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A symmetry breaking phenomenon and
asymptotic profiles of least energy solutions to
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1 Introduction

This is a joint work with Kazuhiro Kurata (Tokyo Metropolitan University)
and Masataka Shibata (Tokyo Institute of Technology University).
We consider the following nonlinear Schrédinger equation:

—u'(z) + (A = xa(@))u(z) = V(@)1 - xa(@) luf*u(z), z€R, (1)

where A > 1, p > 2 and x4 is the characteristic function of a bounded closed
interval A. This equation with p = 4 appears in the study of the propagation
of electromagnetic waves through a medium consisting of layers of dielectric

materials (see [1], [10]). In this situation, Maxwell’s equations for a dielectric
medium are the following:

V x E=—l?—§-,Vx H——--l-a—D,
c Ot c ot

V.-D=0, V-B=0,

where c is the speed of light in a vacuum. The fields E,D, H and B are
functions of Cartesian co-ordinates (z,y, z,t) € R*.

Assuming that the medium is non-magnetic, i.e. H = B, then the re-
maining constitutive assumption of the medium should determine the dis-
placement field D as a function of the electric field E. We consider the case
where the medium is stratified in planes of homogeneous composition per-
pendicular to the z-axis. In such a medium, we seek solutions of Maxwell’s
equations with an electric field that are monochromatic of frequency w > 0,

propagating along the z-axis and are polarized along the y-axis. A field of
this kind is given by

E(z,y,2,t) = u(z)ey cos(kz — wt),

where 27/k is the wavelength (k > 0), v: R = R and ¢; (j = 1,2,3) are
usual basis vectors in R®.



In circumstances, it is usually assumed that D and E are related by
D(z,y, z,t) = (1 + 47w F(z, -;-u(x)Q))E(x, Y, 2,1).
In particular, the most common form of F is
F(z,s) = fi(z) + f2(x)s for s > 0,

where f; and f, are scalar functions. This form is called the Kerr nonlinearity
and is used in various engineering literatures.

Let n?(x,s) = 1 + 4nF(z, s). Then for a magnetic field
H= 5(11,'(3:) sin(kz — wt)es — ku(z) cos(kz — wt)e,),

the problem leads to a second-order nonlinear problem:

7 2 w? 5 1 2
—u"(z) + k*u(z) = =" (z, §u(:v) Ju(z) for z € R.

Taking particularly k% = A and

2 .
9 _ S inA
n(z,s) = { ——if: V(z)s in R\ 4,

we obtain the equation (1) with p = 4.
The guidance conditions require that all fields decay to zero as |z| — o0

and in each plane y = constant, the total electromagnetic energy per unit
length in z is finite. This is equivalent to

lim wu(z) = lim «/'(z) =0, u(z),v'(r) € L*(R).
|z|—o0 lz| o0
When V(z) = 1 and A = [—d,d] where 2d > 0 is a thickness of the
interval layer, Akhmediev [1] showed that a family of asymmetric solutions
bifurcates from the branch of symmetric ones at a certain value A = A\*,
provided p = 4. Ambrosetti, Arcoya and Gdmez [2] obtained similar results
for any p > 2 and small d > 0. Arcoya, Cingolani and Gdmez [4] showed that
a least energy solution is asymmetric for any d > 0 by using a variational
method. Furthermore, Cingolani and Gdmez [5] obtained similar results for
the higher dimensinal case.
Our first purpose is to consider a symmetry breaking phenomenon for
least energy solutions to (1) with a symmetric multi-layered case. Especially,
we consider the case A = [-] —2,=]] U [, + 2] with [ > 0. In this case,



equation is devided into five parts. So we call this the five layered case.
Throughout this paper, we assume that

(V0) V(z) € C°(R)NL>(R), V(z) > Vy > 0 for all z € R.
Moreover we assume that V(z) is an even function and satisfies the fol-
lowing conditions:

(V1) there exists a limit V := limigj»oo V(z) and zo > 0 such that
V(z) > Vi for all |z| > zo,
_2
(V2) there exists z; € R such that V(z,) := sup, g V(z) and Vo By <
V(ml)—%Eo holds for

12 2
E, = inf R IV + )\|u|2d:r
weHY(R),#0 (JR |ulrdz)?

E,:= inf Jr W'+ (A = x(2))luPdz
u€H! #0 (fR(l - X(IE))IU|Pd:c)%

where x(z) = x-1,1y(z). This condition (V2) means effect of linear medium
is stronger than that of potential V'(z).
Our first theorem is the following.

]

Theorem 1.1. Let A = [-] — 2, -] U[l,l + 2]. Assume (V0), (V1) and
(V2). Then a least energy solution of (1) exists for alll > 0 and there exists

a sufficiently large constant ly > 0 such that a least energy solution of (1) is
asymmetric for all 1 > .

Whether the symmetry breaking phenomenon occurs for any I > 0 or
not is an open problem. It is also a problem that our least energy solution,
regarding as a standing wave of time-dependent nonlinear Schrédinger equa-
tion, is stable or not. When V(z) = 1 and A = [—d, d], stability was studied
in [1], [2] and [8]. However in our situation, it is still an open problem.

Our second purpose is to study asymptotic profiles of least energy solu-
tions for the singularly perturbed problem for small € > 0:

—*u"(2) + (A = xa(@)u(z) = V(2)(1 = xa(2))uP?u(z), z € R (2)

We assume that there exists a limit Vo = lim|;),0 V() and
(V3) V(z) = Vi or there exists Z € R \ A4 such that

V(Z)= sup V(z) > V.
:z:ER\A

When V(z) = Vi, we take £ = d. Suppose V(z) is an even function for
simplicity. Then we obtain the followings.



Theorem 1.2. Suppose A = [—d,d] and V(z) is an even function. Assume
(V0) and (V3). Let u. be a least energy solution of (2) and y. be a mazimum
point of uc(z). Then there ezists a subsequence e; — 0 such that ue; has the
following asymptotic behavior:

(6) If V(d) *E, < V(3)"7 Eo, then

T — Ye, -
sup |ue, () — vy ( Ye; )| = 0 and Yo
e R ¢ €j

- Q.

Here vi(x) is the unique positive solution of

_'Uil(x) + (/\ - X(—oo,—a)(x))vl (x) = V(d)(l - X(-oo,—a)(w))vzl)—l(w)a T € R:
112 _ 2

B i JRIEH O X @)z

W0 (JR(L = X(-c0-a)(®)) ulpdz)?
and « s the posz;ti'ue constantzdetermz'ned uniquely by p and ).
(i) If V(Z)"?Ey < V(d)"PE,, then

— yEJ

)

T
sup Jug (2) - vo(
S

Here vo(z) is the unique positive solution of
—vy(z) + Ava(z) = V(3)vd ' (z), z € R.

Remark 1.3. (i) We can show that 0 < E, < E;. Therefore when V(z) =
Vo, the case (i) occurs.

(1t) We can obtain similar results even if A = UL, I; with disjoint bounded
intervals I; and V (z) is not an even function.

)| = 0 and y; — Z.

Although this kind of concentration phenomena was widely studied (see
(3], [7], [9], [11]), Theorem 1.2 seems new even for the case A = [—d,d].

Especially this problem (2) is closely related to problems with competing
potential functions (see [7], [12]):

—Au(z) + K (z)u(z) = G(@)|ul"2u(z) in R,
where K and G are smooth positive functions. In [12], it was proved that a
least energy solution concentrates at a global minimum point of:
K (pt+2n-np)/2(p=2) ;)
G?/P=2(z)

However in our problem, the corresponding function g(z) is not only
discontinuous at the boundary of A but also g(z) = oo in A. Therefore
results by [12] can not be applied directly to our case. In our case, Theorem

1.2 says that values of V(z) at the boundary of layers and supremum value
of V(z) on R\ A determine the location of concentration.

g(z) =



2 Notations

Suppose A = [-1 — 2,—{]U[l,I +2]. Corresponding to the equation (1), we
define the followings:

hw) = g o 10P + O = xa(@)lufde = - [ V(@)(1 = xa@)) uPda,

E, = inf RIWE+ O _XA(Q’))‘UPUZ&Z.
weH (R),0 (fR V(z)(1 — xa(z))|ulrdz)?

My = {ue HR)\{0}; [ V(@)1 - xa(@)lulPdz = 1},

= Jo WP+ (O = xa(@)luldz w € My, By = imf H(w)

E, is a least energy corresponding to (1). Thus a least energy solution of (1)
means a minimizer of E;. Now we can easily show that for allu € H'(R)\{0},
there exists a unique v > 0 such that yu € M;. Moreover for such a v, we
have

i) = SR WP+ (A~ xa(@))lufdz

3 .H'l R 0!}.
(rV(@)(1- XA(IE))|u[Pd$) u € H'(R)\ {0}

3 Sketch of the proof of Theorem 1.1

In this section, we give a sketch of the proof of Theorem 1.1. First we show
the existence of a least energy solution of (1). To this aim, we need the
following lemmas.

Lemma 3.1. Suppose (V0) and that there ezists a limit Voo = limjz) 100 V().
Then for all | > 0, I;(u) satisfies Palais-Smale condition on a sublevel

5 = {u € H'(R); Ii(u) < %(V;EEO);%}.

We omit the proof of Lemma 3.1, since it is rather standard (cf [4]).

Lemma 3.2. Assume (V1) holds. Then for all 1l > 0,

E = inf Ji(u) < Voo”Eo

u€eM;



Proof. We follw arguements in [4]. Fix [ > 0. Suppose z(z) is a minimizer

of
R |u'|2 + Au|?dz

2
p

inf
weH'(R)#0 (fR VeolulPdz)

and put z¢(z) = z(zr + 6). Then there exists a unique 75 > 0 such that
_2
Yezg € M;. We show that Ji(vs24) < Veo? Ey for large 8. Now we have

IR 1262 + A2gdz — R xa(x)zgde
(R V(@)2hdz — fR V (2)xa(z)2dz)?
_ JRIZO)F + Az(t)%dt — [ 2(8)%dt — [75_, 2(t)%dt
(R V(t — 0)z(t)pdt — [EHF2V (¢ — 0)2(t)2dt — [I7L, V(¢ — 0)2(t)Pdt)

Ji(v829) =

?

3)

— i

where we put z + 6 = ¢.
Since z(t) is a solution of

—2"(t) + Az(t) = Vaoz(t)P™}, t € R,

we have _
z(z&)e\/f_*tl — ¢ >0 (|t| = o0).

Thus for all § > 0, there exists 7 > 0 such that for all |¢t| > r,
(c = 6)e VI < 2(t) < (c+6)e VM.

Therefore for large 6, we have

G+1+2
/9 V(t = 0)2(t)Pdt < c,||V||pee™?V 304,

+

0+1+2

/ 2(1)2dt > coe=2V 304
6+1

where ¢;, ¢z are constants independent on 8. From (3), we have

JR 12 + A|z|*dt - cae=2V30
(JrV(t—0)zrdt - c4e‘p\/§9)%

Ji(ve2) <

_ IRIZPNPa - cse=2V30
RVt —0)zpdt)7 (1= cee?V3%)5
JR 12+ Alzf?dt y 1 — cse~2V3?
URV(E=0)zxd)s 1= Zege?VE0 4 ofeVE)




Since p > 2, for sufficiently large 6, it follows-that

1-— c5e‘2\/§‘9
1- %cse"’\/ge + O(e—p\/§0)

<1

Moreover by (V1), for large 8, V(t —8) > V. Therefore for sufficiently large
@, we have

<&U%P+Md%t
(JR Veo2Pdt)?

_2
Jl(')’ezc’i) = Vo Ep.

O

Once we obtain Lemma 3.1 and 3.2, we can show the existence of a

positive least energy solution u;(z) to (1) by the standard variational method.
The key of the proof of Theorem 1.1 is the following lemma.

Lemma 3.3. Assume (V1) holds. Then for sufficiently large I,
E) < V7 E;.

The proof can be done as in Lemma 3.2. This lemma means that if each
linear mediums are very far, the least energy of five layered case is less than
that of three layered case.

Sketch of the proof of Theorem 1.1: Now we show a contradiction if
we assume u;(z) is symmetric. Let z; be a maximum point of u;(x). Then we
can easily show that z; € R\ A. Without loss of generality, we may assume
that z; > 0. We distinguish into three cases: (i) z; > [+ 2, (ii) 0 < 7, </
and I —x;, 2 00 (I = o0), (li)0<z;<land l—2;, = a >0 (I = oo) for
some q.

Although we omit the details, we have the following energy estimates.
Estimate for case (i):

p—2 —2 ~2

~2 -2 -2
—-—QE—(VOO”EO)F% < liminf Ii(w) < p—2—p—(Voo"E1)F’—’_2 < %;—(VWPEO);%.

Estimate for case (ii):

%(V(ml)"%Eo)# < H{E},ﬁ}f Ii(w)

-2 -2 -2 _2
S %};—(VoopE;\);g_z pz_p(V(.'L'l) PEo);EE.



Estimate for case (iii):

2><p

2 (Voo El)p T < hmmfll(ul) < p—-——%(Voo"El)"L

2p

We emphasize that we use the assumption (V2) to obtain the estimate of the

case (ii). In any case, we obtain a contradiction. This completes the sketch
of the proof of Theorem 1.1.

4 Sketch of the proof of Theorem 1.2

Hereafter we consider the singularly perturbed problem for small € > 0:
2

—e“u(z) + (A — xa(@))u(z) = V()1 — xalz))|ulfu(z), z€e R. (4)

Suppose A = [—d,d] and V(z) is an even function for simplicity.

In a similar way as in Theorem 1.1, we can obtain a positive least energy
solution u.(z) of (4) under the assumptions (VO0) and (V3). We denote by ¥,
a maximum point of u.(z). Without loss of generality, we may assume that
ye > 0. Putting u.(z) = ve(=He), we get the following equation:

—v¢(z) + (A= xa(ez+ye))ve(z) = V(ex +ye) (1 - xalez +y)vf 7 (z), z € R.

Then ve(z) is uniformly bounded in H*(R). Thus we may assume that
ve(z) = v(z) in HI(R) for some v(z) € H'(R). Then v(z) = 0 because
ve(0) > (HVH y#=%. The following proposition is most important.

Proposition 4.1. (i) Assume (V8) and V(d)_%Ea < V(:E)”%Eg. Then
y{—d- — a > 0 for some a and v(x) satisfies

—0"(2) + (A = X(=00,-a) (@))v(2) = V(d)(1 = X(=00,-a))?" (2}, z € R. (5)

(11) Assume (V38) and V(i:)'%Eo < V(d)—%Ea. Then ye — Z and v(x)
satisfies
—0"(z) + M(z) = V()" (z), z € R. (6)

This proposition says when V(d)_%EQ < V(i)“%Eo, the maximum point
Ye goes to the boundary of layer d.

Proof. We consider the case (i). First we show that y{—d - a >0 I
=2 — oo, then v(z) satisfies (6). In fact, for all ¢ € C§°(R), we have

/R Ve +(A—xa(ex+ye) ) vepdr = fRV(6x+ye)(1—XA(650+ye))v£"190d$- (7)



Then

d=yc

/R Xa(€x + ye)vepdr = /_ :_d vepdz — 0 (€ — 0).

Moreover since ve¢(z) is a least energy solution, we have y. — Z. Then we
have

/R v'¢' + Avpdr = /R V(z)vP tpds,
that is, v(z) satisfies (6). Thus we have
liminf( [ V(er + ye)(1 — xa(ex + ye))v”alac)a;_21 > V(:E)"%EO.
e—0 R €
On the other hand, since v(z) is the least energy solution, we have
—2
(Jou View +3)(1 = xalex +y))etda) 5

<« RIWE+ (= xaler+yd)lulde
- (JRV(ez +ye)(1 = xalex + ye))|ulPdz)

Choosing a suitable test function, we obtain

for all ue H'(R) \ {0}.

3 o

lim inf(/R V(ex + ye)(1 — xalez + ye))vfcl:z:)?;_2 < V(d)”%Ea,

e—0

This is a contradiction to the assumption. Therefore yﬁfi — «a. Tending
¢ = 0in (7), we have

/R Vo' + (A — X(—oo,—a) (T))vpdz = /RV(d)(l — X(=o00,—a)(T))vPtpdz,
that is, v(z) satisfies (5).
In the similar arguement as (i), claims of (ii) and (iii) follow. O

Next we consider the equation:
—-UH(IE) + ()‘ - X(—oo,—a)(x))u(x) = (1 - X(—oo,—a)(x))]u‘p_Qu(x)a z € R, (8)

We can obtain a positive solution of (8) by the standard variational
method. Moreover by the phase plane analysis, we can determine « uniquely
and obtain the uniqueness of positive solution v;(z) to (8).

Finally, we show that v.(z) has only one peak for small € > 0.

Proposition 4.2. Assume (V38). Then there exists g > 0 such that for all
0 < € < €y, ve(T) has only one peak at the origin.



10

Sketch of the proof of Proposition=4.2. We consider the case V(d)—%Ea <
V(%)% Ey.

Notice that vc(z) has a local maximum point at the origin. Assume
there exists z. # 0 such that 2z, is a local maximum point of v.(x). Since
ve(z) = vi(z) in CL,(R) and v;(z) has a local maximum point only at the
origin, it follows |2z — oo (¢ — 0). Moreover, we can show that ez, — 0.
Then we obtain the following energy estimate:

. —2 3
llirnglfPQP /RV(e:c + ye)(1 — xa(ex + ye))vPdr > EIa(vl) > 0,

where I,(v;) is the energy corresponding to (8).
On the other hand, since v¢(z) is the least energy solution, we have

lim inf p—2
€—0 2p

Jo V(e + (1 = xales + y)o2dz < L(w)

This is a contradiction. Therefore v.(z) has a unique local maximum point
at the origin. O

By Proposition 4.2, we can show that v(z) converges to v(z) strongly in
H'(R) and uniformly in C°(R) by Sobolev’s Imbedding Theorem. Therefore

the claims of Theorem 1.2 follow. This completes the sketch of the proof of
Theorem 1.2.
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