
Observation of Electron Neutrino Appearance in a Muon Neutrino Beam

K. Abe,46 J. Adam,32 H. Aihara,45,23 T. Akiri,9 C. Andreopoulos,44 S. Aoki,24 A. Ariga,2 T. Ariga,2 S. Assylbekov,8

D. Autiero,29 M. Barbi,39 G. J. Barker,54 G. Barr,35 M. Bass,8 M. Batkiewicz,13 F. Bay,11 S. W. Bentham,26 V. Berardi,18

B. E. Berger,8 S. Berkman,4 I. Bertram,26 S. Bhadra,58 F. d. M. Blaszczyk,28 A. Blondel,12 C. Bojechko,51 S. Bordoni,15

S. B. Boyd,54 D. Brailsford,17 A. Bravar,12 C. Bronner,25 N. Buchanan,8 R. G. Calland,27 J. Caravaca Rodríguez,15

S. L. Cartwright,42 R. Castillo,15 M. G. Catanesi,18 A. Cervera,16 D. Cherdack,8 G. Christodoulou,27 A. Clifton,8

J. Coleman,27 S. J. Coleman,7 G. Collazuol,20 K. Connolly,55 L. Cremonesi,38 A. Dabrowska,13 I. Danko,37 R. Das,8

S. Davis,55 P. de Perio,49 G. De Rosa,19 T. Dealtry,44,35 S. R. Dennis,54,44 C. Densham,44 F. Di Lodovico,38 S. Di Luise,11

O. Drapier,10 T. Duboyski,38 K. Duffy,35 F. Dufour,12 J. Dumarchez,36 S. Dytman,37 M. Dziewiecki,53 S. Emery,6

A. Ereditato,2 L. Escudero,16 A. J. Finch,26 L. Floetotto,41 M. Friend,14,† Y. Fujii,14,† Y. Fukuda,30 A. P. Furmanski,54

V. Galymov,6 A. Gaudin,51 S. Giffin,39 C. Giganti,36 K. Gilje,32 D. Goeldi,2 T. Golan,57 J. J. Gomez-Cadenas,16 M. Gonin,10

N. Grant,26 D. Gudin,22 D. R. Hadley,54 A. Haesler,12 M. D. Haigh,54 P. Hamilton,17 D. Hansen,37 T. Hara,24 M. Hartz,23,50

T. Hasegawa,14,† N. C. Hastings,39 Y. Hayato,46 C. Hearty,4,‡ R. L. Helmer,50 M. Hierholzer,2 J. Hignight,32 A. Hillairet,51

A. Himmel,9 T. Hiraki,25 S. Hirota,25 J. Holeczek,43 S. Horikawa,11 K. Huang,25 A. K. Ichikawa,25 K. Ieki,25 M. Ieva,15

M. Ikeda,46 J. Imber,32 J. Insler,28 T. J. Irvine,47 T. Ishida,14,† T. Ishii,14,† S. J. Ives,17 K. Iyogi,46 A. Izmaylov,16,22 A. Jacob,35

B. Jamieson,56 R. A. Johnson,7 J. H. Jo,32 P. Jonsson,17 C. K. Jung,32,§ A. C. Kaboth,17 T. Kajita,47,§ H. Kakuno,48

J. Kameda,46 Y. Kanazawa,45 D. Karlen,51,50 I. Karpikov,22 E. Kearns,3,23,§ M. Khabibullin,22 A. Khotjantsev,22

D. Kielczewska,52 T. Kikawa,25 A. Kilinski,31 J. Kim,4 J. Kisiel,43 P. Kitching,1 T. Kobayashi,14,† L. Koch,41 A. Kolaceke,39

A. Konaka,50 L. L. Kormos,26 A. Korzenev,12 K. Koseki,14,†Y. Koshio,33,§ I. Kreslo,2 W. Kropp,5 H. Kubo,25 Y. Kudenko,22,∥

S. Kumaratunga,50 R. Kurjata,53 T. Kutter,28 J. Lagoda,31 K. Laihem,41 I. Lamont,26 M. Laveder,20 M. Lawe,42 M. Lazos,27

K. P. Lee,47 C. Licciardi,39 T. Lindner,50 C. Lister,54 R. P. Litchfield,54 A. Longhin,20 L. Ludovici,21 M. Macaire,6

L. Magaletti,18 K. Mahn,50 M. Malek,17 S. Manly,40 A. D. Marino,7 J. Marteau,29 J. F. Martin,49 T. Maruyama,14,†

J. Marzec,53 E. L. Mathie,39 V. Matveev,22 K. Mavrokoridis,27 E. Mazzucato,6 M. McCarthy,4 N. McCauley,27 K. S.
McFarland,40 C. McGrew,32 C. Metelko,27 M. Mezzetto,20 P. Mijakowski,31 C. A. Miller,50 A. Minamino,25 O. Mineev,22

S. Mine,5 A. Missert,7 M. Miura,46,§ L. Monfregola,16 S. Moriyama,46,§ Th. A. Mueller,10 A. Murakami,25 M. Murdoch,27

S. Murphy,11 J. Myslik,51 T. Nagasaki,25 T. Nakadaira,14,† M. Nakahata,46,23 T. Nakai,34 K. Nakamura,23,14,†

S. Nakayama,46,§ T. Nakaya,25,23 K. Nakayoshi,14,† D. Naples,37 C. Nielsen,4 M. Nirkko,2 K. Nishikawa,14,† Y. Nishimura,47

H. M. O’Keeffe,26 R. Ohta,14,† K. Okumura,47,23 T. Okusawa,34 W. Oryszczak,52 S. M. Oser,4 R. A. Owen,38 Y. Oyama,14,†

V. Palladino,19 V. Paolone,37 D. Payne,27 G. F. Pearce,44 O. Perevozchikov,28 J. D. Perkin,42 Y. Petrov,4 L. J. Pickard,42 E. S.
Pinzon Guerra,58 C. Pistillo,2 P. Plonski,53 E. Poplawska,38 B. Popov,36,¶ M. Posiadala,52 J.-M. Poutissou,50 R. Poutissou,50

P. Przewlocki,31 B. Quilain,10 E. Radicioni,18 P. N. Ratoff,26 M. Ravonel,12 M. A.M. Rayner,12 A. Redij,2 M. Reeves,26

E. Reinherz-Aronis,8 F. Retiere,50 A. Robert,36 P. A. Rodrigues,40 P. Rojas,8 E. Rondio,31 S. Roth,41 A. Rubbia,11

D. Ruterbories,8 R. Sacco,38 K. Sakashita,14,† F. Sánchez,15 F. Sato,14 E. Scantamburlo,12 K. Scholberg,9,§ J. Schwehr,8

M. Scott,50 Y. Seiya,34 T. Sekiguchi,14,† H. Sekiya,46,§ D. Sgalaberna,11 M. Shiozawa,46,23 S. Short,17 Y. Shustrov,22

P. Sinclair,17 B. Smith,17 R. J. Smith,35 M. Smy,5 J. T. Sobczyk,57 H. Sobel,5,23 M. Sorel,16 L. Southwell,26 P. Stamoulis,16

J. Steinmann,41 B. Still,38 Y. Suda,45 A. Suzuki,24 K. Suzuki,25 S. Y. Suzuki,14,† Y. Suzuki,46,23 T. Szeglowski,43

R. Tacik,39,50 M. Tada,14,† S. Takahashi,25 A. Takeda,46 Y. Takeuchi,24,23 H. K. Tanaka,46,§ H. A. Tanaka,4,‡ M.M.
Tanaka,14,† D. Terhorst,41 R. Terri,38 L. F. Thompson,42 A. Thorley,27 S. Tobayama,4 W. Toki,8 T. Tomura,46 Y. Totsuka,*

C. Touramanis,27 T. Tsukamoto,14,† M. Tzanov,28 Y. Uchida,17 K. Ueno,46 A. Vacheret,35 M. Vagins,23,5 G. Vasseur,6

T. Wachala,13 A. V. Waldron,35 C.W. Walter,9,§ D. Wark,44,17 M. O. Wascko,17 A. Weber,44,35 R. Wendell,46,§ R. J. Wilkes,55

M. J. Wilking,50 C. Wilkinson,42 Z. Williamson,35 J. R. Wilson,38 R. J. Wilson,8 T. Wongjirad,9 Y. Yamada,14,†

K. Yamamoto,34 C. Yanagisawa,32,** S. Yen,50 N. Yershov,22 M. Yokoyama,45,§ T. Yuan,7 A. Zalewska,13 J. Zalipska,31

L. Zambelli,36 K. Zaremba,53 M. Ziembicki,53 E. D. Zimmerman,7 M. Zito,6 J. Żmuda57

(T2K Collaboration)

1University of Alberta, Centre for Particle Physics, Department of Physics, Edmonton, Alberta, Canada
2University of Bern, Albert Einstein Center for Fundamental Physics, Laboratory for High Energy Physics (LHEP), Bern, Switzerland

3Boston University, Department of Physics, Boston, Massachusetts, USA
4University of British Columbia, Department of Physics and Astronomy, Vancouver, British Columbia, Canada

PRL 112, 061802 (2014)
Selected for a Viewpoint in Physics

PHY S I CA L R EV I EW LE T T ER S
week ending

14 FEBRUARY 2014

0031-9007=14=112(6)=061802(8) 061802-1 © 2014 American Physical Society



5University of California, Irvine, Department of Physics and Astronomy, Irvine, California, USA
6IRFU, CEA Saclay, Gif-sur-Yvette, France

7University of Colorado at Boulder, Department of Physics, Boulder, Colorado, USA
8Colorado State University, Department of Physics, Fort Collins, Colorado, USA

9Duke University, Department of Physics, Durham, North Carolina, USA
10Ecole Polytechnique, IN2P3-CNRS, Laboratoire Leprince-Ringuet, Palaiseau, France

11ETH Zurich, Institute for Particle Physics, Zurich, Switzerland
12University of Geneva, Section de Physique, DPNC, Geneva, Switzerland
13H. Niewodniczanski Institute of Nuclear Physics PAN, Cracow, Poland

14High Energy Accelerator Research Organization (KEK), Tsukuba, Ibaraki, Japan
15Institut de Fisica d’Altes Energies (IFAE), Bellaterra (Barcelona), Spain

16IFIC (CSIC and University of Valencia), Valencia, Spain
17Imperial College London, Department of Physics, London, United Kingdom

18INFN Sezione di Bari and Università e Politecnico di Bari, Dipartimento Interuniversitario di Fisica, Bari, Italy
19INFN Sezione di Napoli and Università di Napoli, Dipartimento di Fisica, Napoli, Italy

20INFN Sezione di Padova and Università di Padova, Dipartimento di Fisica, Padova, Italy
21INFN Sezione di Roma and Università di Roma “La Sapienza”, Roma, Italy

22Institute for Nuclear Research of the Russian Academy of Sciences, Moscow, Russia
23Kavli Institute for the Physics and Mathematics of the Universe (WPI), Todai Institutes for Advanced Study,

University of Tokyo, Kashiwa, Chiba, Japan
24Kobe University, Kobe, Japan

25Kyoto University, Department of Physics, Kyoto, Japan
26Lancaster University, Physics Department, Lancaster, United Kingdom

27University of Liverpool, Department of Physics, Liverpool, United Kingdom
28Louisiana State University, Department of Physics and Astronomy, Baton Rouge, Louisiana, USA
29Université de Lyon, Université Claude Bernard Lyon 1, IPN Lyon (IN2P3), Villeurbanne, France

30Miyagi University of Education, Department of Physics, Sendai, Japan
31National Centre for Nuclear Research, Warsaw, Poland

32State University of New York at Stony Brook, Department of Physics and Astronomy, Stony Brook, New York, USA
33Okayama University, Department of Physics, Okayama, Japan
34Osaka City University, Department of Physics, Osaka, Japan

35Oxford University, Department of Physics, Oxford, United Kingdom
36UPMC, Université Paris Diderot, CNRS/IN2P3, Laboratoire de Physique Nucléaire et de Hautes Energies (LPNHE), Paris, France

37University of Pittsburgh, Department of Physics and Astronomy, Pittsburgh, Pennsylvania, USA
38Queen Mary University of London, School of Physics and Astronomy, London, United Kingdom

39University of Regina, Department of Physics, Regina, Saskatchewan, Canada
40University of Rochester, Department of Physics and Astronomy, Rochester, New York, USA

41RWTH Aachen University, III. Physikalisches Institut, Aachen, Germany
42University of Sheffield, Department of Physics and Astronomy, Sheffield, United Kingdom

43University of Silesia, Institute of Physics, Katowice, Poland
44STFC, Rutherford Appleton Laboratory, Harwell Oxford, and Daresbury Laboratory, Warrington, United Kingdom

45University of Tokyo, Department of Physics, Tokyo, Japan
46University of Tokyo, Institute for Cosmic Ray Research, Kamioka Observatory, Kamioka, Japan

47University of Tokyo, Institute for Cosmic Ray Research, Research Center for Cosmic Neutrinos, Kashiwa, Japan
48Tokyo Metropolitan University, Department of Physics, Tokyo, Japan

49University of Toronto, Department of Physics, Toronto, Ontario, Canada
50TRIUMF, Vancouver, British Columbia, Canada

51University of Victoria, Department of Physics and Astronomy, Victoria, British Columbia, Canada
52University of Warsaw, Faculty of Physics, Warsaw, Poland

53Warsaw University of Technology, Institute of Radioelectronics, Warsaw, Poland
54University of Warwick, Department of Physics, Coventry, United Kingdom

55University of Washington, Department of Physics, Seattle, Washington, USA
56University of Winnipeg, Department of Physics, Winnipeg, Manitoba, Canada

57Wroclaw University, Faculty of Physics and Astronomy, Wroclaw, Poland
58York University, Department of Physics and Astronomy, Toronto, Ontario, Canada

(Received 19 November 2013; published 10 February 2014)

The T2K experiment has observed electron neutrino appearance in a muon neutrino beam produced
295 km from the Super-Kamiokande detector with a peak energy of 0.6 GeV. A total of 28 electron
neutrino events were detected with an energy distribution consistent with an appearance signal,
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corresponding to a significance of 7.3σ when compared to 4.92� 0.55 expected background events. In the
Pontecorvo-Maki-Nakagawa-Sakata mixing model, the electron neutrino appearance signal depends on
several parameters including three mixing angles θ12, θ23, θ13, a mass difference Δm2

32 and a CP violating
phase δCP. In this neutrino oscillation scenario, assuming jΔm2

32j ¼ 2.4 × 10−3 eV2, sin2θ23 ¼ 0.5, and

Δm2
32 > 0 (Δm2

32 < 0), a best-fit value of sin22θ13 ¼ 0.140þ0.038−0.032 (0.170þ0.045−0.037) is obtained at δCP ¼ 0.
When combining the result with the current best knowledge of oscillation parameters including the world
average value of θ13 from reactor experiments, some values of δCP are disfavored at the 90% C.L.

DOI: 10.1103/PhysRevLett.112.061802 PACS numbers: 14.60.Pq, 14.60.Lm, 25.30.Pt, 29.40.Ka

Introduction.—The discovery of neutrino oscillations
using atmospheric neutrinos was made by Super-
Kamiokande in 1998 [1]. Since then, many other experi-
ments have confirmed the phenomenon of neutrino oscil-
lations through various disappearance modes of flavor
transformations. However, to date, there has not been an
observation of the explicit appearance of a different neutrino
flavor from neutrinos of another flavor through neutrino
oscillations. In 2011, the T2K collaboration published the
first indication of electron neutrino appearance from a muon
neutrino beam at 2.5σ significance based on a data set
corresponding to 1.43 × 1020 protons on target (POT) [2,3].
This result was followed by the publication of further
evidence for electron neutrino appearance at 3.1σ in
early 2013 [4]. This Letter presents new results from the
T2K experiment that establish, at greater than 5σ, the
observation of electron-neutrino appearance from a
muon-neutrino beam.
In a three-flavor framework, neutrino oscillations are

described by the Pontecorvo-Maki-Nakagawa-Sakata
(PMNS) matrix [5,6] which is parametrized by three
mixing angles θ12, θ23, θ13, and a CP violating phase
δCP. In this framework, the probability for νμ → νe
oscillation can be expressed [7] as

Pðνμ→ νeÞ≃ sin2θ23sin22θ13sin2
Δm2

31L
4E

−
sin 2θ12 sin 2θ23

2 sin θ13
sin

Δm2
21L

4E
sin22θ13sin2

Δm2
31L

4E
sin δCP

þðCPeven term;solar term;matter effect termÞ; (1)

where L is the neutrino propagation distance and E is the
neutrino energy. The measurement of νμ → νe oscillations
is of particular interest because this mode is sensitive to
both θ13 and δCP. The first indication of nonzero θ13 was
published by T2K [3] based on the measurement of νμ →
νe oscillations. More recently, indications of νμ → νe
oscillations were also reported by the MINOS experiment
[8]. The value of θ13 is now precisely known to be 9.1°�
0.6° from measurements of ν̄e disappearance in reactor
neutrino experiments [9–12]. Using the reactor measure-
ment of θ13, the νμ → νe appearance mode can be used to
explore CP violation, which has yet to be observed in the

lepton sector. CP violation, as shown in Eq. (1), is
governed by the second term and can be as large as
27% of the first term for the T2K experimental setup
when using current values of the neutrino oscillation
parameters.

T2K experiment.—T2K operates at the J-PARC facility in
Tokai, Japan. A muon neutrino beam is produced from the
decay of charged pions and kaons generated by 30 GeV
protons hitting a graphite target and focused by three
magnetic horns. Downstream of the horns is the decay
volume, 96 meters in length, followed by the beam dump
and muon monitors (MUMON). The neutrino beam illumi-
nates an on-axis detector and off-axis detectors positioned at
an angle of 2.5° relative to the beam direction. The resulting
energy spectrum, peaked at 0.6 GeV for the off-axis
detectors, reduces the νe contamination and the feed-down
backgrounds to the νe appearance signal from higher energy
neutrinos. The near detector complex at 280 meters from
the target is used to measure the neutrino beam direction,
spectrum, and composition before oscillations and to
measure neutrino cross sections. The complex consists of an
on-axis detector (INGRID) and a suite of off-axis detectors
(ND280) that reside within a 0.2 T magnet [2]. The Super-
Kamiokande (SK) 50 kt water Cherenkov detector, situated
295 km away, is used to detect the oscillated neutrinos.
The results presented here are based on data taken from

January 2010 to May 2013. During this period, the proton
beam power has steadily increased and reached 220 kW
continuous operation with a world record of 1.2 × 1014

protons per pulse. The total neutrino beam exposure at SK
corresponds to 6.57 × 1020 POT.

Neutrino beam flux.—The neutrino beam flux [13] is
predicted by modeling interactions of the primary beam
protons in a graphite target using external hadron produc-
tion data from the CERN NA61/SHINE experiment [14,15]
and the FLUKA2008 package [16,17]. GEANT3 [18] with
GCALOR [19] simulates propagation of the secondary or
tertiary pions and kaons, and their decays into neutrinos.
The νe component (including a small amount of ν̄e) in the
beam is estimated to be less than 1% of the flux below
1.5 GeV, and constitutes an irreducible background to the
νe appearance search. This component is generated pre-
dominantly by the decay of muons for Eν < 1 GeV and by
kaons for Eν > 1 GeV.
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The neutrino flux uncertainties are dominated by the
hadron production uncertainties, with contributions from
the neutrino beam direction and the proton beam uncer-
tainties. The neutrino beam direction, monitored indirectly
by MUMON on a spill-by-spill basis, and directly by
INGRID [20], was found to be well within the required
�1 mrad during the full run period. INGRID also measured
the neutrino interaction rate per POT to be stable within
0.7%. The total systematic error for the absolute flux
prediction is evaluated to be 10%–15% in the relevant
energy range. Furthermore, the uncertainty on the ratio of
the flux predictions at the far and the near detectors is less
than 2% around the peak.

Neutrino interaction simulations and cross section
parameters.—The NEUT neutrino interaction generator
[21] is used to simulate neutrino interactions in the
INGRID, ND280, and SK detectors. At interaction energies
typical of the T2K beam, the dominant charged current
(CC) interactions are charged current quasielastic (CCQE)
and single resonant pion production. The cross section
parametrization can be divided into two categories: param-
eters common to interactions at both ND280 and SK, and
parameters evaluated separately for the two detectors.
Parameters in the first category comprise the axial masses
for CCQE (MQE

A ) and single resonant pion production
(MRES

A ), and normalizations for CCQE, CC single pion, and
neutral current (NC) 1π0 interactions. Parameters in the
second category are typically related to the interaction
target—primarily carbon at ND280 and oxygen at SK—
and include Fermi momentum, binding energy, and spectral
function modeling for the CCQE nuclear model. Also in
this category are normalizations for other CC and NC cross
sections, the νe=νμ CC cross section ratio, pion production
parameters, and final state interactions of pions exiting the
nucleus. External data sets, primarily from [22–24], are
used to determine the initial values and prior uncertainties
of the parameters [4].

ND280 measurements, flux, and common cross section fits.—
The energy spectrum of the neutrino beam and the neutrino
cross section parameters are constrained using νμ CC
interactions in ND280. The fine-grained detectors (FGDs)
[25] are scintillator trackers that serve as the primary
neutrino target, and the momentum and identity of the
particles emerging from the interaction are determined by
the time projection chambers (TPCs) [26] interleaved with
the FGDs. The muon is assumed to be the highest-
momentum, negative-curvature track that emerges from
the FGD fiducial volume with an energy deposition con-
sistent with a muon in the TPC downstream of the FGD.
Tracks found in the TPC upstream of the FGD are used to
veto external background events.
The ND280 analysis includes many improvements

over the previous T2K electron neutrino appearance
measurement [4]. Candidate events are now divided into
three samples: CC-0π, dominated by CCQE interactions;

CC-1πþ, dominated by CC resonant pion production; and
CC other. The samples are defined by the number of pions
in the observed final state. A πþ can be identified in one of
three ways: an FGDþ TPC track with positive curvature
and a TPC charge deposition consistent with a pion, an
FGD-contained track with a charge deposition consistent
with a pion, or a delayed energy deposit due to a decay
electron from stopped πþ → μþ in the FGD. To tag a π−,
only negative curvature FGDþ TPC tracks are used. A π0

is identified if there exists a track in the TPC with a charge
deposition consistent with an electron from a γ conversion.
Events containing no pions are classified as CC-0π, events
with exactly one πþ and no π− or π0 are classified as
CC-1πþ, and all other CC events are classified as CC
other. There are 17 369, 4047, and 4173 data events in
the CC-0π, CC-1πþ, and CC-other samples, respectively.
The ND280 data set used for this analysis corresponds
to 5.90 × 1020 POT.
The three samples are fit with 25 beam flux parameters

at ND280 (11Eνμ , 5Eν̄μ , 7Eνe , and 2Eν̄e bins), 21 cross
section parameters (5 in common with SK, and 16 used
only for ND280), as well as 210 parameters describing the
ND280 detector systematics (10 momentum × 7 angle bins
for each sample). The dominant detector uncertainties
come from events occurring outside the FGD fiducial
volume and from pion reinteractions in the detector. The
ND280 measurements constrain the SK flux parameters
due to the flux covariance derived from beam simulations.
The predicted numbers of ND280 events in Monte Carlo
(MC) calculations, using the best-fit parameters, are 17352,
4110, and 4119 for the CC-0π, CC-1πþ, and CC-other
samples, respectively. A χ2 goodness-of-fit test returns a p
value of 0.66, indicating no disagreement between the data
and the prediction using best-fit parameters. Figure 1 shows
the muon momentum distribution of the CC-0π sample, and
the improvement in data and MC calculations agreement
when using the best-fit parameters.
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FIG. 1 (color online). The muon momentum distribution for the
ND280 CC-0π sample (upper). The black points represent the
data, the blue (light gray) histogram shows the MC prediction
before data constraint, and the red (dark gray) histogram shows
the MC prediction after constraint. The lower plot shows the ratio
of data to MC for the pre- and post-constraint cases.
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The fit to the ND280 data gives estimates for 22 beam
flux parameters at SK, the 5 common cross section
parameters, and their covariance. Using the ND280 infor-
mation reduces the uncertainty on the expected number of
electronlike events at SK due to the propagated parameters
from 25.9% to 2.9%.

SK measurements.—The SK detector is composed of an
inner detector (ID) and an outer detector (OD). The ID has a
water fiducial volume (FV) of 22.5 kt that is equipped with
11129 photomultiplier tubes (PMT) and is surrounded by
the 2 m wide OD. Neutrino events at SK are selected if the
Cherenkov ring is consistent with an energy above 30 MeV
in the ID with low activity in the OD to reject any entering
background or exiting events. These events are labeled
fully contained (FC). The FC fiducial volume (FCFV)
sample is obtained by applying the further cut that the event
vertex is at least 2 m away from the ID tank wall. A timing
cut of −2 to 10 μs relative to the first beam bunch arrival
is applied to distinguish T2K data from other neutrino
samples such as atmospheric neutrino interactions. The
timing cut reduces the contamination from other neutrino
sources to 0.0085 events in the full sample.
To select νe interaction candidate events in the FCFV

sample, a single electronlike Cherenkov ring is required.
The reconstructed electron momentum (pe) is required to
exceed 100 MeV=c to eliminate decay electrons from
stopping muons generated by CC interactions and pions
in NC interactions. In addition, events are required to have
a reconstructed neutrino energy (Erec

ν ) below 1250 MeV.
Nearly all of the oscillated νe signal events are below this
value, while most of the intrinsic beam νe background
events have higher energies. The Erec

ν is calculated assum-
ing a CCQE interaction as

Erec
ν ¼ m2

p − ðmn − EbÞ2 −m2
e þ 2ðmn − EbÞEe

2ðmn − Eb − Ee þ pe cos θeÞ
; (2)

where mn (mp) is the neutron (proton) mass, Eb is the
neutron binding energy in oxygen (27 MeV), me is
the electron mass, Ee is its energy, and θe is the angle
of the electron direction relative to the beam direction.
The final selection criterion removes additional π0

background events using a new reconstruction algorithm,
based on an extension of the model described in Ref. [27],
to determine the kinematics of all final state particles. The
new algorithm is a maximum-likelihood fit in which charge
and time probability density functions are constructed for
every PMT hit for a given particle hypothesis with a set of 7
parameters: the vertex position, the timing, the direction,
and the momentum. Multiple-particle fit hypotheses are
constructed by summing the charge contributions from
each constituent particle. Different neutrino final states are
distinguished by comparing the best-fit likelihood resulting
from the fit of each hypothesis. To separate π0 events from
νe CC events, both the reconstructed π0 mass (mπ0) and the

ratio of the best-fit likelihoods of the π0 and electron fits
(Lπ0=Le) are used. Figure 2 shows the lnðLπ0=LeÞ vs π0

mass distribution for signal νe-CC events and events
containing a π0 in the MC sample, as well as the rejection
cut line. Events that satisfy lnðLπ0=LeÞ < 175 − 0.875 ×
mπ0 ðMeV=c2Þ constitute the final νe candidate sample.
This cut removes 69% of the π0 background events relative
to the previous T2K νe appearance selection, with only a
2% loss in signal efficiency [3].
A summary of the number of events passing each

selection cut is shown in Table I. After all cuts, the total
number of candidate νe events selected in data is 28, which
is significantly larger than the 4.92� 0.55 expected events
for θ13 ¼ 0. For sin2 2θ13 ¼ 0.1 and δCP ¼ 0, the expected
number is 21.6, as shown in Table I.
The systematic uncertainty due to the SK selection cuts

is evaluated using various data and MC samples. The
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FIG. 2 (color online). The lnðLπ0=LeÞ vs mπ0 distribution is
shown for both signal νe-CC events (boxes) and background
events containing a π0 (blue scale). The red (gray) line indicates
the location of the π0 rejection cut. Events in the upper right
corner are rejected.

TABLE I. The expected number of signal and background
events passing each selection stage assuming sin2 2θ13 ¼ 0.1,
sin2 θ23 ¼ 0.5, jΔm2

32j ¼ 2.4 × 10−3 eV2, δCP ¼ 0, and
Δm2

32 > 0, compared to the observed number in data.
Interactions in the true FV are based on the MC truth
information while all other numbers are based on the
reconstructed information and have been rounded off after
addition to avoid rounding error.

νμ → νe νμ þ ν̄μ νe þ ν̄e Total
Selection Data CC CC CC NC MC

Interactions in FV 27.1 325.7 16.0 288.1 656.8
FCFV 377 26.2 247.8 15.4 83.0 372.4
þSingle ring 193 22.7 142.4 9.8 23.5 198.4
þe-like ring 60 22.4 5.6 9.7 16.3 54.2
þpe > 100 MeV=c 57 22.0 3.7 9.7 14.0 49.4
þNo decay e 44 19.6 0.7 7.9 11.8 40.0
þErec

ν < 1250 MeV 39 18.8 0.2 3.7 9.0 31.7
þNon-π0-like 28 17.3 0.1 3.2 1.0 21.6
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uncertainty for both the FC and the FV selection is 1%. The
decay-electron rejection cut has errors of 0.2%–0.4%,
depending on neutrino flavor and interaction type. The
uncertainties for the single electronlike ring selection and
π0 rejection are estimated by using the SK atmospheric
neutrino data and SK cosmic-ray muons. Electron-neutrino
CC-enriched control samples based on these cuts were
prepared, and the differences between MC predictions and
data are used to extract the systematic uncertainty. The
uncertainty associated with the π0 background is deter-
mined by constructing a hybrid sample with either an
electronlike ring taken from the atmospheric data sample or
from decay-electrons selected in the stopping muon data
sample, and a MC-generated gamma ray assuming π0

kinematics. The selection cut systematic uncertainty is
calculated to be 1.6% for signal events and 7.3% for
background events. The total SK selection uncertainty is
2.1% for the νe candidate events assuming sin22θ13 ¼ 0.1.
Additional SK systematic uncertainties are due to final-

state interactions (FSI) of pions that occur inside the target
nucleus, as well as secondary interactions (SI) of pions and
photonuclear (PN) interactions of photons that occur out-
side of the target nucleus. The treatment of the FSI and SI
uncertainties is the same as in the previous analysis [28].
For this analysis, a new simulation of PN interactions has
been added to the SKMC. In the final νe event sample, 15%
of the remaining π0 background is due to events where
one of the π0 decay photons is absorbed in a PN interaction.
A systematic uncertainty of 100% is assumed for the
normalization of the PN cross section.

Oscillation analysis.—The neutrino oscillation parameters
are evaluated using a binned extended maximum-like-
lihood fit. The likelihood consists of four components: a
normalization term (Lnorm), a term for the spectrum shape
(Lshape), a systematics term (Lsyst), and a constraint term
(Lconst) from other measurements

LðNobs; x⃗; o⃗; f⃗Þ ¼ LnormðNobs; o⃗; f⃗Þ × Lshapeðx⃗; o⃗; f⃗Þ
× Lsystðf⃗Þ × Lconstðo⃗Þ; (3)

where Nobs is the number of observed events, x⃗ is a set of
kinematic variables, o⃗ represents oscillation parameters,
and f⃗ describes systematic uncertainties. In the fit, the
likelihood is integrated over the nuisance parameters to
obtain a marginalized likelihood for the parameters of
interest.
Lnorm is calculated from a Poisson distribution using the

mean value from the predicted number of MC events.
Lsystðf⃗Þ constrains the 27 systematic parameters from the
ND280 fit, the SK-only cross section parameters, and the
SK selection efficiencies. Table II shows the uncertainties
on the predicted number of signal νe events. TheLshape term
uses x ¼ ðpe; θeÞ to distinguish the νe signal from back-
grounds. An alternative analysis uses x ¼ Erec

ν , the recon-
structed neutrino energy. In order to combine the results

presented in this Letter with other measurements to
better constrain sin22θ13 and δCP, the Lconst term can also
be used to apply additional constraints on sin22θ13, sin2θ23,
and Δm2

32.
The following oscillation parameters are fixed in the

analysis: sin2θ12 ¼ 0.306, Δm2
21 ¼ 7.6 × 10−5 eV2 [29],

sin2θ23 ¼ 0.5, jΔm2
32j ¼ 2.4 × 10−3 eV2 [30], and

δCP ¼ 0. For the normal (inverted) hierarchy case, the
best-fit value with a 68% confidence level (C.L.) is
sin22θ13 ¼ 0.140þ0.038−0.032 (0.170þ0.045−0.037). Figure 3 shows the
best-fit result, with the 28 observed νe events. The alter-
native analysis using Erec

ν and a profile likelihood method
produces consistent best-fit values and nearly identical
confidence regions. Figure 4 shows the Erec

ν distribution
with the MC prediction for the best-fit θ13 value in the
alternative analysis.
The significance for a nonzero θ13 is calculated to be

7.3σ, using the difference of log likelihood values between
the best-fit θ13 value and θ13 ¼ 0. An alternative method of
calculating the significance, by generating a large number
of toy MC experiments assuming θ13 ¼ 0, also returns a

TABLE II. The uncertainty (rms/mean in %) on the predicted
number of signal νe events for each group of systematic
uncertainties for sin22θ13 ¼ 0.1 and 0. The uncorrelated ν
interaction uncertainties are those coming from parts of the
neutrino interaction model that cannot be constrained with
ND280.

Error source [%] sin22θ13 ¼ 0.1 sin22θ13 ¼ 0

Beam flux and near detector 2.9 4.8
(without ND280 constraint) (25.9) (21.7)
Uncorrelated ν interaction 7.5 6.8
Far detector and FSIþ SIþ PN 3.5 7.3

Total 8.8 11.1
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FIG. 3 (color online). The (pe, θe) distribution for νe candidate
events with the MC prediction using the primary method best-fit
value of sin22θ13 ¼ 0.140 (normal hierarchy).
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value of 7.3σ. These significances were calculated using a
test statistic having fixed values for θ23 and δCP. For any
values for these parameters, consistent with their present
uncertainties, the significance remains above 7σ.
As the precision of this measurement increases, the

uncertainty from other oscillation parameters becomes
increasingly important. The uncertainties on θ23 and
Δm2

32 are taken into account in the fit by adding a Lconst
term and marginalizing the likelihood over θ23 and Δm2

32.
The Lconst term is the likelihood as a function of sin2θ23 and
Δm2

32, obtained from the T2K νμ disappearance measure-
ment [30]. The value of δCP and the hierarchy are held
fixed in the fit. Performing the fit for all values of δCP,
the allowed 68% and 90% C.L. regions for sin22θ13 are
obtained as shown in Fig. 5. For δCP ¼ 0 and normal
(inverted) hierarchy case, the best-fit value with a 68% C.L.
is sin22θ13 ¼ 0.136þ0.044−0.033 (0.166þ0.051−0.042). With the current
statistics, the correlation between the νμ disappearance and
νe appearance measurements in T2K is negligibly small.
Constraints on δCP are obtained by combining our results

with the θ13 value measured by reactor experiments. The
additional likelihood constraint term on sin22θ13 is defined
as expf−ðsin22θ13 − 0.098Þ2=½2ð0.0132Þ�g, where 0.098
and 0.013 are the averaged value and the error of sin22θ13
from PDG2012 [9]. The −2Δ ln L curve as a function of
δCP is shown in Fig. 6, where the likelihood is marginalized
over sin22θ13, sin2θ23, and Δm2

32. The combined T2K and
reactor measurements prefer δCP ¼ −π=2. The 90% C.L.
limits shown in Fig. 6 are evaluated by using the Feldman-
Cousins method [31] in order to extract the excluded
region. The data exclude δCP between 0.19π and 0.80π
(−π and−0.97π, and−0.04π and π) with normal (inverted)
hierarchy at 90% C.L.
The maximum value of −2Δ ln L is 3.38 (5.76) at

δCP ¼ π=2 for the normal (inverted) hierarchy case. This
value is compared with a large number of toy MC experi-
ments, generated assuming δCP ¼ −π=2, sin22θ13 ¼ 0.1,

sin2θ23 ¼ 0.5, and Δm2
32 ¼ 2.4 × 10−3 eV2. The MC aver-

aged value of −2Δ ln L at δCP ¼ π=2 is 2.20 (4.10) for the
normal (inverted) hierarchy case, and the probability of
obtaining a value greater or equal to the observed value is
34.1% (33.4%). With the same MC settings, the expected
90% C.L. exclusion region is evaluated to be between
0.35π and 0.63π (0.09π and 0.90π) radians for the normal
(inverted) hierarchy case.
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Conclusions.—T2K has made the first observation of
electron neutrino appearance in a muon neutrino beam
with a peak energy of 0.6 GeV and a baseline of 295 km.
With the fixed parameters jΔm2

32j ¼ 2.4 × 10−3 eV2,
sin2 θ23 ¼ 0.5, δCP ¼ 0, and Δm2

32 > 0 (Δm2
32 < 0), a

best-fit value of sin22θ13 ¼ 0.140þ0.038−0.032 (0.170þ0.045−0.037) is
obtained, with a significance of 7.3σ over the hypothesis of
sin22θ13 ¼ 0. When combining the T2K result with the
world average value of θ13 from reactor experiments, some
values of δCP are disfavored at the 90% C.L.
T2K will continue to take data to measure the neutrino

oscillation parameters more precisely and to further explore
CP violation in the lepton sector.
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