
Noname manuscript No.
(will be inserted by the editor)

Truncation error estimates of approximate operators
in a generalized particle method

Yusuke Imoto

Received: date / Accepted: date

Abstract To facilitate the numerical analysis of particle methods, we derive trun-
cation error estimates for the approximate operators in a generalized particle
method. Here, a generalized particle method is defined as a meshfree numeri-
cal method that typically includes other conventional particle methods, such as
smoothed particle hydrodynamics or moving particle semi-implicit methods. A
new regularity of discrete parameters is proposed via two new indicators based on
the Voronoi decomposition of the domain along with two hypotheses of reference
weight functions. Then, truncation error estimates are derived for an interpolant,
approximate gradient operator, and approximate Laplace operator in the gener-
alized particle method. The convergence rates for these estimates are determined
based on the frequency with which they appear in the regularity and hypotheses.
Finally, the estimates are computed numerically, and the results are shown to be
in good agreement with the theoretical results.

Keywords generalized particle method · truncation error estimate · approximate
operator · smoothed particle hydrodynamics method · moving particle semi-
implicit method

1 Introduction

Particle methods, such as the smoothed particle hydrodynamics (SPH) [10,18,
19] and moving particle semi-implicit (MPS) methods [15,16,29], are numerical
methods for solving partial differential equations that are based on points called
particles distributed in a domain. In such methods, an interpolant and several
approximate differential operators are defined in terms of linear combinations of
weighted interactions between neighboring particles. When such methods are ap-
plied to partial differential equations, the equations are effectively discretized in
space. As the discretization procedure does not require mesh generation in the
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domain, particle methods can be applied to moving boundary problems, such as
the deformation and destruction of structures [5,22] and flow problems associated
with free surfaces [21,23].

The accuracy of particle methods has been widely researched. From an en-
gineering perspective, many studies have been conducted into the convergence
of such methods in practical applications, such as Amicarelli [1,2], Fulk [9], and
Quinlan et al. [25]. On the other hand, few studies in the literature have pre-
sented numerical analyses of these methods from a mathematical perspective. In
the 1980s, Mas-Gallic and Raviart [20] and Raviart [26] provided error estimates
for particle methods when applied to parabolic and hyperbolic partial differential
equations on unbounded domains. In the 2000s, Ben Moussa and Via [4] and Ben
Moussa [3] provided error estimates of nonlinear conservation laws on bounded
domains. In their work, the time integrations of the particle positions and volumes
were obtained by solving the differential equations with respect to advection fields.
However, as their method is only applicable to problems described by solvable dif-
ferential equations, it cannot be used with other problems, such as those involving
the Navier–Stokes equations.

Sometime later, Ishijima and Kimura [13] developed a truncation error esti-
mate for an approximate gradient operator in the MPS method. By introducing
a regularity for particle distributions based on an indicator called the equivolume
partition radius, they determined the conditions that depend solely on the space
distributions of the particles. However, a practical limitation is that the indicator
cannot be computed.

In previous works, we established truncation error estimates for an interpolant,
approximate gradient operator, and approximate Laplace operator of a generalized
particle method in which the particle volumes were given as Voronoi volumes [11,
12]. A generalized particle method is a numerical method that typically includes
conventional particle methods, such as the SPH and MPS methods. In previous
studies, we derived truncation error estimates by introducing a regularity using
an indicator known as the covering radius, which is used in the numerical anal-
ysis of meshfree methods based on moving least-square methods and radial basis
functions [17,27,30]. Although the formulations and conditions in those works are
computable, they are difficult to deploy in practical computations as the compu-
tational costs associated with particle volumes based on Voronoi decomposition
are high.

The focus of the current work was to analyze particle methods under more
practical conditions by extending our results to cases with commonly used par-
ticle volumes. We also introduce another indicator of particle volumes, which we
refer to as a Voronoi deviation, that represents the deviation between particle vol-
umes and Voronoi volumes. Then, utilizing the Voronoi deviation, we extend the
regularity and introduce two hypotheses of reference weight functions. Using the
regularity and hypotheses, we derive truncation error estimates of the interpolant,
approximate gradient operator, and approximate gradient operator of the general-
ized particle method. Finally, we numerically analyze our estimates and compare
the results to those from the theory.

The remainder of this paper is organized as follows. The interpolant and ap-
proximate operators of the generalized particle method are introduced in Section
2. A regularity describing the family of discrete parameters is discussed in Section
3, after which we propose our primary theorem with respect to the truncation error
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estimates and provide some corollaries. Then, the primary theorem is proven in
Section 4, numerical results are detailed in Section 5, and some concluding remarks
are outlined in Section 6.

In the remainder of this section, we describe some notation and define some
relevant function spaces. Let R+, R+

0 , and N0 be the set of positive real numbers,
the set of nonnegative real numbers, and the set of nonnegative integers, respec-
tively. Let d be the dimension of a space. Let Ad be the set of all d-dimensional
multi-indices. For x = (x1, x2, . . . , xd)

T ∈ Rd and α = (α1, α2, . . . , αd)
T ∈ Ad, xα

is defined as xα = xα1
1 xα2

2 · · ·xαd

d . If there is no ambiguity, the symbol | · | is used
to denote the following: |x| denotes the Euclidean norm for x ∈ Rd; |S| denotes
the volume of S for S ⊂ Rd; |α| denotes |α| := α1 + α2 + · · · + αd for α ∈ Ad.
For S ⊂ Rd, let diam(S) be diam(S) := sup {|x− y|; x, y ∈ S}. For S ⊂ Rd, let
C(S) be the space of real continuous functions defined in S with the norm ∥ · ∥C(S)

defined as

∥v∥C(S) := max
x∈S

|v(x)| .

For S ⊂ Rd and ℓ ∈ N, let Cℓ(S) be the space of functions in C(S) with derivatives
up to the ℓth order with its seminorm | · |Cℓ(S) and norm ∥ · ∥Cℓ(S) defined as

|v|Cℓ(S) := max
α∈Ad,|α|=ℓ

∥Dαv∥C(S) ,

∥v∥Cℓ(S) := max
j=0,1,...,ℓ

|v|Cj(S) ,

respectively. Here Dαv := ∂α1
1 ∂α2

2 . . . ∂αd

d v with multi-index α = (α1, α2, . . . , αd).

2 Approximate operators in a generalized particle method

Let Ω be a bounded domain in Rd. Let H be a fixed positive number. For Ω and
H, we define extended domain ΩH as

ΩH :=
{
x ∈ Rd

∣∣∣ ∃y ∈ Ω s.t. |x− y| < H
}
.

For N ∈ N, we define a particle distribution XN and particle volume set VN as

XN := {xi ∈ ΩH ; i = 1, 2, . . . , N, xi ̸= xj (i ̸= j)} ,

VN :=

{
Vi ∈ R+; i = 1, 2, . . . , N,

N∑
i=1

Vi = |ΩH |

}
,

respectively. We refer to xi ∈ XN and Vi ∈ VN as a particle and particle volume,
respectively. An example of the particle distribution XN in ΩH (⊂ R2) is shown
in Figure 1.

We define an admissible reference weight function set W as

W :=

{
w ∈ C(R+

0 ); supp(w) = [0, 1],

∫
Rd

w(|x|)dx = 1, absolutely continuous

}
,

we refer to w ∈ W as a reference weight function, and we define the influence
radius hN ∈ R as satisfying 0 < hN < H and hN → 0 (N → ∞). If there is
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Fig. 1 Particle distribution XN in ΩH (⊂ R2).

no ambiguity, we denote hN as h. For reference weight function w and influence
radius h, we define the weight function wh ∈ C(R+

0 ) as

wh(r) :=
1

hd
w
( r
h

)
. (1)

Note that the weight function wh satisfies

supp(wh) = [0, h],

∫
Rd

wh(|x|)dx = 1,

and is absolutely continuous.

For v ∈ C(ΩH), we define interpolant Πh, approximate gradient operator ∇h,
and approximate Laplace operator ∆h as

Πhv(x) :=
∑

i∈Λ0(x,h)

Viv(xi)wh(|xi − x|), (2)

∇hv(x) := d
∑

i∈Λ(x,h)

Vi
v(xi)− v(x)

|xi − x|
xi − x

|xi − x|wh(|xi − x|), (3)

∆hv(x) := 2d
∑

i∈Λ(x,h)

Vi
v(xi)− v(x)

|xi − x|2 wh(|xi − x|), (4)

respectively. Here, for x ∈ Rd and r ∈ R+ ∪ {∞}, Λ0(x, r) and Λ(x, r) are index
sets of particles defined as

Λ0(x, r) := {i = 1, 2, . . . , N ; 0 ≤ |x− xi| < r} ,
Λ(x, r) := {i = 1, 2, . . . , N ; 0 < |x− xi| < r} ,

respectively.

As discussed later in Appendix A, the approximate operators (2), (3), and (4)
indicate a wider class of approximate operators of particle methods than those in
the SPH and MPS methods. Therefore, we refer to the approximate operators (2),
(3), and (4) as generalized approximate operators and to a particle method that
uses them as a generalized particle method.
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xi
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Fig. 2 Example of the Voronoi decomposition of ΩH associated with the particle distribution
XN .

3 Truncation error estimates of approximate operators

We first introduce a regularity of discrete parameters. Let {σi} be the Voronoi
decomposition of ΩH associated with the particle distribution XN , where σi is the
Voronoi region defined as

σi := {x ∈ ΩH ; |xi − x| < |xj − x|, ∀xj ∈ XN (j ̸= i)} , i = 1, 2, . . . , N.

We define a particle volume decomposition Ξ = {ξi} as a decomposition of ΩH

satisfying

|ξi| = Vi,
N⋃
i=1

ξi = ΩH (i = 1, 2, . . . , N), ξi ∩ ξj = ∅ (i ̸= j).

An example of the Voronoi decomposition of ΩH associated with the particle
distribution XN is shown in Figure 2. We define a covering radius rN for particle
distribution XN as

rN := max
i=1,2,...,N

sup
x∈σi

|xi − x|. (5)

Moreover, we define a Voronoi deviation dN for the particle distribution XN and
the particle volume set VN as

dN := inf
Ξ

dΞ (6)

with

dΞ := max
i=1,2,...,N


N∑

j=1

|σi ∩ ξj |+ |ξi ∩ σj |
|σi|

|xi − xj |

 .

Then, we define a regularity for a family consisting of a particle distribution XN ,
particle volume set VN , and influence radius h as follows:

Definition 1 A family {(XN ,VN , hN )}N→∞ is said to be regular with order
m (m ≥ 1) if there exists a positive constant c0 such that

hm
N ≥ c0(rN + dN ), ∀N ∈ N. (7)
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Fig. 3 Two examples of covering radii rN for particle distributions with same number of
particles. The covering radius rN for the uniform particle distribution (left) is smaller than
that for the non-uniform particle distribution (right).

Remark 1 As shown in Figure 3, the covering radius rN becomes large in the
case of a particle distribution with both dense and sparse regions. Therefore, the
covering radius rN can be considered as an indicator representing the uniformness
of particle distribution XN .

Remark 2 A Voronoi deviation dN equals zero if and only if the particle volumes
are given as the Voronoi volume (Vi = |σi|). Moreover, the Voronoi deviation dN
becomes large if the particle volumes are given as values far from the Voronoi
volumes. Therefore, the Voronoi deviation dN can be regarded as an indicator of
the deviation between the particle volume set and the Voronoi volume set.

Remark 3 For a given family {(XN ,VN , hN )}N→∞ and given constant m (m ≥ 1),
it is possible to determine whether or not the family is regular with order m as
the covering radius rN and Voronoi deviation dN are absolutely computable, as
shown in Appendix B.

Next, we introduce two hypotheses of reference weight function w:

Hypothesis 1 For n ∈ N, the reference weight function w satisfies for all α ∈ Ad

with 1 ≤ |α| ≤ n, ∫
Rd

xαw(|x|)dx = 0.

Hypothesis 2 For k ∈ N0, the reference weight function w satisfies

max

{
sup

r∈(0,1)

|w(k+1)(r)|, sup
r∈(0,1)

∣∣∣(w(k))′(r)
∣∣∣} < ∞,

where for j ∈ N0, w
(j)(r) : (0,∞) → R is defined as

w(j)(r) :=


lim
s↓0

w(s)

sj
, r = 0,

w(r)

rj
, r > 0

(8)

and (w(k))′ is dw(k)/dr.
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Remark 4 All reference functions w ∈ W satisfy Hypothesis 1 with n = 1. More-
over, for all n ∈ N and k ∈ N, reference weight functions satisfying Hypothesis 1
with n and Hypothesis 2 with k can be constructed as shown in Appendix C.

We now state a theorem that defines truncation error estimates of approximate
operators in the generalized particle method with a continuous norm:

Theorem 3 Suppose that a family {(XN ,VN , hN )}N→∞ is regular with order
m (m ≥ 1) and that reference weight function w satisfies Hypothesis 1 with n.
Then, there exists a positive constant c independent of N such that

∥v −Πhv∥C(Ω) ≤ c hmin{m−1,n+1} ∥v∥Cn+1(ΩH) , v ∈ Cn+1(ΩH). (9)

In addition, if w ∈ W satisfies Hypothesis 2 with k = 0, then we have

∥∇v −∇hv∥C(Ω) ≤ c hmin{m−1,n+1} ∥v∥Cn+2(ΩH) , v ∈ Cn+2(ΩH), (10)

and if w ∈ W satisfies Hypothesis 2 with k = 1, then we have

∥∆v −∆hv∥C(Ω) ≤ c hmin{m−2,n+1} ∥v∥Cn+3(ΩH) , v ∈ Cn+3(ΩH). (11)

The proof of Theorem 3 is presented in the next section. As shown in the
corollaries in Appendix A, the approximate operators commonly used in the SPH
and MPS methods are valid for Theorem 3 under appropriate settings.

4 Proof of truncation error estimates

The following notation will be used in the subsequent proof of Theorem 3. Here-
after, let c be a generic positive constant independent of N (allowed dependence
on the fixed positive parameter H). For α ∈ Ad, set Iα as

Iα(x) :=
∑

i∈Λ0(x,h)

Vi(xi − x)αwh(|xi − x|)−
∫
Rd

yαwh(|y|)dy, x ∈ Ω.

For α ∈ Ad and ℓ ∈ N, set Iα,ℓ as

Iα,ℓ(x) :=
∑

i∈Λ(x,h)

Vi
(xi − x)α

|xi − x|ℓ wh(|xi − x|)−
∫
Rd

yα

|y|ℓwh(|y|)dy, x ∈ Ω.

For ℓ ∈ N, set Jℓ as

Jℓ(x) :=
∑

i∈Λ0(x,h)

Vi|xi − x|ℓ|wh(|xi − x|)|, x ∈ Ω.

We now present the following lemma.



8 Yusuke Imoto

Lemma 1 Suppose that w ∈ W satisfies Hypothesis 1 with n. Then, there exists
a positive constant c independent of N such that

∥v −Πhv∥C(Ω)

≤ c

 ∑
0≤|α|≤n

∥Iα∥C(Ω) + ∥Jn+1∥C(Ω)

 ∥v∥Cn+1(ΩH) ,

v ∈ Cn+1(ΩH), (12)

∥∇v −∇hv∥C(Ω)

≤ c

 ∑
2≤|α|≤n+2

∥Iα,2∥C(Ω) + ∥Jn+1∥C(Ω)

 ∥v∥Cn+2(ΩH) ,

v ∈ Cn+2(ΩH), (13)

∥∆v −∆hv∥C(Ω)

≤ c

 ∑
1≤|α|≤n+3

∥Iα,2∥C(Ω) + ∥Jn+1∥C(Ω)

 ∥v∥Cn+3(ΩH) ,

v ∈ Cn+3(ΩH). (14)

Proof First, we prove (12). We fix x ∈ Ω. Then, let B(x, r) be the open ball in Rd

with center x and radius r, i.e.,

B(x, r) :=
{
y ∈ Rd; |y − x| < r

}
.

From h < H, we have B(x, h) ⊂ ΩH . Then, for all v ∈ Cℓ+1(ΩH) (ℓ ∈ N) and
xi ∈ B(x, h), we obtain the Taylor expansion of v as

v(xi) =
∑

0≤|α|≤ℓ

Dαv(x)

α!
(xi − x)α +

∑
|α|=ℓ+1

(xi − x)αRα(xi, x), (15)

Rα(xi, x) :=
|α|
α!

∫ 1

0

(1− t)|α|−1Dαv(tx+ (1− t)xi)dt.

From (2) and (15) with ℓ = n, we have

Πhv(x) =
∑

0≤|α|≤n

Dαv(x)

α!

∑
i∈Λ0(x,h)

Vi(xi − x)αwh(|xi − x|)

+
∑

|α|=n+1

∑
i∈Λ0(x,h)

Rα(xi, x)Vi(xi − x)αwh(|xi − x|).



Truncation error estimates in a generalized particle method 9

Moreover, by Hypothesis 1, we have

Πhv(x)− v(x) =
∑

0≤|α|≤n

Dαv(x)

α!
Iα(x)

+
∑

|α|=n+1

∑
i∈Λ0(x,h)

Rα(xi, x)Vi(xi − x)αwh(|xi − x|). (16)

Because

|Rα(y, z)| ≤
1

α!
|v|C|α|(ΩH) , y ∈ Ω, z ∈ B(y, h), α ∈ Ad, (17)

we have∣∣∣∣∣∣
∑

|α|=n+1

∑
i∈Λ0(x,h)

Rα(xi, x)Vi(xi − x)αwh(|xi − x|)

∣∣∣∣∣∣
≤ c|Jn+1(x)| |v|Cn+1(ΩH) . (18)

Moreover, we have∣∣∣∣∣∣
∑

0≤|α|≤n

Dαv(x)

α!
Iα(x)

∣∣∣∣∣∣ ≤ c ∥v∥Cn(Ω)

∑
0≤|α|≤n

|Iα(x)| . (19)

Therefore, from (16), (18), and (19), we obtain (12).

Next, we prove (13). From (3) and (15) with ℓ = n+ 1, we have

∇hv(x) = d
∑

1≤|α|≤n+1

Dαv(x)

α!

∑
i∈Λ(x,h)

Vi
(xi − x)(xi − x)α

|xi − x|2 wh(|xi − x|)

+ d
∑

|α|=n+2

∑
i∈Λ(x,h)

Rα(xi, x)Vi
(xi − x)(xi − x)α

|xi − x|2 wh(|xi − x|).

Because for β ∈ Ad with |β| = 2,

d

∫
Rd

yβ

|y|2wh(|y|)dy =

{
1, all elements of β are even,

0, otherwise,
(20)

we have

d
∑

|α|=1

Dαv(x)

α!

∫
Rd

yyα

|y|2 wh(|y|)dy = ∇v(x). (21)

Hypothesis 1 with n yields∫
Rd

yyα

|y|2 wh(|y|)dy = 0 α ∈ Ad with 2 ≤ |α| ≤ n+ 1. (22)
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From (21) and (22), we have

∇hv(x)−∇v(x) = −d
∑

1≤|α|≤n+1

Dαv(x)

α!

∫
Rd

yyα

|y|2 wh(|y|)dy

+ d
∑

1≤|α|≤n+1

Dαv(x)

α!

∑
i∈Λ(x,h)

Vi
(xi − x)(xi − x)α

|xi − x|2 wh(|xi − x|)

+ d
∑

|α|=n+2

∑
i∈Λ(x,h)

Rα(xi, x)Vi
(xi − x)(xi − x)α

|xi − x|2 wh(|xi − x|). (23)

From (17), we have∣∣∣∣∣∣
∑

|α|=n+2

∑
i∈Λ(x,h)

Rα(xi, x)Vi
(xi − x)(xi − x)α

|xi − x|2 wh(|xi − x|)

∣∣∣∣∣∣
≤ c|Jn+1(x)| |v|Cn+2(ΩH) . (24)

Moreover, we have

∑
1≤|α|≤n+1

∣∣∣∣∣∣
∑

i∈Λ(x,h)

Vi
(xi − x)(xi − x)α

|xi − x|2 wh(|xi − x|)−
∫
Rd

yyα

|y|2 wh(|y|)dy

∣∣∣∣∣∣
≤ c

∑
2≤|α|≤n+2

|Iα,2(x)|. (25)

Therefore, from (23), (24), and (25), we obtain (13).
Finally, we prove (14). From (4) and (15) with ℓ = n+ 2, we have

∆hv(x) = 2d
∑

1≤|α|≤n+2

Dαv(x)

α!

∑
i∈Λ(x,h)

Vi
(xi − x)α

|xi − x|2 wh(|xi − x|)

+ 2d
∑

|α|=n+3

∑
i∈Λ(x,h)

Rα(xi, x)Vi
(xi − x)α

|xi − x|2 wh(|xi − x|).

From (20), we have

2d
∑

|α|=2

Dαv(x)

α!

∫
Rd

yα

|y|2wh(|y|)dy = ∆v(x).

Hypothesis 1 with n yields∫
Rd

yα

|y|2wh(|y|)dy = 0, α ∈ Ad with |α| = 1 or 3 ≤ |α| ≤ n+ 2.

Therefore, we have

∆hv(x)−∆v(x) = 2d
∑

1≤|α|≤n+2

Dαv(x)

α!
Iα,2(x)

+ 2d
∑

|α|=n+3

∑
i∈Λ(x,h)

Rα(xi, x)Vi
(xi − x)α

|xi − x|2 wh(|xi − x|). (26)
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From (17), we have∣∣∣∣∣∣
∑

|α|=n+3

∑
i∈Λ(x,h)

Rα(xi, x)Vi
(xi − x)α

|xi − x|2 wh(|xi − x|)

∣∣∣∣∣∣
≤ c|Jn+1(x)| |v|Cn+3(ΩH) . (27)

Moreover, we have∣∣∣∣∣∣
∑

1≤|α|≤n+2

Dαv(x)

α!
Iα,2(x)

∣∣∣∣∣∣ ≤ c ∥v∥Cn+2(Ω)

∑
1≤|α|≤n+2

|Iα,2(x)| . (28)

Therefore, from (26), (27), and (28), we obtain (14).

Next, we show estimates of Iα, Iα,ℓ, and Jℓ.

Lemma 2 There exists a positive constant c independent of N such that

∥Iα∥C(Ω) ≤ c
(
1 + 2

rN
h

)d (rN + dN
h

)
, α ∈ Ad. (29)

Proof We arbitrarily fix x ∈ Ω, α ∈ Ad, and particle volume decomposition Ξ =
{ξi | i = 1, 2, . . . , N} and split Iα into

Iα(x) = E1(x) + E2(x) + E3(x)

with

E1(x) :=
∑

i∈Λ0(x,h)

Vi(xi − x)αwh(|xi − x|)

−
N∑
i=1

N∑
j=1

|σj ∩ ξi| (xi − x)αwh(|xj − x|),

E2(x) :=
N∑
i=1

N∑
j=1

(xi − x)α
∫
σj∩ξi

{wh(|xj − x|)− wh(|y − x|)}dy,

E3(x) :=
N∑
i=1

N∑
j=1

(xi − x)α
∫
σj∩ξi

wh(|y − x|)dy −
∫
Rd

yαwh(|y|)dy.

Then, we estimate E1, E2, and E3.
First, we estimate E1. Because

N∑
j=1

|σj ∩ ξi| = Vi, i = 1, 2, . . . , N, (30)

we can rewrite E1 as

E1 =
N∑
i=1

N∑
j=1

|σj ∩ ξi| (xi − x)α{wh(|xi − x|)− wh(|xj − x|)}.
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From

|(y − x)α| ≤ diam(ΩH)|α|, y ∈ ΩH , (31)

we obtain

|E1(x)| ≤ c
N∑
i=1

N∑
j=1

|σj ∩ ξi| |wh(|xi − x|)− wh(|xj − x|)|. (32)

From

|wh(|y − x|)− wh(|z − x|)| = 0, ∀y, z ∈ Rd \B(x, h),

we have

N∑
i=1

N∑
j=1

|σj ∩ ξi| |wh(|xi − x|)− wh(|xj − x|)|

≤
∑

i∈Λ0(x,h)

N∑
j=1

|σj ∩ ξi| |wh(|xi − x|)− wh(|xj − x|)|

+
N∑
i=1

∑
j∈Λ0(x,h)

|σj ∩ ξi| |wh(|xi − x|)− wh(|xj − x|)|

=
∑

i∈Λ0(x,h)

N∑
j=1

(|σi ∩ ξj |+ |σj ∩ ξi|)|wh(|xi − x|)− wh(|xj − x|)|. (33)

Because wh is absolutely continuous, we have

|wh(|y − x|)− wh(|z − x|)|

=

∣∣∣∣{(y − x)− (z − x)}
∫ 1

0

w′
h(t|y − x|+ (1− t)|z − x|)dt

∣∣∣∣
≤ |y − z|

∣∣∣∣∫ 1

0

w′
h(t|y − x|+ (1− t)|z − x|)dt

∣∣∣∣
≤ |y − z|

∫ h

0

∣∣w′
h(r)

∣∣ dr
≤ |y − z|

hd+1

∫ 1

0

∣∣w′(r)
∣∣ dr, (34)

for all y, z ∈ Rd. Here, w′ and w′
h are dw/dr and dwh/dr, respectively. Moreover,

we have

∑
i∈Λ0(x,r)

|σi| ≤ |B(x, 1)| (r + rN )d , ∀r ∈ R+
0 . (35)



Truncation error estimates in a generalized particle method 13

From (33), (34), and (35), we have

N∑
i=1

N∑
j=1

|σj ∩ ξi| |wh(|xi − x|)− wh(|xj − x|)|

=
c

hd+1

∑
i∈Λ0(x,h)

N∑
j=1

(|σi ∩ ξj |+ |σj ∩ ξi|)|xi − xj |

≤ c

hd+1

∑
i∈Λ0(x,h)

|σi|
N∑

j=1

|σi ∩ ξj |+ |σj ∩ ξi|
|σi|

|xi − xj |

≤ c
dΞ
hd+1

∑
i∈Λ0(x,h)

|σi|

≤ c
(
1 +

rN
h

)d dΞ
h

. (36)

Therefore, from (32) and (36), we obtain

|E1(x)| ≤ c
(
1 +

rN
h

)d dΞ
h

.

Next, we estimate E2. Because supp(wh) = [0, h] and σj ⊂ B(xj , rN ), we have∫
σj∩ξi

|wh(|xj−x|)−wh(|y−x|)|dy = 0, i = 1, 2, . . . , N, j ̸∈ Λ0(x, h+rN ). (37)

From (37), we have

N∑
i=1

N∑
j=1

∫
σj∩ξi

|wh(|xj − x|)− wh(|y − x|)|dy

=
N∑
i=1

∑
j∈Λ0(x,h+rN )

∫
σj∩ξi

|wh(|xj − x|)− wh(|y − x|)|dy

=
∑

j∈Λ0(x,h+rN )

∫
σj

|wh(|xj − x|)− wh(|y − x|)|dy.

Moreover, from (34) and (35), we have

N∑
i=1

N∑
j=1

∫
σj∩ξi

|wh(|xj − x|)− wh(|y − x|)|dy ≤ c

hd+1

∑
j∈Λ0(x,h+rN )

∫
σj

|xj − y|dy

≤ c
rN
hd+1

∑
j∈Λ0(x,h+rN )

|σj |

≤ c
(
1 + 2

rN
h

)d rN
h

. (38)
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Therefore, from (31) and (38), we obtain

|E2(x)| ≤
N∑
i=1

N∑
j=1

|(xi − x)α|
∫
σj∩ξi

|wh(|xj − x|)− wh(|y − x|)| dy

≤ c
N∑
i=1

N∑
j=1

∫
σj∩ξi

|wh(|xj − x|)− wh(|y − x|)|dy

≤ c
(
1 + 2

rN
h

)d rN
h

.

Finally, we estimate E3. Because∫
Rd

yαwh(|y|)dy =

∫
ΩH

(y − x)αwh(|y − x|)dy,

we can rewrite E3 as

E3(x) =
N∑
i=1

N∑
j=1

∫
σj∩ξi

{(xi − x)α − (y − x)α}wh(|y − x|)dy.

Because E3 = 0 when |α| = 0, we estimate when |α| ≥ 1. Let βk (k = 1, 2, . . . , |α|)
be d-dimensional multi-indices with satisfying

|α|∑
k=1

βk = α, |βk| = 1 (k = 1, 2, . . . , |α|).

Then, we have, for all y, z ∈ Rd,

|yα − zα| ≤
∣∣∣yα − yα−β1zβ1

∣∣∣+ ∣∣∣yα−β1zβ1 − zα
∣∣∣

≤ |y − z| |y||α|−1 +
∣∣∣yα−β1 − zα−β1

∣∣∣ |z|
≤ |y − z| |y||α|−1 + |y − z| |y||α|−2|z|+

∣∣∣yα−β1−β2 − zα−β1−β2

∣∣∣ |z|2
...

≤ |y − z|
|α|∑
k=1

|y||α|−k|z|k−1. (39)

From (31) and (39), we obtain

|E3(x)| ≤
N∑
i=1

N∑
j=1

∫
σj∩ξi

|(xi − x)α − (y − x)α||wh(|y − x|)|dy

≤ c
N∑
i=1

N∑
j=1

∫
σj∩ξi

|y − xi||wh(|y − x|)|dy. (40)

By supp(wh) = [0, h] and σj ⊂ B(xj , rN ), if j ̸∈ Λ0(x, h+ rN ), then∫
σj∩ξi

|y − xi||wh(|y − x|)|dy = 0, i = 1, 2, . . . , N. (41)
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Moreover, from w ∈ W ⊂ C(R+
0 ), we have

|wh(|y − x|)| = 1

hd

∣∣∣∣w( |y − x|
h

)∣∣∣∣ ≤ 1

hd
∥w∥C(R+

0 ) , ∀y ∈ ΩH . (42)

From (35), (41), and (42), we have

N∑
i=1

N∑
j=1

∫
σj∩ξi

|y − xi||wh(|y − x|)|dy

=
N∑
i=1

∑
j∈Λ0(x,h+rN )

∫
σj∩ξi

|y − xi||wh(|y − x|)|dy

≤ c

hd

N∑
i=1

∑
j∈Λ0(x,h+rN )

∫
σj∩ξi

|y − xi|dy

≤ c

hd

N∑
i=1

∑
j∈Λ0(x,h+rN )

∫
σj∩ξi

(|y − xj |+ |xj − xi|)dy

≤ c

hd

rN
∑

j∈Λ0(x,h+rN )

|σj |+
∑

j∈Λ0(x,h+rN )

N∑
i=1

|σj ∩ ξi| |xj − xi|


≤ c

hd

 ∑
j∈Λ0(x,h+rN )

|σj |

{rN + max
j=1,2,...,N

(
N∑
i=1

|σi ∩ ξj |+ |σj ∩ ξi|
|σj |

|xj − xi|

)}

≤ c
(
1 + 2

rN
h

)d
(rN + dΞ) . (43)

Therefore, from (40), (43), and h ≤ H, we obtain

|E3(x)| ≤ c
(
1 + 2

rN
h

)d
(rN + dΞ)

≤ c
(
1 + 2

rN
h

)d rN + dΞ
h

.

From the estimates of E1, E2, and E3, we obtain

∥Iα∥C(Ω) ≤ c
(
1 + 2

rN
h

)d rN + dΞ
h

.

Because Ξ is arbitrary, we establish (29).

Lemma 3 Suppose that a reference weight function w satisfies Hypothesis 2 with
k. Then, there exists a positive constant c independent of N such that for all α ∈ Ad

and ℓ ∈ N with 1 ≤ ℓ− k ≤ |α|,

∥Iα,ℓ∥C(Ω) ≤ c
(
1 + 2

rN
h

)d rN + dN
hk+1

. (44)

Proof We arbitrarily fix x ∈ Ω, α ∈ Ad, particle volume decomposition Ξ = {ξi |
i = 1, 2, . . . , N}, and ℓ ∈ N with 1 ≤ ℓ− k ≤ |α| and split Iα,ℓ into

Iα,ℓ(x) = E4(x) + E5(x) + E6(x)



16 Yusuke Imoto

with

E4(x) :=
∑

i∈Λ(x,h)

Vi
(xi − x)α

|xi − x|ℓ wh(|xi − x|)

−
∑

i∈Λ(x,∞)

∑
j∈Λ(x,∞)

|σj ∩ ξi|
(xi − x)α

|xi − x|ℓ−k

wh(|xj − x|)
|xj − x|k ,

E5(x) :=
∑

i∈Λ(x,∞)

∑
j∈Λ(x,∞)

|σj ∩ ξi|
(xi − x)α

|xi − x|ℓ−k

wh(|xj − x|)
|xj − x|k

−
∑

i∈Λ(x,∞)

N∑
j=1

(xi − x)α

|xi − x|ℓ−k

∫
σj∩ξi

wh(|y − x|)
|y − x|k dy,

E6(x) :=
∑

i∈Λ(x,∞)

N∑
j=1

(xi − x)α

|xi − x|ℓ−k

∫
σj∩ξi

wh(|y − x|)
|y − x|k dy

−
∫
Rd

yα

|y|ℓwh(|y|)dy.

Then, we estimate E4, E5, and E6.

First, we estimate E4 and set w(k) as (8) and w
(k)
h as

w
(k)
h (r) :=

1

hd+k
w(k)

( r
h

)
, r ∈ R+

0 .

Then, from (30), we can rewrite E4 as

E4(x) =
∑

i∈Λ(x,∞)

N∑
j=1

|σj ∩ ξi|
(xi − x)α

|xi − x|ℓ−k
{w(k)

h (|xi − x|)− w
(k)
h (|xj − x|)}.

Because∣∣∣∣ (xi − x)α

|xi − x|ℓ−k

∣∣∣∣ ≤ |xi − x||α|−ℓ+k ≤ diam(ΩH)|α|−ℓ+k, i ∈ Λ(x,∞), (45)

we obtain

|E4(x)| ≤ c
N∑
i=1

N∑
j=1

|σj ∩ ξi|
∣∣∣w(k)

h (|xi − x|)− w
(k)
h (|xj − x|)

∣∣∣ .
From supp(w

(k)
h ) = [0, h], we have

w
(k)
h (|xi − x|)− w

(k)
h (|xj − x|) = 0, i, j ̸∈ Λ(x, h).

Thus, we obtain

|E4(x)| ≤ c

( ∑
i∈Λ(x,h)

N∑
j=1

|σj ∩ ξi|
∣∣∣w(k)

h (|xi − x|)− w
(k)
h (|xj − x|)

∣∣∣
+

N∑
i=1

∑
j∈Λ(x,h)

|σj ∩ ξi|
∣∣∣w(k)

h (|xi − x|)− w
(k)
h (|xj − x|)

∣∣∣ ). (46)
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Using an argument similar to (34), if w satisfies Hypothesis 2 with k, then for all
y, z ∈ Rd,

|w(k)
h (|y − x|)− w

(k)
h (|z − x|)| ≤ |y − z|

hd+k+1

∫ 1

0

∣∣∣(w(k))′(r)
∣∣∣ dr. (47)

From (46) and (47), we obtain

|E4(x)| ≤
c

hd+k+1

∑
i∈Λ(x,h)

N∑
j=1

(|σi ∩ ξj |+ |σj ∩ ξi|) |xi − xj |

≤ c

hd+k+1

∑
i∈Λ(x,h)

|σi|
N∑

j=1

|σi ∩ ξj |+ |σj ∩ ξi|
|σi|

|xi − xj |

≤ c
(
1 +

rN
h

)d dΞ
hk+1

.

Next, we estimate E5. By using w
(k)
h , we can rewrite E5 as

E5(x) =
∑

i∈Λ(x,∞)

N∑
j=1

(xi − x)α

|xi − x|ℓ−k

∫
σj∩ξi

{
w

(k)
h (|xj − x|)− w

(k)
h (|y − x|)

}
dy.

From (45), we obtain

|E5(x)| ≤ c
N∑
i=1

N∑
j=1

∫
σj∩ξi

∣∣∣w(k)
h (|xj − x|)− w

(k)
h (|y − x|)

∣∣∣ dy
≤ c

N∑
j=1

∫
σj

∣∣∣w(k)
h (|xj − x|)− w

(k)
h (|y − x|)

∣∣∣dy.
By supp(w

(k)
h ) = [0, h] and σj ⊂ B(xj , rN ), we have∫
σj

∣∣∣w(k)
h (|xj − x|)− w

(k)
h (|y − x|)

∣∣∣ dy = 0, j ̸∈ Λ(x, h+ rN ). (48)

From (47) and (48), we obtain

|E5(x)| ≤ c
∑

j∈Λ0(x,h+rN )

∫
σj

∣∣∣w(k)
h (|xj − x|)− w

(k)
h (|y − x|)

∣∣∣ dy
≤ c

hd+k+1

∑
j∈Λ0(x,h+rN )

∫
σj

|xj − y|dy

≤ c
rN

hd+k+1

∑
j∈Λ0(x,h+rN )

|σj |

≤ c
(
1 + 2

rN
h

)d rN
hk+1

.
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Finally, we estimate E6. Using w
(k)
h , we can rewrite E6 as

E6(x) =
∑

i∈Λ(x,∞)

N∑
j=1

∫
σj∩ξi

{
(xi − x)α

|xi − x|ℓ−k
− (y − x)α

|y − x|ℓ−k

}
w

(k)
h (|y − x|)dy

−
N∑
i=1

N∑
j=1

∫
σj∩ξ∗

i (x)

(y − x)α

|y − x|ℓ−k
w

(k)
h (|y − x|)dy,

where ξ∗i (x) is

ξ∗i (x) =

{
ξi, x = xi,

∅, otherwize.

For α ∈ Ad, let βj (j = 1, 2, . . . , |α|) be d-dimensional multi-indices satisfying

|βj | = 1 and

|α|∑
j=1

βj = α.

Let β∗
j (j = 0, 1, . . . , |α|) be d-dimensional multi-indices defined as

β∗
j :=


0, j = 0,
j∑

ℓ=1

βℓ, j = 1, 2, . . . , |α|.

For all y, z ∈ Rd \ {0}, when |α| = ℓ− k, we have∣∣∣∣ yα

|y|ℓ−k
− zα

|z|ℓ−k

∣∣∣∣ ≤ ℓ−k−1∑
j=0

∣∣∣∣∣ yβ
∗
|α|−jzβ

∗
j

|y|ℓ−k−j |z|j − yβ
∗
|α|−j−1zβ

∗
j+1

|y|ℓ−k−j−1|z|j+1

∣∣∣∣∣
≤

ℓ−k−1∑
j=0

∣∣∣∣∣yβ
∗
|α|−jzβ

∗
j − yβ

∗
|α|−j−1zβ

∗
j+1

|y|ℓ−k−j |z|j

∣∣∣∣∣
+

ℓ−k−1∑
j=0

∣∣∣∣∣yβ
∗
|α|−j−1zβ

∗
j+1

|y|ℓ−k−j |z|j − yβ
∗
|α|−j−1zβ

∗
j+1

|y|ℓ−k−j−1|z|j+1

∣∣∣∣∣
≤ 2(ℓ− k)

|y − z|
|y| . (49)

Moreover, from (39) and (49), when |α| > ℓ− k, we have∣∣∣∣ yα

|y|ℓ−k
− zα

|z|ℓ−k

∣∣∣∣ ≤
∣∣∣∣∣ yα

|y|ℓ−k
− yβ

∗
|α|−ℓ+kzβ

∗
ℓ−k

|z|ℓ−k

∣∣∣∣∣
+

∣∣∣∣∣yβ
∗
|α|−ℓ+kzβ

∗
ℓ−k

|z|ℓ−k
− zα

|z|ℓ−k

∣∣∣∣∣
≤ |y||α|−ℓ+k

∣∣∣∣∣ yβ
∗
ℓ−k

|y|ℓ−k
− zβ

∗
ℓ−k

|z|ℓ−k

∣∣∣∣∣+ ∣∣∣yβ∗
|α|−ℓ+k − zβ

∗
|α|−ℓ+k

∣∣∣
≤ 2(ℓ− k)|y − z||y||α|−ℓ+k−1

+ |y − z|
|α|−ℓ+k−1∑

j=0

|y|j |z||α|−ℓ+k−1−j .



Truncation error estimates in a generalized particle method 19

Therefore, when |α| ≥ ℓ− k, we have for all y ∈ ΩH \ {x} and i ∈ Λ(x,∞),∣∣∣∣ (xi − x)α

|xi − x|ℓ−k
− (y − x)α

|y − x|ℓ−k

∣∣∣∣ ≤ c
|y − xi|
|y − x| . (50)

From (50), we obtain

|E6(x)| ≤
N∑
i=1

N∑
j=1

∫
σj∩ξi

∣∣∣∣ (xi − x)α

|xi − x|ℓ−k
− (y − x)α

|y − x|ℓ−k

∣∣∣∣ ∣∣∣w(k)
h (|y − x|)

∣∣∣ dy
+

∣∣∣∣∣∣
N∑
i=1

N∑
j=1

∫
σj∩ξ∗

i (x)

(y − x)α

|y − x|ℓ−k
w

(k)
h (|y − x|)dy

∣∣∣∣∣∣
≤ c

N∑
i=1

N∑
j=1

∫
σj∩ξi

|y − xi|
∣∣∣w(k+1)

h (|y − x|)
∣∣∣ dy

+

∣∣∣∣∣∣
N∑
i=1

N∑
j=1

∫
σj∩ξ∗

i (x)

(y − x)α

|y − x|ℓ−k
w

(k)
h (|y − x|)dy

∣∣∣∣∣∣ .
Because |α| ≥ ℓ− k, we have∣∣∣∣∣∣

N∑
i=1

N∑
j=1

∫
σj∩ξ∗

i (x)

(y − x)α

|y − x|ℓ−k
w

(k)
h (|y − x|)dy

∣∣∣∣∣∣
≤ c

N∑
i=1

N∑
j=1

∫
σj∩ξ∗

i (x)

∣∣∣∣ (y − x)α

|y − x|ℓ−k−1

∣∣∣∣ ∣∣∣w(k+1)
h (|y − x|)

∣∣∣ dy
≤ c

N∑
i=1

N∑
j=1

∫
σj∩ξ∗

i (x)

|y − x|
∣∣∣w(k+1)

h (|y − x|)
∣∣∣ dy.

Therefore, we have

|E6(x)| ≤ c
N∑
i=1

N∑
j=1

∫
σj∩ξi

|y − xi|
∣∣∣w(k+1)

h (|y − x|)
∣∣∣ dy.

Because for all y ∈ ΩH ,∣∣∣w(k+1)
h (|y − x|)

∣∣∣ = 1

hd+k+1

∣∣∣∣w(k+1)

(
|y − x|

h

)∣∣∣∣ ≤ 1

hd+k+1
∥w(k+1)∥C(R+

0 ),

by the same procedure as (43), we have

N∑
i=1

N∑
j=1

∫
σj∩ξi

|y − xi|
∣∣∣w(k+1)

h (|y − x|)
∣∣∣ dy ≤ c

(
1 + 2

rN
h

)d rN + dΞ
hk+1

.

Therefore, we obtain

|E6(x)| ≤ c
(
1 + 2

rN
h

)d rN + dΞ
hk+1

.
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From the estimates of E4, E5, and E6, we obtain

∥Iα,ℓ∥C(Ω) ≤ c
(
1 + 2

rN
h

)d rN + dΞ
hk+1

.

Because Ξ is arbitrary, we establish (44).

Lemma 4 There exists a positive constant c independent of N such that

∥Jℓ∥C(Ω) ≤ c

{(
1 + 2

rN
h

)d rN + dN
h

+ hℓ

}
, ℓ ∈ N. (51)

Proof We arbitrarily fix x ∈ Ω and particle volume decomposition Ξ = {ξi | i =
1, 2, . . . , N}, and split Jℓ into

Jℓ(x) = E7(x) + E8(x) + E9(x) + E10(x)

with

E7(x) := Jℓ(x)−
N∑
i=1

N∑
j=1

|σj ∩ ξi| |xi − x|ℓ|wh(|xj − x|)|,

E8(x) :=

N∑
i=1

N∑
j=1

|xi − x|ℓ
∫
σj∩ξi

{|wh(|xj − x|)| − |wh(|y − x|)|}dy,

E9(x) :=
N∑
i=1

N∑
j=1

∫
σj∩ξi

{|xi − x|ℓ − |y − x|ℓ}|wh(|y − x|)|dy,

E10(x) :=

∫
Rd

|y − x|ℓ|wh(|y − x|)|dy.

Then, we estimate E7, E8, E9, and E10.
From (30), we can rewrite E7 as

E7(x) =
N∑
i=1

N∑
j=1

|σj ∩ ξi| |xi − x|ℓ{|wh(|xi − x|)| − |wh(|xj − x|)|}.

For all y ∈ ΩH , we have
|y − x|ℓ ≤ diam(ΩH)ℓ. (52)

From (36) and (52), we obtain

|E7(x)| ≤
N∑
i=1

N∑
j=1

|σj ∩ ξi| |xi − x|ℓ
∣∣|wh(|xi − x|)| − |wh(|xj − x|)|

∣∣
≤ c

N∑
i=1

N∑
j=1

|σj ∩ ξi|
∣∣|wh(|xi − x|)| − |wh(|xj − x|)|

∣∣
≤ c

N∑
i=1

N∑
j=1

|σj ∩ ξi| |wh(|xi − x|)− wh(|xj − x|)|

≤ c
(
1 +

rN
h

)d dΞ
h

.
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From (38) and (52), we obtain

|E8(x)| ≤
N∑
i=1

N∑
j=1

|xi − x|ℓ
∫
σj∩ξi

∣∣|wh(|xj − x|)| − |wh(|y − x|)|
∣∣dy

≤ c
N∑
i=1

N∑
j=1

∫
σj∩ξi

∣∣|wh(|xj − x|)| − |wh(|y − x|)|
∣∣dy

≤ c
N∑
i=1

N∑
j=1

∫
σj∩ξi

|wh(|xj − x|)− wh(|y − x|)|dy

≤ c
(
1 + 2

rN
h

)d rN
h

.

For all xi ∈ XN and y ∈ ΩH , we have

∣∣∣|xi − x|ℓ − |y − x|ℓ
∣∣∣ = |(xi − x)− (y − x)|

ℓ∑
k=1

(xi − x)k−1(y − x)ℓ−k

≤ ℓdiam(ΩH)ℓ−1 |y − xi| . (53)

From (43), (53), and h < H, we obtain

|E9(x)| ≤
N∑
i=1

N∑
j=1

∫
σj∩ξi

||xi − x|ℓ − |y − x|ℓ||wh(|y − x|)|dy

≤ c
N∑
i=1

N∑
j=1

∫
σj∩ξi

|y − xi||wh(|y − x|)|dy

≤ c
(
1 + 2

rN
h

)d
(rN + dΞ)

≤ c
(
1 + 2

rN
h

)d rN + dΞ
h

.

From (1), we obtain

|E10(x)| ≤
∫
Rd

|y|ℓ|wh(|y|)|dy = hℓ

∫
Rd

|y|ℓ|w(|y|)|dy.

From the estimates of E7, E8, E9, and E10, we obtain

∥Jℓ∥C(Ω) ≤ c

{(
1 + 2

rN
h

)d rN + dΞ
h

+ hℓ

}
.

Because Ξ is arbitrary, we establish (51).

Using the lemmas defined above, we now prove Theorem 3.

Proof (Theorem 3) By Lemmas 1, 2, and 4, we have for all v ∈ Cn+1(ΩH)

∥v −Πhv∥C(Ω) ≤ c

{(
1 + 2

rN
hN

)d
rN + dN

hN
+ hn+1

N

}
∥v∥Cn+1(ΩH) . (54)
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Fig. 4 Particle distribution XN with ∆x = 2−5 (N = 1, 521). The gray area represents Ω.

Moreover, by Lemmas 1, 3, and 4, when w satisfies Hypothesis 2 with k = 0, we
have for all v ∈ Cn+2(ΩH)

∥∇v −∇hv∥C(Ω) ≤ c

{(
1 + 2

rN
hN

)d
rN + dN

hN
+ hn+1

N

}
∥v∥Cn+2(ΩH) , (55)

and when w satisfies Hypothesis 2 with k = 1 for all v ∈ Cn+3(ΩH),

∥∆v −∆hv∥C(Ω) ≤ c

{(
1 + 2

rN
hN

)d
rN + dN

h2
N

+ hn+1
N

}
∥v∥Cn+3(ΩH) . (56)

Because the family {(XN ,VN , hN )}N→∞ is regular, by applying (7) to (54), (55),
and (56), we obtain (9), (10), and (11), respectively. We now conclude the proof
of Theorem 3.

5 Numerical results

Set Ω = (0, 1)2 and H = 0.1. Then, ΩH = (−0.1, 1.1)2. We now compute the
truncation errors of v : ΩH → R, which are defined as v(x, y) = sin(2π(x + y)).
Particle distribution XN is set as

XN =
{(

(i+ η
(1)
ij )∆x, (j + η

(2)
ij )∆x

)
∈ ΩH ; i, j ∈ Z

}
,

where ∆x is taken by 2−5, 2−6, . . . , 2−12 and η
(k)
ij (i, j ∈ Z, k = 1, 2) are random

numbers satisfying |η(k)ij | < 1/4. Particle distribution XN with ∆x = 2−5 is shown
in Figure 4. Particle volume set VN is defined as

VN =

{
Vi =

|ΩH |
N

∣∣∣∣ i = 1, 2, . . . , N

}
.

For m = 1, 3, 5, the influence radius hN is set as

hN = 2.6× 25/m−5∆x1/m.
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Note that if ∆x = 2−5, then h = 2.6 × 2−5 for all m. Using the discrete param-
eters above, the covering radius rN satisfies rN ≤

√
2(1 + 1/4)∆x/2. Moreover,

the Voronoi deviation dN satisfies dN ≤ 64(1 +
√
2)∆x/π. Therefore, the family

{(XN ,VN , hN )} is regular with order m.

For the interpolant, we consider the following three cases of reference weight
functions:

(Π1) w(r) :=
3

π

{
1− r, 0 ≤ r < 1,

0, 1 ≤ r,

(Π2) w(r) :=
40

7π


1− 6r2 + 6r3, 0 ≤ r <

1

2
,

2(1− r)3,
1

2
≤ r < 1,

0, 1 ≤ r,

(Π3) w(r) :=
5

π

(1− r)(2− 3r), 0 ≤ r < 1,

0, 1 ≤ r.

(Π1) is the lowest-order polynomial function belonging to W. (Π2) is the cubic
B-spline commonly used in the SPH method and belonging to W. (Π3) is the
lowest-order polynomial function belonging to W that satisfies Hypothesis 1 with
n = 3.

For the approximate gradient operator, we consider the following three cases
of reference weight functions:

(∇1) w(r) :=
6

π

{
r(1− r), 0 ≤ r < 1,

0, 1 ≤ r,

(∇2) w(r) :=
40

7π


6r2 − 9r3, 0 ≤ r <

1

2
,

3r(1− r)2,
1

2
≤ r < 1,

0, 1 ≤ r,

(∇3) w(r) :=
15

2π

{
r(1− r)(5− 7r), 0 ≤ r < 1,

0, 1 ≤ r.

(∇1) is the lowest-order polynomial function belonging to W that satisfies Hy-
pothesis 2 with k = 0. (∇2) is chosen so that the approximate gradient operator
(3) with (∇2) coincides with that in the SPH method with the cubic B-spline (see
Appendix A). (∇3) is the lowest-order polynomial function belonging to W that
satisfies Hypothesis 1 with n = 3 and Hypothesis 2 with k = 0.



24 Yusuke Imoto

For the approximate Laplace operator, we consider the following three cases of
reference weight functions:

(∆1) w(r) :=
10

π

{
r2(1− r), 0 ≤ r < 1,

0, 1 ≤ r,

(∆2) w(r) :=
40

7π


6r2 − 9r3, 0 ≤ r <

1

2
,

3r(1− r)2,
1

2
≤ r < 1,

0, 1 ≤ r,

(∆3) w(r) :=
30

π

{
r2(1− r)(3− 4r), 0 ≤ r < 1,

0, 1 ≤ r.

(∆1) is the lowest-order polynomial function belonging to W that satisfies Hy-
pothesis 2 with k = 1. (∆2) is chosen so that approximate Laplace operator (4)
with (∆2) coincides with that in the SPH method with the cubic B-spline (see
Appendix A). (∆3) is the lowest-order polynomial function belonging to W that
satisfies Hypothesis 1 with n = 3 and Hypothesis 2 with k = 1.

The above settings were used in the computation of the following relative errors

∥v −Πhv∥ℓ∞(Ω)

∥v∥C(Ω)

,
∥∇v −∇hv∥ℓ∞(Ω)

∥∇v∥C(Ω)

,
∥∆v −∆hv∥ℓ∞(Ω)

∥∆v∥C(Ω)

.

Here, the discrete norm ∥·∥ℓ∞(Ω) is defined as

∥v∥ℓ∞(Ω) := max
i∈Λ(Ω)

|v(xi)|.

Figure 5 shows graphs of the relative errors of (a) interpolant Πh, (b) approxi-
mate gradient operator ∇h, and (c) approximate Laplace operator ∆h versus the
influence radius hN with regular orders m = 1, 3, 5. In Figure 5, the slopes of the
triangles show the theoretical convergence rates obtained via Theorem 3. Table 1
lists the numerical and theoretical convergence rates obtained from the cases of
∆x = 2−11 and 2−12, where the theoretical convergence rates correspond to The-
orem 3. In the case of m = 1, as the settings could not be applied to Theorem 3,
only numerical results without convergence were obtained. In contrast, the settings
in cases m = 3 and 5 could be applied Theorem 3; thus, the numerical results with
convergence were obtained. Moreover, the approximate operators with reference
weight functions satisfying Hypothesis 1 with n = 3 became higher convergence
orders in the cases where m = 5 as per Theorem 3.

6 Conclusions

We analyzed truncation errors in a generalized particle method, which is a wider
class of particle methods that includes commonly used methods such as the SPH
and MPS methods. In our analysis, we introduced two indicators: the first was the
covering radius, which represents the maximum radius of the Voronoi region asso-
ciated with the particle distribution, while the second was the Voronoi deviation,
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Fig. 5 Graphs of the relative errors of (a) the interpolant, (b) approximate gradient operator,
and (c) approximate Laplace operator versus the influence radius with regular orders m =
1, 3, 5.

which indicates the deviation between particle volumes and Voronoi volumes. With
the covering radius and Voronoi deviation, we introduced a regularity of a family
of discrete parameters, which includes the particle distribution, particle volume
set, and influence radius associated with the number of particles. Moreover, we
introduced two hypotheses of reference weight functions. With the regularity and
hypotheses of reference weight functions, we established truncation error estimates
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Table 1 Numerical and theoretical convergence rates of (a) the interpolant, (b) approximate
gradient operator, and (c) approximate Laplace operator with regular orders m = 1, 3, 5. The
numerical convergence rates were obtained for the cases of ∆x = 2−11 and 2−12.

m = 1 m = 3 m = 5

Numer. Theor. Numer. Theor. Numer. Theor.

(a) Interpolant

(Π1) -0.10 N/A 2.02 2 2.00 2

(Π2) 0.05 N/A 2.13 2 2.01 2

(Π3) 0.00 N/A 4.20 2 7.41 4

(b) Gradient

(∇1) -0.05 N/A 2.11 2 2.02 2

(∇2) -0.02 N/A 2.08 2 2.03 2

(∇3) -0.06 N/A 3.56 2 7.69 4

(c) Laplacian

(∆1) -1.14 N/A 2.91 1 2.05 2

(∆2) -1.09 N/A 2.39 1 2.23 2

(∆3) -1.02 N/A 2.76 1 7.50 3

for the continuous norm. The convergence rates are dependent on the regular order
and order of the reference weight functions appearing in a hypothesis. Moreover, as
it was possible to validate the conditions by calculation, we showed the numerical
convergence orders were in good agreement with the theoretical ones.

In a forthcoming paper, we plan to establish error estimates of the generalized
particle method for the Poisson and heat equations.
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A Description of conventional particle methods by the generalized
particle method

This appendix provides a description of conventional particle methods, such as the smoothed
particle hydrodynamics (SPH) [18,24] and the moving particle semi-implicit (MPS) methods
[16], in the context of the generalized particle method. In the SPH method, upon using the
reference weight function wSPH ∈ W and parameters mi, ρi ∈ R+ (i = 1, 2, . . . , N), for v ∈
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C(ΩH), the approximate operators are defined as

ΠSPH
h v(x) :=

N∑
i=1

mi

ρi
v(xi)w

SPH
h (|x− xi|), x ∈ ΩH , (57)

∇SPH
h v(x) :=

N∑
i=1

mi

ρi
{v(x)− v(xi)}∇wSPH

h (|x− xi|), x ∈ ΩH , (58)

∆SPH
h v(x) := 2

∑
i∈Λ(x,h)

mi

ρi

v(x)− v(xi)

|x− xi|
x− xi

|x− xi|
· ∇wSPH

h (|x− xi|), x ∈ ΩH . (59)

By setting w = wSPH and VN = {Vi = mi/ρi; i = 1, 2, . . . , N}, the generalized interpolant (2)
coincides with (57). Moreover, because

−
∫
Rd

x

d
· ∇wSPH(|x|)dx =

∫
Rd

wSPH(|x|)dx = 1,

by setting
w(r) = −d−1r(wSPH)′(r),

and VN = {Vi = mi/ρi; i = 1, 2, . . . , N}, (3) and (4) coincide with (58) and (59), respectively.
From Theorem 3, we obtain the following corollary that is a truncation error estimate of

approximate operators (58) and (59).

Corollary 1 Suppose that parameters ρi,mi satisfy

N∑
i=1

mi

ρi
= |ΩH | ,

and that {(XN ,VN , hN )}N→∞ is regular with order m, where VN = {ρi/mi; i = 1, 2, . . . , N}.
Moreover, suppose that wSPH satisfies the following conditions;

wSPH ∈ C2(R+
0 ), (wSPH)′(r) < 0 (0 < r < 1), lim

s↓0

∣∣∣∣1s (wSPH)′(s)

∣∣∣∣ < ∞. (60)

Then, there exists a positive constant c independent of N such that∥∥v −ΠSPH
h v

∥∥
C(Ω)

≤ c hmin{2,m−1} ∥v∥C2(ΩH ) , v ∈ C2(ΩH),∥∥∇v −∇SPH
h v

∥∥
C(Ω)

≤ c hmin{2,m−1} ∥v∥C3(ΩH ) , v ∈ C3(ΩH),∥∥∆v −∆SPH
h v

∥∥
C(Ω)

≤ c hmin{2,m−2} ∥v∥C4(ΩH ) , v ∈ C4(ΩH).

Remark 5 Note that representative reference weight functions employed in the SPH method,
such as the cubic B-spline, quintic B-spline, and Wendland function (5-order positive definite
function) [8,18], satisfy (60).

In the MPS method [14], upon using reference weight function wMPS ∈ W and parameters

n̂, λ̂ ∈ R+ for v ∈ C1(ΩH), approximate differential operators can be defined as

∇MPS
h v(x) :=

d

n̂

∑
i̸=j

v(xi)− v(x)

|x− xi|
xi − x

|x− xi|
wMPS

h (|x− xj |), x ∈ ΩH , (61)

∆MPS
h v(x) :=

2d

n̂λ̂

∑
i̸=j

{v(xi)− v(x)}wMPS
h (|x− xj |), x ∈ ΩH . (62)

Note that an interpolant is not defined in the MPS method. By setting w = wMPS and
VN = {Vi = n̂−1; i = 1, 2, . . . , N}, the approximate gradient operator (3) coincides with

(61). Moreover, by setting w(r) = λ̂−1r2wMPS(r) and VN = {Vi = n̂−1; i = 1, 2, . . . , N},
approximate Laplace operator (4) coincides with (62).
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Corollary 2 Suppose that

n̂ =
N

|ΩH |
, λ̂ =

∫
Rd

|x|2wMPS(|x|)dx, wMPS ∈ W.

Moreover, suppose that {(XN ,VN , hN )}N→∞ is regular with order m, where VN = {Vi =
n̂−1; i = 1, 2, . . . , N}. Then, there exists a positive constant c independent of N such that∥∥∆v −∆MPS

h v
∥∥
C(Ω)

≤ c hmin{2,m−2} ∥v∥C4(ΩH ) , v ∈ C4(ΩH).

Furthermore, when wMPS satisfies Hypothesis 2 with k = 0,∥∥∇v −∇MPS
h v

∥∥
C(Ω)

≤ c hmin{2,m−1} ∥v∥C3(ΩH ) , v ∈ C3(ΩH).

Remark 6 Note that the reference weight function, which is commonly used in the MPS
method and defined as

wMPS(r) :=


1

r
− 1, 0 ≤ r < 1,

0, 1 ≤ r,

does not satisfy wMPS ∈ W. In contrast, the continuous reference weight function as introduced
in [28] satisfies wMPS ∈ W. However, as far as we know, no reference weight functions that
also satisfy Hypothesis 2 with k = 0 are proposed in the MPS method.

B Computational procedure of the indicators

This appendix introduces the procedures for computing the indicators introduced in this paper,
namely, the covering radius (5) and Voronoi deviation (6).

The covering radius rN can be computed as follows. As per the methods used to construct
Voronoi decompositions, such as the increment method [6], we first draw the boundaries of
the Voronoi region in ΩH . Next, for each particle, we compute the maximum distance from
particle xi to the boundary of its Voronoi region σi (i.e., maxy∈σi

|xi − y|). Finally, we obtain
the covering radius rN by computing the maximum of these distances.

Next, we consider the Voronoi deviation dN . Let ζ ∈ R3N be

ζ := (|σ1| , |σ2| , . . . , |σN | , V1, V2, . . . , VN , 0, 0, . . . , 0)T .

Using parameters q, si, aij ∈ R+ (i, j = 1, 2, . . . , N), we set z ∈ RN2+N+1 as

z := (a11, a12, . . . , aNN , s1, s2, . . . , sN , q)T .

Moreover, we set M ∈ R3N×(N2+N+1) so that equation Mz = ζ represents

N∑
j=1

aij = |σi| ,
N∑

j=1

aji = Vi, i = 1, 2, . . . , N

and

q = si +

N∑
j=1

aij + aji

|σi|
|xi − xj |, i = 1, 2, . . . , N.

Then, by considering aij to be |σi ∩ ξj |, we find that the minimum value of q with condition
Mz = ζ coincides with the Voronoi deviation dN . We therefore consider the linear problem:

Minimize bT z subject to Mz = ζ, z ≥ 0. (63)

Here, b := (0, 0, . . . , 0, 1)T ∈ RN2+N+1. The solution bT z of (63) is equivalent to the Voronoi
deviation dN . Because Mz = ζ is unique for (XN ,VN , hN ), the linear problem is computable
via numerical methods for linear programming problems, such as the simplex method [7].
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C Construction of reference weight functions

For all n ∈ N (n ≥ 2), it is possible to construct a reference weight function satisfying Hypoth-
esis 1 with n as the condition of Hypothesis 1 can be rewritten to include a finite number of
conditions ∫ 1

0
rd+2j−1w(r)dr = 0, j = 1, 2, . . . , ⌊n/2⌋.

Here, the Gauss symbol ⌊a⌋ denotes the largest integer that is less than or equal to a. For
example, function w is set as the pth polynomial function:

w(r) :=

γd

(
1 +

p∑
ℓ=1

aℓr
ℓ

)
, 0 ≤ r < 1,

0, r ≥ 1.

Then, if coefficients aℓ satisfy the linear equations

γd

(
1 +

p∑
ℓ=1

aℓ

ℓ+ d

)
= 1,

p∑
ℓ=1

aℓ = 0,

p∑
ℓ=1

ℓaℓ = 0,

1 +

p∑
ℓ=1

d+ 2j

d+ ℓ+ 2j
aℓ = 0, j = 1, 2, . . . , ⌊n/2⌋,

then w satisfies w ∈ W and Hypothesis 1 with n. Therefore, to construct reference functions
with Hypothesis 1 with n represented by polynomial functions, the degree of the polynomial
functions must be at least ⌊n/2⌋+ 2.

Moreover, for all k ∈ N0, reference weight functions satisfying Hypothesis 2 with k can be
constructed based on the following proposition.

Proposition 1 Assume that reference the weight function w defined in R+
0 satisfies w ∈

C1(R+
0 ) and is represented by a polynomial function in [0, s] for s ∈ (0, 1]. Let p0 be the

minimum degree of w in [0, s]. Then, if p0 − k ≥ 1, w satisfies Hypothesis 2 with k.

Proof From the assumption, w can be represented by

w(r) =

p∑
ℓ=p0

aℓr
ℓ, 0 ≤ r < s,

where p ∈ N and aℓ ∈ R (ℓ = p0, p0 + 1, . . . , p). Set w(k) as (8). Since

sup
r∈(0,s)

|w(k+1)(r)| ≤
p∑

ℓ=p0

|aℓ|sℓ−k−1 < ∞,

sup
r∈(s,∞)

|w(k+1)(r)| ≤
∥w∥C([s,1])

sk+1
< ∞

and

sup
r∈(0,s)

∣∣∣∣ ddrw(k)(r)

∣∣∣∣ ≤ p∑
ℓ=p0

(ℓ− k)|aℓ|sℓ−k−1 < ∞,

sup
r∈(s,∞)

∣∣∣∣ ddrw(k)(r)

∣∣∣∣ ≤ k ∥w∥C1([s,1])

sk+1
< ∞,

if p0 − k ≥ 1, we have w satisfies Hypothesis 2 with k.



30 Yusuke Imoto

This proposition means that the regularity of the reference functions around zero is important.
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