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Abstract

We previously developed an in vivo site-specific transfection method using a suction device

in mice; namely, a tissue suction-mediated transfection method (tissue suction method).

The aim of this study was to apply the tissue suction method for cardiac gene transfer.

Naked plasmid DNA (pDNA) was intravenously injected in mice, followed by direct suction

on the beating heart by using a suction device made of polydimethylsiloxane. We first exam-

ined the effects of suction conditions on transgene expression and toxicity. Subsequently,

we analyzed transgene-expressing cells and the transfected region of the heart. We found

that heart suction induced transgene expression, and that −75 kPa and −90 kPa of suction

achieved high transgene expression. In addition, the inner diameter of the suction device

was correlated with transgene expression, but the pressure hold time did not change trans-

gene expression. Although the tissue suction method at −75 kPa induced a transient

increase in the serum cardiac toxicity markers at 6 h after transfection, these markers

returned to normal at 24 h. The cardiac damage was also analyzed through the measure-

ment of hypertrophic gene expression, but no significant differences were found. In addition,

the cardiac function monitored by echocardiography remained normal at 11 days after trans-

fection. Immunohistochemical analysis revealed that CD31-positive endothelial cells co-

expressed the ZsGreen1-N1 reporter gene. In conclusion, the tissue suction method can

achieve an efficient and safe gene transfer to the beating heart in mice.

Introduction

Although there have been many efforts to develop pharmacological drugs and surgical devices

to combat heart failure, it remains the major cause of death and hospitalization [1]. It is

reported that more than 23 million people in the world have heart failure-related diseases. In

the past two decades, our knowledge of the molecular pathways associated with heart failure

have increased, indicating potential targets for the cure of cardiac disorders [2–4]. As it is diffi-

cult to control these signaling pathways by using pharmacological reagents such as small
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molecule inhibitors, gene therapy has emerged as a possible strategy against heart failure [3, 4].

However, many issues need to be resolved, including transfection efficiency, tissue specificity,

toxicity, and immune activity. For example, gene transfer techniques using viral vectors can

achieve high transfection efficiency, but often result in off-target gene expression in unin-

tended tissues, such as the liver [5]. In contrast, non-viral vectors such as plasmid DNA

(pDNA) have limited immunogenicity, but achieve low transfection efficiency [3, 4]. These

problems may affect the clinical outcomes and preclinical results. Thus, organ-specific and

safe gene delivery systems are needed for both clinical and experimental use.

Previously, we developed a tissue suction-mediated transfection method (tissue suction

method) [6–8]. This is a simple gene delivery method: naked nucleic acids, such as pDNA and

siRNA, are injected intravenously, followed by the application of suction pressure on the target

organ. Previously, we have demonstrated that this tissue suction method of gene transfer can

be applied for transfection of the liver, kidney, heart, and spleen of mice [6]. Moreover, this

transfection technique did not cause severe damage when applied to the liver [6, 7] and kidney

[8] of mice. Hence, a cardiac suction method should offer a promising approach for the pro-

gression of gene functional analysis and clinical gene therapies. The parameters related to the

transfection efficiency and toxicity should be optimized to establish a reproducible transfection

method. In addition, it is essential to understand the transfected cell types to select suitable

genes for the treatment of cardiac dysfunction. However, there have been few studies of the

effect of the physical stimuli by suction on the heart.

In the present study, we examined the effect of suction conditions on cardiac transfection

using a computer-regulated tissue suction device [7, 8]. Then, the possible cardiac damage

induced by suction was investigated through the measurement of hypertrophic gene expres-

sion, serum cardiac toxicity markers, and echocardiographic parameters. Moreover, we identi-

fied the transfected cell types by using immunostaining.

Materials and methods

Fabrication of tissue suction device

Three types of suction devices were fabricated, as reported previously [6] (Table 1). Briefly,

precured polydimethylsiloxane (10:1) solution was incubated in the molds at 75˚C for 12 h.

Thereafter, the cured polydimethylsiloxane was formed into individual devices. Individual

devices were linked to a silicone tube with an outer diameter of 2 mm. The tube was used to

supply the negative pressure. The device height was 3 mm. The inner and outer diameters of

the device were designed as indicated in Table 1. Unless otherwise noted, device I was used in

the experiments.

Suction pressure-controlled computer system

The suction pressure-controlled computer system was constructed as described previously [7].

Briefly, a vacuum pump generated negative pressure, controlled by a PC with LabVIEW soft-

ware (National Instrument, Austin, TX) via an electropneumatic regulator (ITV0090; SMC,

Table 1. Suction devices.

Device type Inner diameter Outer diameter

I 1.5 mm 3 mm

II 2 mm 3 mm

III 3 mm 5 mm

https://doi.org/10.1371/journal.pone.0228203.t001
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Tokyo, Japan). The actual suction pressure was detected by using a pressure sensor (Sensez,

Tokyo, Japan), and saved in the PC.

pDNA and mice

The pCMV-Luciferase (pCMV-Luc) used was as constructed previously [9]. pZsGreen1-N1

was purchased from Clontech (Takara Bio, Shiga, Japan). The Escherichia coli strain DH5a was

used for amplifying pDNA. The quality of pDNA was examined by measuring the ratio of

absorbance at 280 nm to that at 260 nm. Five-week-old female ICR mice were purchased from

Japan SLC (Shizuoka, Japan). All animal experiments were conducted in accordance with the

Guide for the Care and Use of Laboratory Animals, as adopted and promulgated by the United

States National Institutes of Health (Bethesda, MD). The study protocol permission numbers

2013–41, 2014–32, and 2014–56 were approved by the Animal Research Committee, Kyoto

University, Japan, and 1812251497–2 was approved by the Institutional Animal Care and Use

Committee of Nagasaki University, Japan.

In vivo transfection by the tissue suction method

The mice were anesthetized with isoflurane or three types of mixed anesthetic agents (0.75 mg/

kg medetomidine, 4.0 mg/kg midazolam, and 5.0 mg/kg butorphanol) and their respiration

was maintained artificially at 1 cm3 and 100 rpm by using a ventilator (SN-480-7; Sinano-Sei-

sakusho, Tokyo, Japan) after tracheal intubation. When anesthesia and respiration were con-

trolled, the left chest costal between the third rib and fourth rib was cut to give minimal

exposure of the left ventricle. Mice were intravenously injected with 200 μL of saline contain-

ing 100 μg pDNA, and the ventricle was suctioned immediately by a pressure-controlled suc-

tion device. At the end of the surgery, the chest was closed by using suture threads. Sham-

operated mice underwent the same procedure, without suction. At the end of studies, all mice

were sacrificed by cervical dislocation, or blood removal from vena cava under anesthesia.

Luciferase assay

Luciferase assays was performed as previously described [9]. The mice heart and the other

organs were dissected 6 h after transfection. The organs were stored at −80˚C before each

assay was performed. The luciferase activities of the organ lysate were determined by using a

PicaGene Luminescent Kit (Toyo Ink, Tokyo, Japan) and luminometer (Lumat LB 9507;

EG&G Berthold, Bad Wildbad, Germany). Each luciferase activity measurement was normal-

ized to protein content, which was determined by using a Protein Quantification Kit (Dojindo

Molecular Technologies, Tokyo, Japan).

Quantitative real-time RT-PCR

Hypertrophic genes, α-myosin heavy chain (MyHC), β-MyHC, SERCA, atrial natriuretic factor
(ANF), and B-type natriuretic peptide (BNP) were measured by using real-time RT-PCR. At 48

h after transfection, the heart was dissected and minced by scissors to pieces smaller than 5

mm. Total mRNA was extracted from the minced organ by using RNeasy Fibrous Tissue Mini

Kit (74704; Qiagen, Hilden, Germany). Thereafter, reverse transcription of mRNA and real-

time PCR using SYBR Premix Ex Taq (RR039A; Takara Bio) was performed as described pre-

viously [10]. The sequences of primers used in the present study are shown in Table 2.

Tissue suction-mediated gene transfer to the beating heart in mice
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Evaluation of creatine kinase-muscle/brain (CK-MB) and troponin T2

(TNNT2)

Six or twenty-hour after transfection, the mice were anesthetized, and blood samples were col-

lected from the abdominal vena cava of each mouse. The collected samples were left overnight

at 4˚C, and centrifuged at 3,000×g for 15 min at 4˚C to obtain the serum from the supernatant.

Separated serum was stored at −80˚C before the assays were performed. Creatine kinase-mus-

cle/brain (CK-MB) and troponin T2 (TNNT2) levels in the serum were determined by using a

commercial enzyme-linked immunosorbent assay kit (Wuhan USCN Business, Houston,

Texas, USA) in accordance with the recommended procedures.

Hematoxylin and eosin staining

Twenty four-hour after transfection, mice were sacrificed, and the hearts were removed. Col-

lected mouse tissues were fixed in 4% phosphate-buffered paraformaldehyde and embedded in

paraffin. The samples were sliced into 5 μm sections, the paraffin was removed by application

in xylene, and the slices were rehydrated in graded alcohol series. The sections were then

stained with hematoxylin and eosin (HE). The histology of the heart sections was examined by

using a microscope (BZ-X700; Keyence, Osaka, Japan).

Echocardiographic analysis

Echocardiography was performed at 11 days after transfection as previously described [11]

using a Toshiba PowerVision 8000 (Toshiba, Tokyo, Japan) equipped with a 12 MHz imaging

transducer.

Immunohistochemistry

The heart was dissected at 24 h after transfection of pZsGreen1-N1. The frozen sections of the

heart were prepared and fixed with acetone for 10 min. Non-specific binding to the sections

was blocked by incubation in 5% normal goat serum (G9023, Sigma Aldrich, St. Louis, Mis-

souri, USA) for 30 min at room temperature. Thereafter, the samples were incubated with pri-

mary antibodies against CD31 (1:100 dilution, #102401; BioLegend, San Diego, CA, USA) and

α-sarcomeric actin (1:100 dilution, ab68167; Abcam, Boston, MA, USA) overnight at 4˚C. The

samples were then washed with PBS, and reacted with the following secondary antibodies for 1

h at room temperature (1–30˚C): Alexa Fluor 647-conjugated antibody against rat IgG (1:200

dilution, 112-605-167; Jackson Immuno Research Laboratories, West Grove, PA); Alexa Fluor

555-conjugated antibody against rabbit IgG (1:500 dilution, #4413; Cell Signaling Technology,

Danvers, MA). The stained sections were observed by using confocal laser scanning micros-

copy (CLSM).

Table 2. Primer sequences used for quantitative real time RT PCR.

Name Forward (5’-3’) Reverse

αMyHC CCAGTACTTTGCCAGCATTGCAGC ACACCTATGAAGTACTGGCGCGGC

βMyHC AAGTGAAGAGCCTCCAGAGTCTGC GGGCTTCACGGGCACCCTTAGAGC

Serca GCATTGCAGTCTGGATCATCAACA GCCACCATGAACTGGGTCATT

BNP AAGCTGCTGGAGCTGATAAGA GTTACAGCCCAAACGACTGAC

ANF ACGCCAGCATGGGCTCCTTCTCC GCTGTTATCTTCGGTACCGGAAG

GAPDH TCTCCTGCGACTTCAACA GCTGTAGCCGTATTCATTGT

https://doi.org/10.1371/journal.pone.0228203.t002
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Statistical analysis

Statistical significance was determined by analysis of variance (ANOVA) for multiple compari-

sons among different groups, followed by the Tukey-Kramer test. For the comparisons

between two independent groups, unpaired t-tests were used. All P values were two-tailed, and

values of P< 0.05 were considered to indicate statistical significance.

Results

Evaluation of the effects of suction conditions on transgene expression

Effects of varying suction pressure. Previously, we developed a suction pressure control

system [7, 8]. Our system can regulate the minimum magnitude of the suction pressure and

waveform, which comprises pressure supply time, pressure hold time, and pressure release

time. First, the pressure supply time, hold time, and release time were set to 1 s, 3 s, and 1 s,

respectively, and various negative pressures were applied to the heart. Although there was no

significant difference, when the tissue suction was set to −75 kPa and −90 kPa, higher trans-

gene expression tended to be induced in the heart (Fig 1A). Unless otherwise noted, the suc-

tion pressure was set to −75 kPa in the subsequent studies.

Effects of suction device size. Next, the transfection was performed by using three differ-

ent sizes of the device (Table 1). In this experiment, pressure supply time, hold time, and

release time were set to 1 s, 3 s, and 1 s, respectively, and the minimum pressure was set to −75

kPa. Tissue suction using device III induced the highest transgene expression (Fig 1B). How-

ever, the larger sized suction device would have a greater impact on the near organs. Since we

would like to focus on the direct effects on the heart function, we used device I having mini-

mum diameter in the subsequent experiments.

Effects of pressure hold time. To minimize the duration of suction, the effect of pressure

hold time on the transgene expression was investigated (Fig 1C). Pressure hold time was varied

from 0 s to 3 s when the negative pressure condition was set to −75 kPa and the pressure supply

time and release time were set to 1 s. There were no significant differences in the transgene

expression when 0 s, 1 s, and 3 s were used for the pressure hold time (Fig 1C). In the following

studies, pressure hold time was set to 1 s to obtain reproducible results.

Evaluation of the possibility of cardiac injury induced by tissue suction

Changes in hypertrophic gene expression and serum cardiac toxicity markers. Acute

cardiac damage, such as myocardial infarction, has been reported to affect hypertrophic gene

expression [12]. For this reason, the hypertrophic gene expression levels of αMyHC, βMyHC,

Serca, ANF, and BNP were analyzed 48 h after tissue suction (Fig 2). In this experiment, the

pressure degree was varied from set to −15, −30 and −75 kPa. As a result, these hypertrophic

genes were hardly affected by tissue suction (Fig 2). Consequently, the two types of serum car-

diac toxicity markers, CK-MB and TNNT2, were evaluated followed by a suction set to −75

kPa. Although both serum cardiac injury markers significantly elevated compared to sham

group at 6 h after transfection, both reversed normal levels at 24 h (Fig 3).

Histological analysis of tissue sections. Tissue sections of the suctioned heart were

stained with HE to reveal histological abnormalities. Suction at −75 kPa did not induce histo-

logical abnormalities at 24 h after transfection (Fig 4).

Electrocardiographic analysis. Severe cardiac damage, such as myocardial infarction, has

been reported to impair cardiac function after 1 week [13]. For this reason, we performed

echocardiography at 11 days after transfection to evaluate the effect of tissue suction on cardiac

Tissue suction-mediated gene transfer to the beating heart in mice
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function. There were no significant differences between the groups transfected by cardiac suc-

tion and the sham-operated group (Table 3).

Distribution of transgene expression

Selective gene transfer to the heart. To evaluate the organ selectivity of the transgene

expression, luciferase expression in the heart, right and left lungs, liver, spleen, and kidneys

were analyzed at 6 h after transfection. As shown in Fig 5A, the transgene expression was

mainly observed in the suctioned heart and partially at the left lung, up to 23% compared with

the heart.

Identification of transgene-expressing cells. To clarify the transfected cell types, immu-

nohistochemical analysis was performed 24 h after transfection of the ZsGreen1-N1 gene. Car-

diomyocytes and vascular endothelial cells were stained with an anti α-sarcomeric actin

antibody and an anti-CD31 antibody, respectively. ZsGreen1-N1 expression was mainly co-

localized with CD31-positive endothelial cells (Fig 5B).

Discussion

The body of knowledge on cardiac regeneration and healing pathways has rapidly evolved

recently, and reliable methods are needed to verify the therapeutic targets in experimental and

clinical studies. Several cardiac gene transfer techniques have been developed. They are

broadly divided into viral and non-viral vector-based methods [3]. Viral vectors such as

adeno-associated virus (AAV) is often used to transduce therapeutic gene to the heart because

of the long-term expression [3, 4]. AAV has a heart selectivity for gene transfection after intra-

venous administration [5, 14]. Naked non-viral vectors are relatively safe in terms of the

immune responses; however, they generally result in poor transgene expression. To overcome

these problems, many innovative approaches have been developed. The ultrasound-mediated

transfection method has been applied to improve the transfection efficiency of non-viral

Fig 1. The effect of pressure conditions on transgene expression in the heart. a, Luciferase expression in the heart induced by various degrees of suction pressure. The

heart was suctioned at −30, −45, −60, −75, and −85 kPa following intravenous injection of pCMV-Luc solution (100 μg/200 μL/head). b, Luciferase expression in the

heart induced by tissue suction with devices with different inner diameters. Suction devices I, II, and III were used for cardiac transfection. c, Luciferase expression in

the heart was induced by tissue suction with various pressure hold times. The heart was suctioned at −75 kPa with pressure holding times of 0, 1, and 3 s. Each item

represents the pressure supply-hold-release time. a–c, The transgene expression was determined by luciferase assay at 6 h after transfection. Open columns and open

dots represent the mean and individual data, respectively (n = 3).

https://doi.org/10.1371/journal.pone.0228203.g001
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vectors for the treatment of heart failure in the rodent model [15, 16]. Therefore, we hypothe-

sized that heart selective and enhanced gene expression by naked pDNA would be achieved by

the application of the tissue suction method to the beating heart of mice. The simple procedure

of the tissue suction method may have an advantage in clinical and preclinical studies. In the

present study, we applied the tissue suction method to cardiac gene delivery and this is the first

report to clarify the characteristics of the tissue suction-mediated gene transfer in the beating

heart in mice. The optimal transgene expression was obtained by using a pressure controlled-

suction device set at −75 kPa and this application of optimal suction to the beating heart did

not induce severe cardiac injury. Transgene expression induced by tissue suction method

reached approximately 10 pg/mg protein in the mouse heart. Fujii H, et al, demonstrated that

4 pg /mg protein of stem cell growth factor protein improved cardiac function in the rodent

model [15, 16]. Although the kinetics of transfected protein should be further investigated,

transfection efficiency of tissue suction method would be applicable for the treatment of heart

disease. We also found that the tissue suction method could target the endothelial cells of the

cardiac capillaries.

Fig 2. The effect of tissue suction on the cardiac function-related gene expressions. The expression of cardiac function-related genes of the heart after tissue suction.

The hearts were dissected at 48 h after transfection. α-MyHC, β-MyHC, SERCA, ANF, and BNP expression in whole heart tissue was determined by real-time PCR. Open

columns and open dots represent the mean and individual data, respectively (n = 3–4). ns: not significant.

https://doi.org/10.1371/journal.pone.0228203.g002
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The expression of cardiac hypertrophy-related genes, α-MyHC, β-MyHC, SERCA, ANF,

and BNP, was not affected by the characteristics of the tissue suction method (Fig 2). We also

evaluated the serum levels of two cardiac toxicity markers, TNNT2 and CK-MB. CK-MB is a

cardiac specific enzyme present in the myocardial cytoplasm, and TNNT2 is also a cardiac-

specific protein mostly binding to the myofibrils and partially existing in the cytoplasm freely

[17]. These protein markers are released from the injured myocardium and can be used as

indicators of myocardial tissue damage. Although heart suction induced levels of circulating

CK-MB and TNNT2 levels at 6 h, the levels were restored to normal at 24 h (Fig 3). Moreover,

HE sections and echocardiography revealed that the tissue suction method did not induce

severe damage in the heart in terms of cardiac morphology and functions (Fig 4, Table 3).

Ultrasound-mediated gene transfer to the heart that can form in pores in the cellular mem-

branes also caused a troponin I transient peak [16]. Although the mechanism of the tissue suc-

tion method has not been fully clarified, the holes are expected to be transiently formed on the

cell membranes because the tissue suction method can transfer pDNA into the suctioned site.

Therefore, the transient peaks of the component myocardial proteins in the serum may reflect

the holes in the membranes of cardiomyocytes induced by physical stimuli. In summary, the

present study demonstrate that tissue suction method did not induce severe dysfunction in the

mouse heart. Unfortunately, we did not take electro-cardiogram. The possibility of arrhyth-

mias induced by tissue suction method should be investigated in the future, especially in the

context of application on the clinical settings.

To identify the transfected cell types, we performed immunohistochemical analysis after

the transfection of ZsGreen1-N1. In the heart transfected by the suction method, transgene

expression was observed in the CD31-positive endothelial cells but not in cardiomyocytes (Fig

5B); however, when the suction method was applied to the kidney, transgene expression was

observed in the pericytes but not in the endothelial cells of the kidney [10]. The penetration of

macromolecules is prevented by a vascular wall composed of tight junctions, adhesion

Fig 3. The effect of tissue suction on the serum cardiac toxicity markers. The serum levels of cardiac toxicity markers at 6 and 24 h after pDNA transfection. Serum

TNNT2 and CK-MB levels of sham group were measured at 24 h post operation. Serum TNNT2 and CK-MB were determined by using commercially available ELISA

kits. Open columns and open dots represent the mean and individual data, respectively (n = 3–4). ��p<0.01 compared with all other groups.

https://doi.org/10.1371/journal.pone.0228203.g003
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junctions, and basement membranes [18, 19]. One of the major differences between the kid-

neys and the heart lies in the endothelial structure. The microvascular endothelium of the kid-

neys, peritubular capillaries, and glomerular capillaries is fenestrated and transports materials

[20]. In contrast, continuous capillaries are found in the heart endothelium [21]. Moreover, it

was reported that hydrodynamic injection enlarged endothelium fenestrate, which resulted in

gene transfer to hepatocytes [22–24]. Consequently, pDNA may pass through the fenestration

in the liver and kidneys, but could not penetrate the blood vessels in the heart because of the

continuous nature of the endothelial cells. However, there is little information about the effect

of tissue suction on pDNA distribution. A hypothesis about the conditions of a cell membrane

and the distribution of pDNA is needed for future analysis.

Fig 4. Histological assessment of HE stained cardiac sections. The hearts were dissected at 24 h after transfection. Five micrometer thick sections were stained with

HE. a, Normal mouse heart. b, Sham operated mouse heart. c, Suctioned heart (−75 kPa). Scale bars = 100 μm.

https://doi.org/10.1371/journal.pone.0228203.g004
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The present study focused on the characterization of the tissue suction method. Two-

dimensional analysis revealed that the tissue suction method could target endothelial cells in

the heart tissue (Fig 5B). Deng et al. have demonstrated that intercellular-adhesion-molecule-

1-targeted microbubbles had successfully delivered the angiopoetin-1 gene to inflammatory

endothelial cells and improved cardiac function of mice with myocardial infarction [25]. More

recently, Hao et al. reported that CXCR7, which is a chemokine receptor for CXCL12, was a

key regulator for angiogenesis in the endothelium [26]. The information about transfected

cells may be of value for future studies of the relationship between the therapeutic gene expres-

sion and their pharmacological effects.

For safe gene therapy, expression of a therapeutic gene should be localized in the target

organ. We previously reported that kidney or liver suction achieved suction site-specific trans-

gene expression [6, 8]. However, in the case of cardiac transfection, the tissue suction method

induced the transgene expression not only in the heart, but also partially in the left lung (Fig

5A). In general, the availability of the naked pDNA to lung cells is very low after intravenous

administration [6]. Consistent with the past observations, transgene expression was not

observed in the right lung. When these were taken into consideration, we speculated that tissue

deformation induced by the device application resulted in gene expression in the left lung. We

demonstrated that the larger device was more effective for gene transfection (Fig 1B) because

of its large suctioned area. It would there be important to optimize the size of the suction

device for each animal to obtain selective and efficient gene transfer to the heart.

Functional RNA molecules, such as micro RNA, small interfering RNA (siRNA), and anti-

sense oligonucleotides, are a promising research tool in functional genomics, and are consid-

ered as therapeutic pharmaceuticals [27, 28]. In the present study, we showed that transgene

expression might be occurred in the endothelial cells of the mouse heart (Fig 5). We have pre-

viously reported a tissue suction method that could deliver siRNA to the mouse liver [6].

Although further studies about the transfection efficiency and the ratio and types of the deliv-

ered cells is needed, the tissue suction method may be useful for the analysis of a gene function

using oligonucleotides in the mouse heart and may be adaptable to the clinical therapy of heart

diseases by oligonucleotide-based drugs.

In the present study, we have investigated the transgene expression only at 6 hr after trans-

fection because the aim of this study is to evaluate the effect of transfection parameter on a

transfection efficiency and cardiac functions. In a translational research, the kinetics of a trans-

fected protein should be analyzed. We and other group have previously reported that pDNA

Table 3. Echocardiographic analysis at 11 days after transfection.

Sham (n = 3) Suction (n = 3) p value

LVDd (mm) 2.1 ± 0.1 2.0 ± 0.1 0.27

LVDs (mm) 0.9 ± 0.1 0.8 ± 0.1 0.57

FS (%) 54 ± 5.5 59 ± 2.5 0.46

EF (%) 90 ± 3.8 93 ± 1.3 0.50

IVS (mm) 0.8 ± 0.03 0.8 ± 0.00 0.42

PW (mm) 0.8 ± 0.06 0.9 ± 0.06 0.29

HR (/min) 680 ± 18 684 ± 12 0.84

Values are presented as the mean ± SEM (n = 3). LVDd, left ventricular end diastolic dimension; LVDs, left

ventricular end systolic dimension; FS, fractional shortening; EF, ejection fraction; IVS, interventricular septal

thickness; PW, posterior wall thickness; HR, heart rate. Unpaired t-tests were used for the comparisons between two

groups.

https://doi.org/10.1371/journal.pone.0228203.t003
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Fig 5. Distribution of transgene expression and identification of transfected cell types. a, Selective gene transfer to the heart by the

tissue suction method. The heart was suctioned at −75 kPa. At 6 h after transfection, various tissues (the heart, left and right lungs,

liver, spleen, and kidneys) were collected. Transgene expression in each organ was determined by luciferase assay and normalized to

the expression of cardiac tissue. Open columns and open dots represent the mean and individual data, respectively (n = 3).
���p<0.001 compared with all other groups. b, Analysis of transgene-expressing cell types by immunostaining of endothelial cells and

cardiac muscle cell markers. The pZsGreen1-N1 was transfected to the heart by the tissue suction method. The heart was suctioned at

−75 kPa and then collected at 24 h after transfection. Finally, 10 μm-thick frozen sections were stained with anti-CD31 and α-

sarcomeric actin antibodies and DAPI. The stained sections were observed by using CLSM. Magnification ×40. Blue: nucleus; yellow:

ZsGreen1-N; cyan: α-sarcomeric actin-positive cardiac muscle cells; magenta: CD31-positive endothelial cells. Scale bars = 50 μm.

White arrows indicate ZsGreen1-expressing cells.

https://doi.org/10.1371/journal.pone.0228203.g005
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removed CG motif (CpG free pDNA) could be used for sustained gene expression [10, 29–30].

We would like to evaluate the kinetics of a therapeutic protein in the future study using CpG

free pDNA. In conclusion, the present study showed the characteristics of transfection by the

tissue suction method to the beating heart of the mouse. We demonstrated that tissue suction

by the pressure-controlled device was a safe, reproducible, and feasible transfection technique.

The polydimethylsiloxane (PDMS)-based suction device used in the present study can be

mounted on a microscopy [31]. Recently, minimally invasive thoracic surgery techniques have

been developed [32]. Although there are several obstacles to be overcome, such as basic studies

on animal models and bridging studies from animals to humans, the tissue suction method

may provide an option for the treatment of heart failure in clinical settings in combination

with novel surgery techniques.
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