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ABSTRACT. This paper is a description of last section of the paper
[KKRS]. In this paper, we show that ends of CMC (constant mean
curvature) surfaces, which have Delaunay (CMC surface of revo-
lution) ends, with bubbletons converge to Delaunay surfaces. We
recall that a CMC surface with bubbletons is defined by the simple
factor dressing matrices which solve the period problems. As ex-
amples, we can construct a cylinder with bubbletons, a Delaunay
surface with bubbletons (see [Ki], [Ko])} and a n-noid, which have
embedded Delaunay ends, with bubbletons (see [KSS]) using this
simple factor dressing matrices. Particulary, we prove that ends of
these surfaces converge to Delaunay surfaces.

1. INTRODUCTION

The classical Bianchi-Backlund transformation transforms a CMC
surface into an another CMC surface and can be described as the action
of the simple factor on the loop group using integrable systems methods
(see [TU]). As a classical example, it is well known that the bubbleton
surface is a Bianchi-Béacklund transformation of a round cylinder ([Sie]
and [SW]).

There exist many CMC surfaces with Delaunay ends. Korevaar,
Kusner and Solomon (see [KKS]) proved that embedded finite topol-
ogy ends of CMC surfaces converge to Delaunay surfaces. N-noids
with Delaunay ends were first constructed by Kapouleas ([Kap]). Also
Grosse-Brauckmann, Kusner and Sullivan classified all (Alexandrov)
embedded CMC trinoid surfaces (see [GKS]). Recently Kilian, Schmitt
and Sterling (see [KSS]) discussed dressing on CMC trinoids and n-
noids which have embedded Delaunay ends. They proved the existence
of CMC trinoids and n-nodis with bubbletons using the simple factor
dressing matrices which solve the period problem.

In the present paper, we consider the CMC srufaces with Delaunay
ends, and cosider the CMC surfaces with bubbletons of these surfaces.
Naturally we call the classical example bubbletons as cylinders with
bubbletons, and call the examples by [KSS] as n-noids with bubbletons.
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We prove that ends of these CMC surfaces with bubbletons converge
to Delaunay surfaces.

This paper organized as follows: In Section 2, we give the basic no-
tations and results for DPW (Dorfmeister-Pedit-Wu) method, which
constructs constant mean curvature surfaces in all three space forms.
In particular we discuss the period problems, and give the explict for-
mula for Delaunay surfaces using the elliptic functions in Theorem 2.3
in all three space forms. In Section 3, we show the main result in
the present paper as follows. We define the simple factor dressing ma-
trices using the Terng-Uhlenbeck approach, and define CMC surfaces
with bubbletons by restriction of this simple factor dressing matrices to
solve the period problems in Definition 3.2. Then we show that ends
of these CMC surfaces, which have Delaunay ends, with bubbletons
converge to Delaunay surfaces in Theorem 3.3. In Section 4, we apply
Theorem 3.3 to concrete objects. We discuss ends of Delaunay surfaces
with bubbbletons and Delaunay surfaces with multi-bubbletons using
the diagnoal simple factor dressing matrices. We also discuss ends of
trinoids with bubbletons and n-noids with bubbletons.

Acknowledgements: The author thanks Wayne Rossman for his sug-
gestions and support.

2. PRELIMINARIES

2.1. Loop groups. Let C, := {A € C| |\ = r} be the radius r circle,
and let D, := {A € C| |\ < r} be the radius r open disk. We
denote the closure of D, by D, := {A € C| |\ < r}. We also denote

=y ° )
0 —1
Definition 2.1. For any r € (0,1] C R, we define the following loop
groups:
(i) The twisted slyC r-loop algebra is
Arsl,C = {A: C, - sl,C | A(=X) =03A(N)o3 },
(ii) The twisted SLyC r-loop group is
ASLyC = {® : C, =7 SLyC | &(—A) = 03®(N\)os } .
(iif) The twisted SUy r-loop group is
ASU, = {F € A,SL,C | F(1/3)" = (F(\))~",
F(X) estends holomorphically to D1 \ D, }.

Whenr = 1, we abbreviate A;SU, to ASU,, and in this case the
condition that F' extends holomorphically to Dy \ D, is vacuous.



(iv) The twisted plus r-loop group with R™ constant terms is
A, SLyC = {B € A.SLyC | B(\) extends holomorphically to D,,

0 :
and Bly=¢ = (8 p‘l) with p >0} .
When r = 1, we abbreviate A 1SLoC to A SL,C.

Lemma 2.1. (Iwasawa decomposition) For any r € (0,1], we have the
following real-analytic diffeomorphism globally defined from A,.SL,C to
ASUz x Ay SLyC (with respect to the natural smooth manifold struc-
ture, as in Chapter 8 of [PrS]): For any ® € A,SL,C, there exist unique
F e ASU;y and B € A, ,SLyC so that

®=FB.

We call this rIwasawa splitting of ®. When r = 1, we call it simply
Iwasawa splitting. Because the diffeomorphism is real-analytic, if ®

depends real-analytically (resp. smoothly) on some parameter z, then
F and B do as well.

2.2. DPW method. We now describe the DPW method. Let
(2.1) E=A(z,A\)dz, A(z,A) € AshC,

where A := A(z,\) is holomorphic in both z and A for z € ¥ and
A € C\ {0}. Furthermore, we assume that A has a pole of order at
most 1 at A = 0, and the upper-right entry of A has a pole of order
exactly 1 at A = 0. We call £ a holomorphic potential.

Let @ be the solution to

dd = ®6, B(z)=1id

for some base point 2, € ¥. Then ® has the same holomorphicity
properties as A, and

¢ € A SL,C.
By Lemma 2.1 above, we can perform r-Iwasawa splitting, and write
the result as

(2.2) ®=FB.

Let I € A.SU; be above F, and we define Sym-Bobenko formula in
three-dimensional space forms as follows:

(2.3)

fRs = ;FUgFWl - Z)\(BAF) : F—1:| y JVRS = %Z‘FO';),F_I .

A=1

(2.4) fsz = Fi)\:eiwlAF—ll)\zei'yZ , Ngz= iF—lAang_l,
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. ei(_nz;m 0
with A= i(va=71) and Y1, VY2 e R
0 e 2
(2-5) Jm = FAF*I)\:eq/w , Nm = FAosF™
. ed?2 0 " R
with A = 0 92 ) F*:=F and ¢,v € R

Then fgs (resp. fss, fms ) is conformal parametrizations of CMC
H = 1/2 (resp. H = cot(ya — m1), H = coth(—q) > 1) surfaces in R®

.
?

(resp. S3, H?). We call this F as extended frame of CMC surface f.

2.3. Dressing. Let R be a connected Riemann surface and let ® be a
solution to d® = ®£ on R. If we define

@ — h+ . @ s
for hy = h,(A\) € A, SLyC depending only on A, then this multiplica-
tion on the left by A, is called a dressing.

2.4. Period problems. We consider the universal cover R of R and
let A denote the group of deck transformations. For each 7 € A, we
define the monodromy matrix M, of ® as M, ()\) := (®o7)- 271 We
introduce the following theorem to solve the period problems in R?®, S*
or H?, respectively, as in [KKRS].

Theorem 2.2. Assume M, € A,.SU, and thus M, is also the monodromy
matriz of F' about 7, where F is as in (2.2). Let f be one of the Sym-
Bobenko formulas (2.3), (2.4) or (2.5) for F', respectively. Then

(i) R® case: for = f holds if and only if
(2.6) M |yx=1 = £id and HM,|x=1 =0,
(ii) S® case: forT = f holds if and only if
(2.7) M; —eim = Mrfyzem = xid,
(iii) H? case: foT = f holds if and only if

(2.8) MTtA:e‘I/Zew’ = :tld .



2.5. Delaunay surfaces. Delaunay surfaces are constant mean curva-
ture surfaces of revolution in R3, S and H® are described via the DPW
in detail in [Ki] and [Ko]. And we also give the extended frame for a

Delaunay surface in explicit form in Theorem 2.3.
Let R be C\ {0}. Define

D _ [ sATH 4+
(2.9) £ = ;dz, where D = (s/\—i—t)ﬁl _ ) ,
with [, s, € R. One solution of d® = ®¢ is
(2.10) ® =exp(logz- D) .

This ® can be split (this is not r-Iwasawa splitting) in the following
way:

d=FB, ﬁ’:exp(ié’-D) : Z}:exp(logp-D) ,
where z = pe'’, with p,6 € R. We note that F € A,SU,.

Since D* = X?id, where X = /I2+ (s + £)2 + st(A — A-1)2, we see
that

(2.11) F = cos(0.X) +ilX " sin(0X) X 'sin(6X)(sA~! + tA)
S X T sin(@X)(sA + A7) cos(0X) — ilX ! sin(6X)

We can now r-Iwasawa split on B, i.e. B = F - B, where I € A,SU,
and B € A, SLyC. We define F = F - F. Thus ® = FB is the
r-Iwasawa splitting of @ (for any choice of r € (0, 1]).

Because, for each fixed A\, F' and B depend only on p and F' depends
only on ¢, we have that, under the rotation of the domain z — Ry, (z) =
ez 0, € R, the following transformations occur:

F'— Mp,F' and B — B, where My, = exp(if,D) .

We note that My, € A,SU,, and that My, is of the same explicit form
as F in (2.11), but evaluated at 6 = 6,. When 8 = 2r, M, = My, is
the monodromy matrix of the generating counterclockwise deck trans-
formation 7 € A of the universal cover of C\ {0}.

Now we consider the closing conditions in each of the three space
forms. If we choose [, s and ¢ satisfy the following equation:

(2.12) P+(s+t)2+a=1/4,

R3case: a =0
with ¢ S%case: a = —4stsin?(y) ,y=v =—p R
H® case: a = 4stsinh®(¢/2) ,q € Rt
then M, satisfies (2.6) (resp. (2.7), (2.8)) for R® case (resp. Sicase,
H?case). With these conditions, Delaunay surfaces are produced in R?,
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S3 and H?, and this can be seen as follows: In the case of R3, under
the mapping z — Ry,(2), we have that f as in (2.3) changes as

(2.13) f = Moo f My} — i(0rMpy) n=1 My, -

One can check that Equation (2.13) represents a rotation of angle 6
about the line

{z-(—s—10,1)+2(s—t)-(2,0,25 + 2t) |z € R} ,

hence f is a surface of revolution, and thus a Delaunay surface. Anal-
ogous computations imply that the immersions f into S® and H® are
also Delaunay surfaces.

Theorem 2.3 gives the extended frame of the Delaunay surface ex-
plicitly in terms of elliptic functions and elliptic integrals, proven in
[KKRS] in different notation. We restrict to the case that D defined
in Equation (2.9) is off-diagonal (i.e. / = 0) in Theorem 2.3.

Theorem 2.3. Let & : C\ {0} — A,SLyC be the solution in Equation
(2.10) of d® = ®E, where £ is defined in Equation (2.9) withl =0, and
where s and t satisfy one of the closing conditions (2.12). Then

(1) the Iwasawa factorization of ® is ® = F'B, where

(2.14) F = ®exp(—¢D)B;', B = Bjexp(¢{D),
and the functions v = v(p), £ = £(p) and the matrices By, By satisfy
(2.15) piu'? = —(v* —45%) (v® — 4¢%), (1) =2t

where ' denotes differentiation with respect to p.

p 2 dt
t= /1 (1+ (4s002)-102(t))t’

20(t + sA? —pu' A -

(2) F is the extended frame for a Delaunay associate family with
mean curvature H, vVH? — 1, VH? + 1 respectively in R®, S and H3,
with conformal factor v2 = H~2v? and Hopf differential @ = —2stH~ '\ 71,

Remark 2.4. We can explicitly solve the first Equation in (2.15) using
elliptic functions. When 0 < s < t, we have
2s

2.16 v - )
( ) (v) dn (2t logp,1 — j—;)

where dn(2tlog p, 1 — j—j) is the Jacobt elliptic dn function.



3. ASYMPTOTIC OF DRESSED CMC SURFACES

3.1. CMC surfaces with bubbletons. First we define the hermitian
projection onto a line L € P by 7 : C*> — L, and define simple factor
as follows:

A —a?%
(3.1) Yra(A) = (WL + mﬁf) ;
where for L = (ZO) e P,
0

1 1%12 aOBO
3.2 N b
(3-2) L lag|? + |bo? (aobo |bo 2

1 b2 —a b

_ d ot = %0 abo

(3 3) ana mp IGO‘Q + |bOlQ (_aobo ’aoiZ )

We consider the QR decompositon of v, ,(0) to obtain elements of
A, +SL,C,

(3.4) (det 9 o (0) 7Y%, 4(0) = QLo R

with Qr o € SUpy, R € B = {(g 1;@) la € R%,c € C} and restrict to
0 < |a} < 1. We define the simple factor as follows:

Definition 3.1. Let L € P* and oo € C with 0 < |af < 1. A simple
factor of A, SLyC with v < |a|, is a loop the form

(3.5) hie = (dettr o(N)PANQL LY (MAN)
. Vi 0
with A(X) = ( 0 \/X_1> ;

where Y1, and Q. defined as in (3.1) respectively (3.4). The set
Go = {hro|L € P*} can be identified with P

If we choose r > |a, then h,, € A.SU;. Thus simple factor is
explicit. From [KSS] and [TU], we have the following theorem.

Theorem 3.1. Let ¥ be a simply connected domain and let £ € A,sloC be
as in Equation (2.1). Let ® be the solution of d® = ®& with ®(z,) = id
for some base point z, € ¥, and let & = F B be the r-Iwasawa splitting,
and let hy o be a simple factor with o, r < || <1 and L € P*. Then

(3.6) h® = hFh™' - hB € A,SU; x A, ,SL,C,
i.e., \Fh™' € A,SU, and hB € AL ,SL,C, where h = hp o h = hy g
with L' = A(a)F(z,a)tA(a)“lL.
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We introduce the following definition of CMC surfaces with bubble-
tons.

Definition 3.2. Let R be a connected Riemann surface with universal
cover R, and let A donote the group of deck transformations on this
cover. And let F be a extended frame defined on R, and let M, be
the monodromy matriz of F for each 7 € A, and let h be a simple
factor dressing matriz. We consider f (resp. f) as the Sym-Bobenko
formula defined from F (resp. RFh1). Then f is the CMC surface
with bubbletons of f if

(3.7) hMh™ € A.SU, .

Remark 3.2. Let f be the CMC surface with bubbletons of f, and let
A be the group of deck transformation. Then

fov':f, forall T€ A .

3.2. Asymptotics of dressed CMC surfaces. In this subsection, we
show that ends of CMC surfaces, which have the Delaunay ends, with
bubbletons converge to Delaunay surfaces.

Theorem 3.3. Let F be the extended frame on a connected Riemann
surface R. And we assume lim, o || F —UFpa ||= 0, where Fpq s the
Delaunay exstended frame defined from Equation (2.14) and U € A,SU,
depends only X. And let fouple be CMC surface with bubbletons Sym-
Bobenko formula (2.3), (2.4) or (2.5) defined using the frame hFh™!
in Equation (3.6), i.e., we assume that Equation (3.7) holds. Then
each end of foupble converges to the Delaunay surface fpelnmit defined
using the frame hU FDelﬁﬁéhnmit: where entries of EDel,Hmit are bounded
functions and independent of 6.

Proof. We show that lim,_q || hFh™! — hU Fpahg}

(3.8)
| REA™ — hU Fpghg)

el limit H

| <|| RFR™' — hUFpgh™! ||
+ || AUFpah™! — hU Fpahgl ||
+ || AU F DelhDel hU F; Delhf)el limit |

el,limit l

By assumption, lim,. | hF h~l — hU FDelh“ |= 0 and lim, I
hU Fogh™t—hU FDelhBel ||= 0. We show that hpe converges to hDel limit-
We expand the Delaunay frame Fpg of Equation (2.14) to the followmg
matrix form:

1 2w(t }\2 ! ; 2 4 42 -1 -1
(3.9) FDel:E< v(t + sA?)C pv' AC + (4stX? + v2)(sA™ 1 + 1N X S) ’

20(t + sA2)(SA+ AT XIS —pr! A(sA + AT XIS + (4stA? + v2)C



where L = /2u(t + sA?)(4stA2 + v2), C = cosh(logp + i — Hx,
S =sinh(logp+i0 — )X, X = /1/4+ a+ st(A — A-1)2, and s,¢ and
a are defined in Equation (2.12). We set
(3.10)
— t

Fpellr=a :( A B) , where A" = A(A-1) and B* = B() 1)

—B* A*
The upper-left entry of Fp, defined from Equation (3.9) has no zero
points at A = a, so A defined in Equation (3.10) has no zero points.
From Equations (3.2) and (3.3), entries of Y’ . Tepresent in terms
of polinomials B/A, B*/A, A*/A and their conjugations. Thus en-
tries of A = hp' o represent in terms of B/A, B*/A, A*/A and their
conjugations. Lemma 3.4 implies that B/A (resp. B*/A, A*/A) con-
verges to bounded function P (resp. Py, P3). Let szel,hmit be Ape
with B/A (resp. B*/A, A*/A) replaced by P (resp. Py, P;). Thus

lim, o || Apel — Apeltimis ||= 0. We note that BDel,hmit is independ of
0. Rpellimit is also in A,SU,, and d)h converges to O)Ape) Jimit, where 0,

denotes the derivative with respect to A. Therefore
lim || foubble — foeLiimit [|= 0 .
z—0
Finally, Lemma 3.5 shows that fii; is a Delaunay surface. ]

Lemma 3.4. Let Fpe be the Delaunay frame defined from Equation
(3.9), and let A, B, A* and B* be the functions defined from FEqua-
tion (3.10). Then B/A (resp. B*/A, A*/A) converges to the following
bounded function P (resp. Py, P3) as z — 0.

—pv'a — (dsta® + v?)(sa™! + ta) X!

(3.11) P=

20(t + sa?) ’
2 ~1y y -1
(3.12) P, — 2u(t + sa’)(sa + ta™1) X
20(t + sa?)
(3.13) p, _ prlalsa+to )X + 4sta® + o
' 5T 20(t + sa?) ’

where X, denotes the value X at \ = o.

Proof. We show only B/A converges to P. Convergences of B* /A and
A*/A are the same as convergence of B/A.
B _ —pv'a+ (4ste® +v®)(sa™" + ta) X1 8=

A 20(t + sa?)
- _ (lo 10—£€a)Xa _
B —pv'a + (4sto® + v?)(sa™! + ta) X1 iz(io::Lz—iQ)ia_{,}

- Y

2v(t + sa?)
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where C, (resp. S, £o) denotes the value C (resp. S, £) at A = a.
Thus the following claims prove that B/A converges to P:

(3.14) lirré(logp +if — £y) X, = —00 .
z—

We consider the derivative of (log p+16 —£,) X, with respect to p. This
function d,(logp + 10 — £o) X, is always non-negative for all p € R*.
Thus (log p + 10 — £,) X, is minus infinite at 2z = pe®® = 0. O

Lemma 3.5. fpeiimit 25 a Delaunay surface.

Proof. We show only R? case. S3 and H? cases are the same arguments
as R® case. We consider the translation of the domain

z—e¥z  with 6 R |,

Because iLDel’limit depends only on p, the following transformations oc-
cur:
U~ (fpettimis + i(RU)A(AU) 1) U —

[exp(i0D)U ™ (fpettimit + i(hU)x(RU) 1)U exp(—if D) — i(85 (exp(i8D))) exp(—iD)]x=1 -
From Section 2.5, U™ ( fpeltimit — 2(RU)A(RU) 1)U is a Delaunay sur-
face, and therefore fiim;; is also a Delaunay surface. O

4. EXAMPLES

In this section, we give the two examples of Theorem 3.3.

4.1. Asymptotics of Delaunay surfaces with bubbletons. We consider
€ to be a Delaunay potential as defined in Equation (2.9), and we fix
Riemann surface R to be C\ {0}. First we introduce the dressing

matrix h, the projection matrix kA and the matrix C € A,SU, as follows
(see also [Ko]):

\/71—612)\2 0
(4.1) h=| V2

A2—g2 ’
0 V 1-a%x2

(4.2) h=g ' + g%,
where
/\2——042
4.3 AN
(4.3) 9= 1753
P 1 |A*  A'AB
YTJAR + o 2B \W '@ 'AB o] 72|B)?

_ 1 ( la|"2|BJ2 —,\a—lAB)
and o =

AP+ 1o 7[BP \-A"'aTAB AP



oT

We define o, A and B as follows:

(4.4)

L_Yi+ta-i
B 2

1 (k?-1
€ RUIR\ {0, £1, +4} with 6 = por ( 1 —f—a) :
s
where k? > max{—16st—4a+1, —4a+1,4} and k € N, and a is defined
in Equation (2.12).
Remark 4.1. « is real (resp. pure imaginary) when the Delaunay sur-
face is of unduloid type (resp. nodoid type).

If we consider the case |o] < r < 1, then the resulting surface by
dressing differs from the original surface by only a rigid motion. There-
fore we assume 0 < r < |a|. We take a as in Equation (4.4), depending
on the weight of a Delaunay surface and the positive integer k, then
we apply the dressing A for ®.

Theorem 4.2. We choose o as in Equation (4.4), then there exist cylin-
der bubbleton and Delaunay bubbleton surfaces in all three space forms.

We prove the asymptotic of Delaunay single-bubbletons using The-
orem 3.3.

Corollary 4.3. Let F be the Delaunay frame defined in Equation (2.14),
and let foupple be the Delaunay bubbleton Sym-Bobenko formula (2.3),
(2.4) or (2.5) defined using the frame hFh™' in Theorem 3.1. Then
each end of fuypble converges to the Delaunay surface fimi; defined using
the frame hFhZ).  where hil. is defined as in Equation (4.5).

limit?
Proof. We show that A~ converges to the following matrix Eﬁr}m, whose
entries are bounded functions independent of 6:
(4.5)
}3_1 B 1 gl/z +g_—l/2‘a'—2lpl2 )\a—lp(glﬂ _ g—1/2)
limit — 1+ ‘al_Q'BIQIPtQ A—la—lp(gl/z _ g—1/2) 91/2i05|~2|P]2 + g—1/2 )
where P is the bounded function defined in Equation (3.11). O

4.2. Asymptotic of trinoids with bubbletons in R*. From [Scl] and
[KSS], we introduce the family of trinoid potentials in R3.

Definition 4.1. The family of trinoid potentials Tipinoia 48 the set of
potentials &g wi we, defined as follows. Let wg, w1, ws € (—00, 1]\ {0},
let ng = 1/24/1 —wy € (—o0,1/2]\ {0} (kK € {0,1,00}) and suppose
the following inequalities are satisfied:

IT0] + 1] + [Neo| < L

|ni’ < inji + Inkl’ {sza k} = {07 1, OO}

(4.6)
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Let ¥ =P\ {0,1,00} and let Epow, we € AsloC ® dz be defined by

0 At
(48) g'wo,wl;woo - woo22—(w0—’w1+woo)2+wo (1 . )\)2 0 dz .

1622(z—1)?

Theorem 4.4. Let R be P!\ {0,1,00}, and let R be its universal
cover, and let A be the group of deck transformations for this cover.
Let &yowywe € Tirinoia (Definition 4.1), and let ® be a solution of
d® = P&y w, we with some initial condition ®(z.,A) € A.SL,C at
z,. Then there ezists an analytic map hgese : {0 < |A] < 1} = GL,C
such that for any r € (0,1), the CMC immersion f defined from the
frame in Equation (4.9) satisfies 7*f = f for all T € A and has three
asymptotically Delaunay ends with weights wg, Wi, Wo-

For later use, we define the Iwasawa splitting of hpse - @ is as follows:
(49) hclose O = Eri : Btri .

The following Lemma by [Scl] implies that we can assume UF as
the dressing Delaunay frame by the dressing matrix C.

Lemma 4.5. Let ® be the solution in Equation (2.10) of d® = P, and
let f be the Sym-Bobenko formula defined from extended frame F in
Fquation (2.14). Let C € A,SLyC, and suppose that C is the boundary
of an analytic map C : {r < |[A| < 1+ €} = Msys for some ¢ € R
such that {det C = 0} C S'. Suppose that C exp(271D)C~! satisfies the
reality condition on S'\ {det C = 0}. Let C® = FB be the r-Iwasawa
splitting of C®, and let f be the Sym-Bobenko formula defined from
extended frame F. Then

(i) There ezists D of the form (2.9), Uy € A,SUy and C, €

Ar 1 GLoC such that C® = Uyexp(logzD)C,.
(ii) Then there exists c € R™ and an isometry T of suy such that

f(2) =T(f(cz)).

;From Theorem 3.6 in [KSS], we define the particular class of trinoid
potentials and have the following closed dressing trinoid surface.

Definition 4.2. We define p,, as follows:

1 1=
4.10 = -

where wy, C (—o00,1]\ {0}. And we define the set
(4.11)  Awpwiwe = {X € {0 < [A] < 1} 5 £ po £ p1 =+ poo € Z5°%,
i e, % + po & py £ poo € Z=° holds for some choice of signs.




Theorem 4.6. Let R,R and A be as in Theorem 4.4 and let Ewo w1 wee
be a trinoid potential. We choose ® and hcose are as in Theorem 4.4.
Let Ay v wee be as in Definition 4.2. Then

(i) For every & € Awpwiwe, the monodromy My s(c) is re-

ducible. Hence there exists a simple factor matrizc h € G,
such that for any r € (0, |a|), the CMC immersion [ satisfies
™f = f forall T € A.

(i) If p = pro = p1 = poo € 3 + Z, then My, o(c) takes values

in {xI}. Hence for every simple factor matriz h € G, for any
r € (0,|al), the CMC immersion f satisfies T*f = f for all
T € A.

We apply Theorem 3.3, then we have the following asymptotics of a
trinoid with bubbletons in R3.

Corollary 4.7. Let hgose and @ be as in Theorem 4.6, and let Fi; be
the extended frame defined in Equation (4.9), and let firipubble be it’s

bubbleton Sym-Bobenko formula defined using the frame hF,;h=} in

tri

Equation (3.5) and Theorem 4.6. Then each end of firi bubble COTIVETgES
to the Delaunay surface.
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