25 (25%) 0.021 0.019 0.016 49.944 58.879 55.402 48.710 50.729 50.953
100 50 (50%) 0.021 0.020 0.016 50.604 61.321 58.906 49.434 49.509 48.642
200 20 (10%) 0.021 0.018 0.016 50.625 59.570 52.188 49.492 48.945 49.922
200 50 (25%) 0.021 0.019 0.017 51.686 61.804 54.000 49.412 51.412 50.784
200 100 (50%) 0.021 0.018 0.016 50.760 59.240 58.680 49.560 49.680 51.400
400 40 (10%) 0.021 0.017 0.017 51.653 61.949 50.847 51.653 52.712 49.492
400 100 (25%) 0.021 0.018 0.017 51.609 60.478 51.043 51.087 48.783 49.826
400 200 (50%) 0.021 0.017 0.017 52.727 63.682 59.364 51.136 50.045 50.773
800 80 (10%) 0.022 0.018 0.018 50.781 62.031 51.771 50.990 50.885 51.250
800 200 (25%) 0.022 0.019 0.019 50.167 65.278 52.500 49.111 50.722 49.389
800 400 (50%) 0.024 0.020 0.019 49.563 61.438 59.875 48.625 50.063 49.625

1600 160 (10%) 0.019 0.017 0.015 51.250 64.732 47.500 50.357 50.625 52.143
1600 400 (25%) 0.019 0.016 0.016 50.250 61.000 52.625 50.125 49.000 53.750
1600 800 (50%) 0.019 0.019 0.016 49.625 63.875 55.875 50.250 50.875 49.250

Avg. 0.021 0.018 0.017 50.767 61.638 54.246 49.944 50.368 50.460
Min 0.019 0.016 0.015 49.563 58.879 47.500 48.625 48.783 48.642
Max 0.024 0.021 0.019 52.727 65.278 59.875 51.653 52.712 53.750

Table 3 Results of the three machine learning methods on the daily DAX 30 data for
varying windows lengths and different numbers of OOS predictions per training.

RMSE DS SS
Window # OOS SVM ANN KNN SVM ANN KNN SVM ANN KNN

100 10 (10%) 0.016 0.016 0.013 51.672 51.115 53.313 49.721 49.164 49.319
100 25 (25%) 0.016 0.016 0.013 52.093 53.891 55.659 49.860 50.419 50.140
100 50 (50%) 0.016 0.015 0.013 51.969 52.281 58.844 51.125 50.031 50.938
200 20 (10%) 0.016 0.014 0.013 52.276 52.756 52.083 50.833 50.385 50.513
200 50 (25%) 0.016 0.013 0.013 51.677 52.774 54.194 51.290 50.290 51.000
200 100 (50%) 0.016 0.013 0.013 52.548 52.871 59.355 50.742 49.161 50.452
400 40 (10%) 0.016 0.013 0.013 51.130 52.123 50.171 49.829 51.438 50.068
400 100 (25%) 0.016 0.013 0.013 51.690 53.207 52.414 50.655 49.690 50.000
400 200 (50%) 0.016 0.014 0.013 50.857 52.929 57.643 50.107 50.250 49.893
800 80 (10%) 0.017 0.014 0.014 50.806 53.347 50.685 49.919 50.524 48.750
800 200 (25%) 0.016 0.014 0.014 50.833 51.042 53.500 49.875 51.292 50.375
800 400 (50%) 0.016 0.014 0.014 50.833 56.250 58.625 50.958 47.083 50.167

1600 160 (10%) 0.013 0.011 0.011 53.125 53.500 51.313 51.438 48.938 51.188
1600 400 (25%) 0.013 0.010 0.011 52.188 59.188 50.875 51.563 49.688 49.063
1600 800 (50%) 0.013 0.011 0.011 51.813 59.750 57.188 52.750 53.688 49.500

Avg. 0.016 0.013 0.013 51,701 53,802 54,391 50,711 50,136 50,091
Min 0.013 0.010 0.011 50,806 51,042 50,171 49,721 47,083 48,750
Max 0,017 0,016 0,014 53,125 59,750 59,355 52,750 53,688 51,188

Table 4 Results of the three machine learning methods on the daily S&P 500 data for
varying windows lengths and different numbers of OOS predictions per training.

The direction performance measures show a different ranking. Referring to
the DS measure, the ANN achieved on average the highest DS measure of 61.64
in the DAX 30 data. Whereas the k-NN holds the lead on the S&P 500 data,
but only by a small margin. In contrast, the SVM shows the worst average
performance among the three machine learning methods. However, in terms
of predicting directional changes of the daily ROC, all of the three machine
learning methods are able to produce on average more correct predictions than
wrong ones in both data.

In addition, all methods—with one exceptional case—are able to produce
more correct predictions than incorrect predictions for the sign of the next
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day’s index level change. The SVM has the highest average SS overall in the
S&P 500 data. At the same time, the SVM is the one exception with a SS
smaller than 50, namely 49.43 for the DAX 30. The performance of the other
two machine learning methods is very similar with the SS measure of 50.40 for
the DAX 30 and the SS measure of 50.10 for the S&P 500. Furthermore, the
k-NN has the highest maximum SS measure with 53.75 in the DAX 30 data,
whereas the ANN obtains the peak maximum SS measure of 53.69 in the S&P
500 data. The k-NN produces the lowest maximum SS measure in the S&P
500 data.

Considering the average scores of all three performance measures for the
three machine learning methods, the ANN and the k-NN outperform the SVM
under the vast majority of cases in both data.

Hourly Data The results of the machine learning methods for hourly data are
depicted in Tables 5 and 6. Again, we observe smaller RMSEs values for the
S&P 500 data compared to the DAX 30 data. Overall, the RMSEs are smaller
than in the daily dataset, which is due to the shorter time frame. The mean
and standard deviation of the hourly data are also lower than those of the
daily data according to Table 1.

Furthermore, we observe that the k-NN classifier achieves the best RMSE
results for both datasets, considering the average, minimum and maximum
RMSEs. The second best method is ANN, while the SVM produces the highest
RMSEs again. In contrast to the daily data, we have a clear cut order regarding
the RMSEs of our three learning machines.

The DS of our algorithms on the hourly data are lower on average than for
the daily dataset, except for the SVM, which has slightly higher average DS
on hourly data. Even the minimums of the SVM are greater than 50. The k-
NN produces the best average DS values with 52.9995 (S&P 500) and 53.9754
(DAX 30) while the highest average SS values are obtained by the SVM with
50.6663 (DAX 30) and 50.5848 (S&P 500). Furthermore, all algorithms can
correctly predict the sign of the next hour’s logarithmic return more often
than every second time, meaning their average SS exceed 50.

5.2 Determining the optimal training window lengths
:::::::
Optimal

::::::::
Training

:::::::
Window

::::::::
Lengths

We increased the window length by factor two, for four times, starting at 100
days for the daily data and 800 hours for the hourly data. The longest window
lengths for training are 1, 600 days for the daily data and 12, 800 hours for
the hourly data. Tables 3, 4, 5 and 6 show the performance for the different
window lengths.

Daily Data All machine learning methods reach their lowest RMSEs with the
longest window length consisting of 1, 600 latest observations in the training
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data. Therefore, the RMSE improves when a window length is increased. How-
ever, the k-NN is able to obtain low levels of RMSEs already from the shortest
window length of 100 days. In the daily S&P 500 data, the RMSE of the k-NN
with the window length of 100 days is equal to the minimum RMSE of the
SVM. In the daily DAX 30 days data, the RMSE of the k-NN with the window
length of 100 days is even smaller than the minimum RMSE of the SVM.

However, in terms of the DS measure and SS measure, they fluctuate un-
steadily over different window lengths. Thus, they do not show a systematic
pattern for the different window lengths.

Hourly Data We observe that increasing the window length improves the
RMSE only until window lengths reach 3, 200 or 6, 400 hours. Advancing to
12, 800 often causes the RMSEs of our learning machines to steepen up to their
average RMSEs or higher. This holds particularly true for the k-NN algorithm,
which validates its capability to produce low levels of RMSEs from short train-
ing window lengths as against the SVM and ANN, as well on hourly data. In
terms of the DS measure, the SVM output results in higher values when the
window length is increased. In both data, the SVM reaches the maximum
DS measures when using window length of 12, 800 hours. In addition, ANN
outputs the maximum DS measures when using the longest window length in
both data, as well. When using k-NN, the DS measures vary unsteadily over
different window lengths. Referring to the SS measure, we observe almost no
correlation between the SS measure and the window length.

Compared to the daily data, a larger window helps only to certain extend
for hourly data. This is possibly because too many smaller changes observed
on hourly data have no impact on final index of a trading day.

5.3 Determining the optimal number
:::::::
Optimal

::::::::
Number of out-of-sample

predictions
::::::::::::
Out-of-sample

::::::::::
Predictions

In order to gain an intuition about how many out-of-sample (OOS) predictions
to produce before retraining of the model should be triggered, we choose three
different window lengths for testing. These window lengths are always 10%,
25% and 50% of the training window lengths as shown in Tables 3 to 6.

Considering all experiments on both the daily data and hourly data, we
observe that variations in the number of OOS predictions only have a marginal
impact on the RMSE of the three machine learning methods. This can be
concluded by keeping the training window length constant and analyzing the
variations in RMSEs for the 10%, 25% and 50% OOS proportions of training
window length. Futhermore

:::::::::::
Furthermore, our experiments cannot highlight a

certain proportion, which systematically outperforms other proportions across
all data and machine learning methods.
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5.4 Influence of the kernel principle component analysis
::::::
Kernel

:::::::::
Principle

::::::::::
Component

::::::::
Analysis

:
on the prediction performance

:::::::::
Prediction

::::::::::::
Performance

Finally, we examine whether the Kernel Principle Component Analysis (KPCA)
can further enhance the prediction performance of the three machine learning
methods. In Table 7, we compare the prediction performance of the machine
learning methods shown in Section 5.1 to the machine learning methods when
KPCA is applied to the input data prior to each training process. For the sake
of brevity, we only show results for selected window lengths in Table 7. The
selected window lengths are 1, 600 days for the daily data and 3, 200 hours for
the hourly data.

RMSE DS SS
Window # OOS SVM ANN KNN SVM ANN KNN SVM ANN KNN

DAX 30 daily
1600 160 0.0190 0.0169 0.0152 51.25 64.73 47.50 50.36 50.63 52.14

KPCA 1600 160 0.0190 0.0141 0.0148 56.43 54.11 49.82 48.66 49.20 51.52
1600 400 0.0191 0.0161 0.0162 50.25 61.00 52.63 50.13 49.00 53.75

KPCA 1600 400 0.0171 0.0171 0.0165 52.38 51.50 53.38 47.50 50.38 48.63
1600 800 0.0194 0.0188 0.0162 49.63 63.88 55.88 50.25 50.88 49.25

KPCA 1600 800 0.0152 0.0268 0.0157 53.13 55.25 59.75 48.63 54.63 54.13

S&P 500 daily
1600 160 0.0132 0.0107 0.0106 53.13 53.50 51.31 51.44 48.94 51.19

KPCA 1600 160 0.0095 0.0114 0.0098 99.56 51.69 73.56 48.38 51.00 49.56
1600 400 0.0132 0.0103 0.0109 52.19 59.19 50.88 51.56 49.69 49.06

KPCA 1600 400 0.0095 0.0119 0.0099 99.88 52.50 81.69 49.00 52.00 49.75
1600 800 0.0128 0.0113 0,0107 51.81 59.75 57.19 52.75 53.69 49.50

KPCA 1600 800 0.0095 0.0112 0.0100 99.94 47.31 85.31 45.00 46.13 49.31

DAX 30 hourly
3200 320 0.0050 0.0043 0.0042 51.42 51.82 50.29 50.99 50.41 50.09

KPCA 3200 320 0.0039 0.0042 0.0043 99.83 50.46 53.73 50.93 49.64 49.80
3200 800 0.0049 0.0043 0.0042 51.54 51.88 51.26 50.76 50.12 50.20

KPCA 3200 800 0.0039 0.0043 0.0043 99.93 50.27 56.39 50.87 50.30 50.27
3200 1600 0.0048 0.0042 0.0042 51.26 53.88 57.03 50.59 50.57 50.10

KPCA 3200 1600 0.0039 0.0042 0.0043 99.96 50.71 62.77 51.09 50.30 50.08

S&P 500 hourly
3200 320 0.0034 0.0029 0.0029 51.28 50.20 50.14 50.95 50.49 50.06

KPCA 3200 320 0.0027 0.0030 0.0027 99.84 49.11 99.79 50.36 50.13 50.18
3200 800 0.0033 0.0029 0.0029 51.45 51.13 51.85 50.88 49.76 50.05

KPCA 3200 800 0.0027 0.0029 0.0028 99.93 49.22 99.91 50.24 50.49 50.38
3200 1600 0.0033 0.0030 0.0029 51.41 49.29 57.07 50.76 50.23 50.23

KPCA 3200 1600 0.0027 0.0030 0.0028 99.97 50.40 99.93 50.04 50.47 50.32

Table 7 Results of the three machine learning methods with KPCA compared to those
without KPCA

The RMSEs of the SVM and k-NN decrease or remain close to the RMSEs
without KPCA in the vast majority of cases. This holds particularly true for
the SVM, as its RMSEs decreases in all cases through KPCA. For k-NN, we
observe that the RMSEs remain constant, slightly decreasing, or slightly in-
creasing occasionally. On the other hand, KPCA has no effect or even negative
effect on RMSEs when using the ANN. The RMSEs mostly rise or stay close
to the RMSEs without KPCA.

In terms of the DS measure, the result demonstrates
::::::
results

::::::::::::
demonstrate

that KPCA enhances the prediction performance a lot for the SVM and k-
NN. Both the SVM and k-NN result in DS values higher than 80 or even 90,
when trained on the extracted features. Divisively, their SS measures usually
decreases, when the DS measures increase by great margins.
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Different from the SVM and k-NN, we observe a different result for the
ANN with KPCA in terms of the DS measure and SS measure. In most cases,
the DS measures decrease in utilization of KPCA, while the SS measures
fluctuate bidirectionally revealing no systematic pattern.

:::
For

:::::::
RMSE,

:::
one

::::
can

:::::::
assume

::::
that

::::
even

::::::::
without

::::::
KPCA

:::
the

::::::::
machine

::::::::
learning

:::::::::
algorithms

:::::::
already

:::::::::
recognize

::::
most

::
of

::::
the

:::::::
pattern

::
in

:::
the

::::
data

::::
and

:::
the

::::::::::
dimension

::::::::
reduction

::::
has

::
no

::::::::::
significant

::::::::
influence

:::
on

:::
the

:::::::::
reduction

::
of

::::
the

:::::::::
estimation

::::::
error.

::::
This

::
is

::::
one

::
of

:::::::
reasons

::::
why

:::::::
KPCA

::::
does

::::
not

:::::::
improve

:::::::
RMSE.

:

In summary, we observe dimensionality reduction done by KPCA has a
strong impact on the prediction performance measured by RMSE and DS
when using the SVM and k-NN.

5.5 Influence of bootstrap aggregating
:::::::::
Bootstrap

:::::::::::
Aggregating

:
on the

prediction performance
:::::::::
Prediction

::::::::::::
Performance

RMSE DS SS
Window # OOS SVM ANN KNN SVM ANN KNN SVM ANN KNN

DAX 30 daily
1600 160 0.0190 0.0169 0.0152 51.25 64.73 47.50 50.36 50.63 52.14

Bagging 1600 160 0.0143 0.0134 0.0133 52.77 55.89 50.27 51.88 50.63 47.77
1600 400 0,0191 0.0161 0.0162 50.25 61.00 52.63 50.13 49.00 53.75

Bagging 1600 400 0.0159 0.0149 0.0145 49.88 59.13 45.88 49.63 48.13 48.13
1600 800 0.0194 0.0188 0.0162 49.63 63.88 55.88 50.25 50.88 49.25

Bagging 1600 800 0.0156 0.0146 0.0145 50.50 57.25 50.38 49.25 48.63 51.25

S&P 500 daily
1600 160 0.0132 0.0107 0.0106 53.13 53.50 51.31 51.44 48.94 51.19

Bagging 1600 160 0.0104 0.0097 0.0095 51.63 57.00 51.00 51.06 48.00 52.69
1600 400 0.0132 0.0103 0.0109 52.19 59.19 50.88 51.56 49.69 49.06

Bagging 1600 400 0.0105 0.0096 0.0096 51.63 58.31 49.69 50.13 49.88 49.25
1600 800 0.0128 0.0113 0.0107 51.81 59.75 57.19 52.75 53.69 49.50

Bagging 1600 800 0.0104 0.0097 0.0095 51.31 61.81 50.19 50.69 47.50 49.06

DAX 30 hourly
3200 320 0.0050 0.0043 0.0042 51.42 51.82 50.29 50.99 50.41 50.09

Bagging 3200 320 0.0041 0.0039 0.0039 51.59 50.69 50.05 50.86 50.78 50.06
3200 800 0.0049 0.0043 0.0042 51.54 51.88 51.26 50.76 50.12 50.20

Bagging 3200 800 0.0041 0.0040 0.0039 51.76 47.88 49.93 50.93 50.18 50.77
3200 1600 0.0048 0.0042 0.0042 51.26 53.88 57.03 50.59 50.57 50.10

Bagging 3200 1600 0.0041 0.0040 0.0039 51.08 50.78 49.84 50.88 49.79 50.73

S&P 500 hourly
3200 320 0.0034 0.0029 0.0029 51.28 50.20 50.14 50.95 50.49 50.06

Bagging 3200 320 0.0028 0.0027 0.0027 51.21 52.31 49.93 50.78 50.38 50.19
3200 800 0.0033 0.0029 0.0029 51.45 51.13 51.85 50.88 49.76 50.05

Bagging 3200 800 0.0028 0.0027 0.0027 51.35 53.21 49.90 50.68 50.74 50.22
3200 1600 0.0033 0.0030 0.0029 51.41 49.29 57.07 50.76 50.23 50.23

Bagging 3200 1600 0.0028 0.0027 0.0027 51.26 52.37 49.86 50.54 50.38 49,95

Table 8 Results of the three machine learning methods with bootstrap aggregating (“bag-
ging”) compared to those without bootstrap aggregating

Finally, we employ an ensemble method, namely the bootstrap aggregat-
ing. As for the KPCA, we use the same training window lengths that yielded
better prediction performance results relative to the other training window
lengths. Table 8 summarizes the prediction performance of the machine learn-
ing methods when using the bootstrap aggregating. Through the utilization
of the bootstrap aggregating, the RMSEs of the three machine learning meth-
ods is only slightly reduced for both daily data and hourly data. Specifically,
the bootstrap aggregating algorithm reduces the RMSEs of the three machine
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learning methods on average by 0.0023 in the daily DAX 30 and S&P 500
data.

In the hourly data, we achieve a difference of 0.00038 on average. The
reductions of the RMSEs come along with fluctuations in the DS measure
and SS measure upwards as well as downwards varying in magnitude. The
magnitudes of the fluctuations in the DS measure and SS measure are the
lowest for the SVM in both daily and hourly data with average differences
ranging from 0.02 to 0.64. This represents a slight worsening through bootstrap
aggregating.

Our ensembles of ANN and k-NN produce changes of greater magnitude
in the DS measure in both directions. For instance, the DS measures of the
ANN decrease a lot in both daily and hourly DAX 30 data, while the DS
measures rather increase in the S&P 500 data. The DS measure of the k-NN
with bagging is significantly reduced in all data, except for one out of twelve
cases. In contrast, the SS measures increase slightly in seven cases. Overall, a
clear statement on the influence of the bootstrap aggregating algorithm cannot
be made.

6 Backtesting of the Results for Selected Machines using a Simple
Trading Systems

In order to provide an impression on the profitability of the machine learning
methods, we embed predictions generated by the machine learning methods
into a simple trading system

::
on

:::::
daily

::::
data. In the trading system, we thereafter

simulate using the data used in the experiment. Based on the one-step ahead
ROC prediction, our system decides to be either fully invested in a long trade
or in a short trade for the next point in time. It keeps the position until a
change in the sign of the next period prediction is forecasted. In this case,
it instantly liquidates the position and opens another according to the new
predicted direction.

:::
We

::::::
choose

:::
to

:::::::
predict

:::
the

:::::::
return

:::
on

:::::
daily

:::::
data,

:::
as

:::::
from

:::
the

::::::::::::
investigation

::
of

::::
the

::::::::
optimal

::::::::
training

:::::::
window

::::::
length

:::
in

:::::::
Section

::::
5.2,

::::
we

:::::
found

:::
out

:::::
that

:::::::::
compared

::
to

:::::
daily

:::::
data,

::
a
::::::
larger

:::::::
window

:::::
helps

::::
only

:::
to

:::::::
certain

::::::
extend

:::
for

:::::::
hourly

:::::
data.

::::::
With

:::::
other

:::::::
words,

::::
our

::::::::
rationale

:::
to

::::::::
backtest

::::::
using

::::
daily

:::::
data

::
is

:::::::
simply

::::
that

::::
the

:::::::
smaller

::::::
hourly

::::::::
changes

::::
have

:::
no

:::::::
impact

:::
on

::::
the

::::
final

:::::
index

::
of
::
a
:::::::
trading

::::
day.

:

Of course, this is not a proper trading system, nor a valid backtesting ap-
proach

:::
nor

:::::::
proper

:::::::
trading

::::::
system. Both contain multiple shortcomings. How-

ever, it is beyond scope of this work to delve deep into algorithmic trading.
The results are presented solely for the purpose of providing an impression of
the profitability. We compute multiple performance measures along with [1]
for the selected machine learning methods. The results of the performance is
documented in Table 9.

We selected two machine learning methods, one for the DAX 30 and one for
the S&P 500, which performed well in the experiment in terms of performance
measures. Especially a high level of the SS measure is important for the trading



20 Deniz Ersan, Chifumi Nishioka, Ansgar Scherp

(1
)

(2
)

(3
)

(4
)

(5
)

(6
)

D
at

as
et

D
ai

ly
D

ax
30

D
ai

ly
S&

P
50

0
D

ai
ly

D
ax

30
D

ai
ly

D
ax

30
D

ai
ly

D
ax

30
D

ai
ly

D
ax

30
W

in
do

w
/O

O
S

16
00

/4
00

16
00

/8
00

16
00

/8
00

16
00

/8
00

16
00

/1
60

16
00

/1
60

A
lg

or
it

hm
k
N

N
A

N
N

k
-N

N
k
-N

N
SV

M
SV

M
K

P
C

A
/B

ag
gi

ng
N

on
e

N
on

e
K

P
C

A
N

on
e

B
ag

gi
ng

N
on

e

C
um

ul
at

iv
e

R
et

ur
n

1,
31

0
0,

12
5

0,
93

1
0,

00
3

-0
,2

31
-0

,2
69

A
nn

ua
liz

ed
R

et
ur

n
0,

30
2

0,
01

9
0,

23
0

0,
00

1
-0

,0
57

-0
,0

68
A

nn
ua

liz
ed

Sh
ar

pe
-R

at
io

1,
31

3
0,

12
5

1,
00

1
0,

00
4

-0
,2

73
-0

,3
24

A
nn

ua
liz

ed
St

d.
D

ev
.

0,
53

8
0,

51
4

0,
54

2
0,

49
3

0,
51

1
0,

50
4

M
ax

D
ra

w
do

w
n

-0
,2

06
-0

,2
85

-0
,2

10
-0

,3
19

-0
,5

10
-0

,4
00

M
ax

Le
ng

th
D

ra
w

do
w

n
16

6
89

6
27

9
50

1
99

0
99

0

C
um

ul
at

iv
e

R
et

ur
n

0,
27

1
1,

06
5

0,
27

1
0,

27
1

0,
53

2
0,

53
2

A
nn

ua
liz

ed
R

et
ur

n
0,

07
8

0,
12

1
0,

07
8

0,
07

8
0,

10
1

0,
10

1
A

nn
ua

liz
ed

Sh
ar

pe
-R

at
io

0,
34

0
0,

80
2

0,
34

0
0,

34
0

0,
48

0
0,

48
0

A
nn

ua
liz

ed
St

d.
D

ev
.

0,
54

6
0,

55
0

0,
54

6
0,

54
6

0,
54

6
0,

54
6

M
ax

D
ra

w
do

w
n

-0
,3

34
-0

,2
15

-0
,3

34
-0

,3
34

-0
,3

34
-0

,3
34

M
ax

Le
ng

th
D

ra
w

do
w

n
50

9
26

5
50

9
50

9
50

9
50

9

T
ab

le
9

B
ac

kt
es

ti
ng

re
su

lt
s

fo
r

se
le

ct
ed

le
ar

ni
ng

m
ac

hi
ne

s
(t

op
)

co
m

pa
re

d
to

a
bu

y-
an

d-
ho

ld
st

ra
te

gy
in

th
e

re
sp

ec
ti

ve
in

de
x

(b
ot

to
m

)



Comparison of Machine Learning Methods for Financial Time Series Forecasting 21

systems. Along with this principle, we choose one method from the experiment
in terms of KPCA and one utilized bootstrap aggregating. In addition, we pick
the same two machine learning methods but without the KPCA and bootstrap
aggregating, respectively, for the sake of comparison.

Among the selected trading strategies, the best prediction performance was
achieved by the k-NN as shown at the

:
in

:
column (1) in Table 9 with the high-

est annualized risk adjusted returns, measured by the Sharpe-Ratio. It clearly
outperforms the DAX buy-and-hold strategy in every measure. Comparison
of the methods shown at the column

::::::::
columns (3) and (4) reveals that the

application of KPCA turned
:::::
made

:
the poor algorithm (4) into a way more

profitable algorithm (
:::
i .e.,

::::
the

:::::::::
algorithm

:
(3), which

:
).

::
It

:
enabled the algorithm

to clearly outperform the other over DAX 30. However, the bootstrap aggre-
gating SVM shown at the

:
in

:
column (5) even worsened the performance of the

standard SVM (6). We enclose the performance charts of the methods shown
in the column (1) to (6) and the two additional SVMs for the hourly DAX 30
and S&P 500 data in the Appendix.

7 Discussions and Limitations

In our performance comparison for the daily data, the SVM brought out the
poorest predictions among the three learning algorithms in terms of average
RMSEs. Both, the k-NN and the ANN result on average in lower RMSEs.
Regarding the SS, we found the SVM to produce stable results considering the
levels of SS. Partially, our results contradict with previous related experiments,
which merely found the SVM to be superior over k-NNs and ANNs on daily
data by the RMSE, or similar squared error measures.

::::::
[33, 6]

:
.
:
This may

be due to the usage of different input variables and hyper-parameters and
methodological deviations from our approaches. We believe, the latter plays a
greater role, as related experiments often made use of scaling and smoothed
output variables. This can easily affect comparability of the machines, if not
conducted with high diligence. Scaling has to take place before training to
avoid look-ahead bias. If the entire data is scaled or normalized in advance and
then subsampled, every decision made by a learning system would be based on
data comprising sure information about the future. The reason is that scaling
and normalizing functions contain information about the global minima or
global maxima of the dataset. This information is only available when when
has access to the full dataset, i. e., in our case one would even have access
to financial data of a future point in time. That would, non-controversially,
break the rules for financial-time series forecasting. Related papers, usually
do not provide detailed information on their scaling approaches or scale the
entire dataset prior to subsampling, which may be due to unawareness of this
pitfall [7, 33, 6]. However, it must be explained in detail at least for the sake
of reproducibility.

Through the analysis of optimal window lengths, we found out that the
performance of our learning machines depend to some extendon

::::::
extend

::
on

:
the
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training window length. For daily data, the longest training window length
under study of 1,600 yielded the best results. In the hourly datasets, the best
performances were achieved with 3,200 to 6,400 training observations. Overall,
for the purpose of financial time series forecasting with machine learning algo-
rithms, we recommend to use at least 1,000 training observations, as shorter
training windows tend to produce inferior performances. We find this particu-
larly relevant with regard to SVMs and ANNs. The k-NN method approaches
its maximum potential faster, meaning it needs less observations to come close
to its best performances.

The high values of DS achieved through the application of KPCA shed
light on a weakness of this performance measure in its calculation. We recall
Eq. (3):

DS = 100
n

n∑
t=1

dt with dt =
{

1 if (yt − yt−1)(ŷt − ŷt−1) ≥ 0
0 otherwise

. (5)

The weakness origins from the term dt, which will take the value of one if
(yt−yt−1)(ŷt− ŷt−1) is greater or equal than zero. This means that the change
in direction was correctly predicted. Please note, the term (yt−yt−1)(ŷt−ŷt−1)
will be zero if either (yt− yt−1) or (ŷt− ŷt−1) equals zero. Hence, if the actual
value y or the predicted value ŷ does not change at all in value from t− 1 to
t, then dt will judge this as correctly predicted directional change, which is
wrong in any different case than for: (yt−yt−1) = 0 and (ŷt− ŷt−1) = 0. Thus,
the DS will increase in some situations, when it actually should decrease.

Cao and Tay compared different algorithms for financial time series fore-
casting utilizing the DS and three other measures [6, 33]. Cao et al. [7] an-
alyzed the impact of KPCA for SVMs on financial time series data, among
other datasets. However this time, only measured by the NMSE. They summa-
rized that KPCA can improve generalization performance, which we cannot
confirm without limitations. Formally, a lower MSE through KPCA endorses
this work. However it turns out that in some cases a lower MSE is accompa-
nied by an undesirable effect, which is the predicting machine producing only
two values. In Figure 4, we show that a lower RMSE through KPCA may not
generally be preferable for financial forecasting. In Figures 4(a) and 4(b), we
observe that the histograms of the predicted outputs remain quite symmetric,
containing predictions with positive and negative values. However, in the neg-
ative example in Figures 4(c) and 4(d) we notice that after the application of
KPCA the predicted outputs only contain two classes of outputs, while both
classes being negative in value.

Clearly, this is not a desirable feature for a predicting machine in financial
time series forecasting such a particular machine becomes useless as it only
contains negative predictions. One could argue that it produced lower RMSEs,
but in financial time series forecasting we also care about the correct direction
of a forecast. In the negative example, we see that the SVM with KPCA only
models the left half of the true output histogram. If one only seeks to minimize
the RMSE of a prediction, one can simply use the training sample mean of
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the output variable as a constant predictor, which is very likely to produce a
low RMSE. Additionally, this predictor is certain to obtain a DS of 100. That
leads to conclude that—in the domain of financial time series forecasting—
the application of KPCA should not only be evaluated on RMSE. In this
example, the wrong interpretation of RMSE could have been prevented if the
SS measure had been taken into consideration. In the positive example the SS
values increased through the KPCA and vice versa in the negative example.1
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(a) Positive Example: k-NN before KPCA
(RMSE = 0.0162)
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(b) Positive Example: k-NN with KPCA
(RMSE = 0.0157)
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(c) Negative Example: SVM before KPCA
(RMSE = 0.0128)
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(d) Negative Example: SVM with KPCA
(RMSE = 0.0095)

Fig. 4 Histograms before and after utilization of KPCA for the true output, the predicted
output and the prediction error

Our bootstrap aggregation algorithms could produce lower RMSEs than
the single learning machines. In contrast to the KPCA, it did not introduce
the aforementioned undesirable features. However, the bootstrap aggregating
resulted in both improvements and worsening of the SS values. But the fluc-
tuations are usually small. Considering the reductions in RMSE and the small
changes in SS, we found the bootstrap aggregation helpful for forecasting fi-
nancial time series forecasting. Nevertheless one has to take into account that

1 In the positive example, we used the k-NN 1,600/800 DAX 30 daily from our experi-
ments. In the negative example, we used the SVM 1,600/800 S&P 500 daily.
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bagging introduces new free parameters to the learning problem, which have
to be determined by the supervisor in the optimization process. For the objec-
tive of improving a learning machine’s generalization performance, we prefer
bootstrap aggregating over KPCA.

We believe our trading systems to rather represent a lower bound on the
general profitability potential. First, we did not optimize our algorithms nor
did we try different input variables. Second, our trading strategy is quite naive
and omits risk- and money-management

:::
risk

::::
and

::::::
money

:::::::::::
management. Further,

in a real-world application, one must not require the machine to be invested
with every prediction it produces. However, we have not taken bid/ask spreads
and transactions costs into account which both would diminish the trading per-
formance in a real-world application to some extend. Nevertheless, we strongly
believe that our backtesting of the results for selected machines is of high value
since it provides insights into the actual impact of the trained machines on
the financial time series forecasting task. However, future work with more
advanved

::::::::
advanced

:
trading systems will be clearly required.

:::::
Since

:::
the

:::::::
results

::
of

::::::
ANN

:::
are

::::::::
between

::::::
SVM

::
or

::::::
k-NN

:::
or

:::::::
slightly

:::::::
above,

::
we

:::::
have

::::
yet

::::
not

:::::::::::
investigated

:::::::
further

:::::::
neural

:::::::::
networks.

:::
As

::::
our

::::::::::::
experiments

:::::
show,

:::
an

:::::::
optimal

::::::::
window

:::
size

::::
for

::::::
hourly

:::::
data

::
is

:::::::
already

:::::::
reached

:::::
with

::::::
1, 600

::::::::
regarding

:::::::
RMSE

::::::::::
(depending

:::
on

::::
the

::::::::
number

::
of

::::::
OOS).

::::::
Using

::::::
other

:::::
types

:::
of

:::::
neural

:::::::::
networks

:::
like

::::::::
LSTMs

:::::
(long

::::::::::
short-term

::::::::
memory)

::::
[15]

::::
does

:::::::
require

::
a

:::
lot

::
of

:::::::
training

:::::
data

:::
[31]

:
,
:::
for

::::::
which

:::
the

:::::::
optimal

:::::::
window

:::::
sizes

:::
we

:::::::::::
determinded

:::::
may

::
be

::::
too

:::::
small.

:

::::
Even

::
if
:::::::
trained

::
on

::::
the

:::::
entire

:::::::
history

::
of

:::
the

::::::::
financial

:::::
time

:::::
series,

::::
one

:::::::
assume

::::
may

:::::::
assume

::::
that

:::::
this

::::
had

::::
not

::
a

:::::::
positive

::::::
effect

:::
on

:::
the

::::::::::::
performance

:::
as

::::
the

:::::::
network

::::
may

:::::::
simply

:::::
learn

::
to

::::::
ignore

:::::::
“older”

:::::::::::
information

::
in

:::
the

:::::
data

::::::
stream

:::
as

:
it
:::::

does
::::
not

::::
help

:::::::
further

::::::::::
optimizing

::::
the

:::::::::
prediction

:::::::
output.

:::::
But,

:::
as

:::
the

::::::
ANN

:::::::
outputs

:::
the

::::::::::
maximum

:::
DS

:::::::::
measures

:::::
when

::::::
using

:::
the

:::::::
longest

::::::::
window

:::::::
length,

:
it
::::

will
:::
be

::::::::::
interesting

:::
to

::::::::::
investigate

::::::::
methods

:::::
such

::
as

::::::::
LSTMs

::::
with

::::::::::
attention.

:::::::
Existing

::::::::
research

:::
on

:::::
using

:::::::
LSTMs

:::
for

::::::::::
predicting

:::
the

:::::::
E-mini

::::
S&P

:::::
[37]

::
do

::::
not

::::
seem

:::
to

::::::::::
outperform

::::
the

::::::::
methods

::::::::::
considered

::
in

::::
this

::::::
paper.

:::::::::
However,

::
a
::::::
direct

::::::::::
comparison

::
is

:::::::
difficult

:::
as

:::
the

::::::::
datasets,

:::::
their

::::
time

::::::
spans,

:::::::::
measures

:::::::
applied

::::
etc.

:::::
differ.

:

Finally, we acknoledge that in recent years a growing number of text-mining
approaches have been applied to publicly available text-data like news articles,
and tweets on Twitter or social media in general in order to correlate it with fi-
nancial data. For instance, Bollen et al. [3] investigated whether the sentiment
of large-scale Twitter feeds are correlated to the value of the Dow Jones In-
dustrial Average (DJIA) over time. The authors explored that daily variations
in sentiment in the Twitter data have a statistically significant correlation to
daily Dow Jones Industrial Average close price movements. However, correla-
tions may improve predictions, but they do not represent a causation between
the two. Rao et al. [28] combined Twitter data and search volume index data
collected from Google trends. Their results are in line with Bollen et al. [3].

However, the combination of news or sentiment paired with technical in-
dicators as input variables in training predictive machine learning models is
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beyond scope of this work. The reason is that so far there is not sufficient
text-data publicly available that covers the 10 years of our daily and hourly
DAX 30 and S&P 500 data from 2004 to 2015 (see description of the datasets in
Section 4.1). To the best of our knowledge, the so far largest publicly available
text-data is the New York Times Annotated Corpus (NYTAC). The NYTAC
dataset contains 1.8 million new articles from the New York Times published
between January 1987 and June 2007. Thus, the overlap with our datasets is
rather small. Nevertheless, we leave this investigation as part of future work.

8 Conclusion

We empirically compared three machine learning methods k-NN, SVM, and
ANN for their usefulness on forecasting non-linear financial time series. Fur-
thermore, optimal training window lengths and the impact of KPCA and the
bootstrap aggregating algorithm were investigated. We measured the perfor-
mance of the machine learning methods by RMSE, DS, and SS. Our research
revealed that the DS measure has a general weakness, which can significantly
impact and mislead interpretations of the experiment results. Regarding the
RMSE, the k-NN and the ANN outperformed the SVM in most cases, whereas
the SVM produced the most stable performance in terms of SS. For forecasting
daily directions, a training window length of 1, 600 days yielded in lower RMSE
values than for shorter training windows. For hourly predictions, training win-
dow lengths of 3, 200 and 6, 400 hours were preferable to shorter and longer
training window lengths. Overall, we consider all the three machine learning
methods useful for the forecasting financial time series, since the levels of SS
were usually higher than 50. Additionally, we investigated the influence of
KPCA, when applied to the learning algorithms in training. Our results show
that it often reduced RMSEs, while the effect on the SS was ambiguous. Addi-
tionally, the decrease in RMSE was often accompanied with the introduction
of an undesirable side effect, exposed by DS approaching 100. In summary,
KPCA can be helpful for financial forecasting, when handled with caution. It
is insufficient to evaluate the influence of KPCA only by RMSEs for forecasting
financial time.
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Appendix

(a) Standard k-NN, 1600 window length,
400 OOS, DAX 30 daily data

(b) Standard ANN, 1600 window length,
800 OOS, S&P 500 daily data

(c) KPCA k-NN, 1600 window length,
800 OOS, DAX 30 daily data

(d) Standard k-NN, 1600 window length,
800 OOS, DAX 30 daily data

(e) Bagging SVM, 1600 window length,
160 OOS, DAX 30 daily data

(f) Standard SVM, 1600 window length,
160 OOS, DAX 30 daily data

Fig. 5 Performance Benchmark Charts for Trading Strategy


