1	Rhizosphere modeling reveals spatiotemporal distribution of daidzein shaping
2	soybean rhizosphere bacterial community
3	
4	^a Fuki Okutani, ^b Shoichiro Hamamoto [*] , ^c Yuichi Aoki, ^a Masaru Nakayasu, ^b Naoto Nihei,
5	^b Taku Nishimura, ^a Kazufumi Yazaki, ^a Akifumi Sugiyama*
6	
7	^a Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji,
8	611-0011, Japan
9	^b Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1
10	Yayoi, Bunkyo-ku, Tokyo, 113-8567, Japan
11	^c Tohoku Medical Megabank Organization, Tohoku University, Sendai, 980-8573, Japan
12	
13	*Corresponding authors:
14	Akifumi Sugiyama, Laboratory of Plant Gene Expression, Research Institute for
15	Sustainable Humanosphere, Kyoto University, Uji 611-0011, Japan. Tel:
16	+81-774-38-3617, fax: +81-774-38-3623, e-mail:
17	akifumi_sugiyama@rish.kyoto-u.ac.jp;
18	

19	Shoichiro Hamamoto, Laboratory of Soil Physics and Soil Hydrology, Graduate School
20	of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan. Tel:
21	+81-3-5841-5351, fax: +81-3-5841-8171, e-mail: shoichi@soil.en.a.u-tokyo.ac.jp
22	
23	Running title
24	Daidzein shapes rhizosphere bacterial communities
25	

27 Abstract

28	Plant roots nurture a wide variety of microbes via exudation of metabolites, shaping the
29	rhizosphere's microbial community. Despite the importance of plant specialized
30	metabolites in the assemblage and function of microbial communities in the rhizosphere,
31	little is known of how far the effects of these metabolites extend through the soil. We
32	employed a fluid model to simulate the spatiotemporal distribution of daidzein, an
33	isoflavone secreted from soybean roots, and validated using soybeans grown in a
34	rhizobox. We then analyzed how daidzein affects bacterial communities using soils
35	artificially treated with daidzein. Simulation of daidzein distribution showed that it was
36	only present within a few millimeters of root surfaces. After 14 days in a rhizobox,
37	daidzein was only present within 2 mm of root surfaces. Soils with different
38	concentrations of daidzein showed different community composition, with reduced
39	α -diversity in daidzein-treated soils. Bacterial communities of daidzein-treated soils
40	were closer to those of the soybean rhizosphere than those of bulk soils. This study
41	highlighted the limited distribution of daidzein within a few millimeters of root surfaces,
42	and demonstrated a novel role of daidzein in assembling bacterial communities in the
43	rhizosphere by acting as more of a repellant than an attractant.

45 Key words: advection–diffusion equation, bacterial communities, daidzein, rhizosphere

46 modelling, soybean

47

49 Introduction

50 The rhizosphere, defined as the zone of soil surrounding the root that is affected by it 51 (Hartmann, Rothballer, & Schmid, 2008; Hiltner, 1904), is pivotal in both nutrient 52 uptake and interactions with a diverse range of soil microbes (Bakker, Pieterse, de Jonge, 53 & Berendsen, 2018). Previous studies provided evidence that plant metabolites secreted 54 from roots provoke changes in rhizosphere microbial communities and mediate plant-55 microbe interactions, from symbiotic to commensal to pathogenic, suggesting the 56 importance of plant metabolites in the rhizosphere for promoting the growth and health 57 of plants (Berendsen, Pieterse, & Bakker, 2012; Massalha, 2017; Sasse, Martinoia, & 58 Northen, 2018). Despite the importance of root-secreted metabolites, little is known of the distribution and fate of these molecules in the rhizosphere (Sugiyama, 2019). Plant 59 60 metabolites can be divided into primary and secondary, or plant specialized, metabolites 61 (Pichersky & Lewinsohn, 2011). A large portion of primary plant metabolites, which 62 consist of sugars and organic acids, are rapidly metabolized by soil microbes (Gkarmiri et al., 2017; Gunina & Kuzyakov, 2015; Jones & Murphy, 2007). The greater abundance 63 64 of nutrients near roots produces an environment in which microbes flourish, and 65 microbial abundance is greater in the rhizosphere than in bulk soils (Mendes, Garbeva, & Raaijmakers, 2013; Prashar, Kapoor, & Sachdeva, 2014). In contrast to primary 66

67	metabolites, the stability of plant specialized metabolites varies depending on their
68	chemical structure and biological activity (Sugiyama & Yazaki, 2014). For example,
69	strigolactones are unstable in soil, making them a signal of living plant roots
70	(Ruyter-Spira, Al-Babili, van der Krol, & Bouwmeester, 2013; Seto, Kameoka,
71	Yamaguchi, & Kyozuka, 2012), whereas flavonoids are relatively stable in soil
72	(Sugiyama, Yamazaki, Hamamoto, Takase, & Yazaki, 2017).
73	Plant specialized metabolites have important ecological functions in the rhizosphere,
74	such as acting as signals for symbiosis, repelling enemies, and modifying microbial
75	communities (Chen et al., 2019; Huang et al., 2019; Massalha, 2017). Volatile
76	compounds are thought to facilitate communication over larger distances (Rasmann et
77	al., 2005; Schulz-Bohm et al., 2018), whereas non-volatile compounds such as
78	coumarins (Stringlis et al., 2018) and flavonoids appear to exert their influences near
79	plant roots. Largely due to the difficulty of analyzing these metabolites in soil, most
80	studies on plant specialized metabolites have been conducted in hydroponic culture or in
81	sterile sand (Oburgera, 2018). However, root structure and metabolite fate differ in soil
82	and under these artificial conditions (Crush J.R., 2005) (Sugiyama & Yazaki, 2014). To
83	gain insight into the functions of plant specialized metabolites in field-grown plants, it is
84	important to analyze rhizosphere plant-microbe interactions using soils from crop fields.

85	Rhizobox is widely used to analyze the dynamics of proteins, metabolites, and ion in the
86	rhizosphere using soils taken from fields (Kuzyakov & Razavi, 2019). The activities of
87	root-secreted enzymes such as phosphatase and β -glucosidase were visualized using
88	4-methylumbelliferone-labeled and 7-amino-4-methylcoumarin-labeled fluorogenic
89	substrates to determine the distribution of these enzymes within a few millimeters from
90	root surface (Razavi, Zarebanadkouki, Blagodatskaya, & Kuzyakov, 2016; Zhang,
91	Dippold, Kuzyakov, & Razavi, 2019). Analyses of carbon and nitrogen with
92	autoradiography or Positron Emitting Tracer Imaging System (PETIS) revealed the
93	presence of the rhizodeposits within a few millimeters from root surface as well (Holz,
94	Zarebanadkouki, Kaestner, Kuzyakov, & Carminati, 2018; Kuzyakov & Razavi, 2019).
95	In addition, advection-diffusion (dispersion) equation has been used to simulate the
96	distribution of mineral ions and water contents in soil surrounding roots (Duncan, Daly,
97	Sweeney, & Roose, 2018; Vereecken et al., 2016; Zarebanadkouki, Fink, Benard, &
98	Banfield, 2019; Zarebanadkouki, Kroener, Kaestner, & Carminati, 2014). Although the
99	simulation of the distribution of metabolites could provide valuable insights in the
100	rhizosphere interactions, it has not been employed to analyze the distribution of
101	metabolites in soil, at least partly because of the instability of root-secreted metabolites
102	and the difficulty of the measurement in rhizosphere.

103	Recent progress in sequencing technologies and the establishment of synthetic
104	communities of culturable bacteria has provided insights into the molecular mechanisms
105	underlying the assemblage and function of rhizosphere microbes (Bulgarelli et al., 2012;
106	Duran et al., 2018; Lundberg et al., 2012); for example, Arabidopsis secretes coumarins
107	that encourage assembly of a microbiome adapted to iron deficiency (Stringlis et al.,
108	2018; M. J. E. E. E. Voges, Bai, Schulze-Lefert, & Sattely, 2019). Although these
109	advancements have deepened our understanding of the rhizosphere, a large gap remains
110	between these achievements in microbial ecology and a comprehensive understanding
111	of the rhizosphere in field-grown plants, which are essential for the application of these
112	insights to sustainable agriculture. One of the key limitations is rooted in the definition
113	of the rhizosphere; it is impossible to delineate the area of the rhizosphere in field soils
114	because the zone of root influence varies depending on which metabolites are secreted
115	as well as the environmental or microbial conditions in the field.
116	Refining our understanding of the spatiotemporal distribution of key specialized
117	metabolites in soils is indispensable for defining the area of the rhizosphere. To better
118	define the extent of the influence of root-secreted specialized metabolites in the
119	rhizosphere, we used daidzein, an isoflavone secreted from soybean (Glycine max) roots,
120	as a model metabolite. Isoflavones are a subgroup of flavonoids predominantly found in

121	Fabaceae (Mazur, Duke, Wahala, Rasku, & Adlercreutz, 1998), and are produced via
122	isoflavone synthase (IFS). The influences of isoflavones to bacterial communities were
123	shown with IFS-silenced transgenic hairy roots (White, Ge, Brozel, & Subramanian,
124	2017) and with the addition of daidzein and genistein to soybean field soils (Guo, Kong,
125	Wang, & Wang, 2011). Soybeans secrete daidzein into the rhizosphere to initiate
126	symbiosis with rhizobia (Kosslak, Bookland, Barkei, Paaren, & Appelbaum, 1987).
127	Although nodulation occurs predominantly during early vegetative stages (Calvert,
128	Pence, Pierce, Malik, & Bauer, 1984), we previously found that daidzein was present in
129	the rhizosphere throughout all growth stages (Sugiyama et al., 2017). These results
130	suggest that daidzein plays additional roles in shaping the rhizosphere microbial
131	communities.
132	In this report, we simulated the distribution of daidzein in the rhizosphere using the
133	advection-diffusion equation, then validated the daidzein distribution using a rhizobox.
134	To further characterize the effects of daidzein at the concentration measured in the
135	rhizosphere, we set up artificial rhizospheres to analyze changes in bacterial
136	communities. By integrating analyses of the distribution and function of daidzein, we
137	were able to define daidzein's zone of influence in the soybean rhizosphere as the few
138	millimeters surrounding the roots, and to demonstrate spatiotemporal distribution of

139 daidzein and its influence on microbial community composition.

140

141 Materials and Methods

142 Chemicals and soils

- 143 Chemicals were obtained from Wako Pure Chemical Industries (Osaka, Japan) or
- 144 Nacalai Tesque (Kyoto, Japan), unless otherwise stated. Field soil was collected from a
- 145 soybean field at Kyoto Gakuen University, Japan. Soil chemical and physical properties
- 146 were analyzed at Tokachi Federation of Agricultural Cooperatives: pH of 6.8, 0.28%
- 147 total N, 2.5% total C, 4.3% humin, 46.1 ppm NO₃⁻, 11 ppm P, 5.7 ppm K, 3.2 ppm S,
- 148 443 ppm Ca, 25 ppm Mg, 0.02 ppm B, 0.58 ppm Fe, 0.2 ppm Cu, 0.3 ppm Zn, and 5.51
- 149 ppm Mn. Soil particle density was 2.58 g cm^{-3} . Soil texture was light clay (sand: 46%,
- 150 silt: 23%, clay: 31%). Saturated hydraulic conductivity (Ks) was 9.6×10^{-6} m s⁻¹, as
- 151 measured by the falling head method. Kaolinite was purchased from The Clay Science
- 152 Society of Japan, and illite was purchased from Nichika Inc. (Kyoto, Japan).
- 153

154 **Dynamics of isoflavones**

- 155 For daidzein distribution analysis, 30 g of soil was suspended in 300 mL of deionized
- 156 water. Different amounts of daidzein were added to the soil solution and mixed for 2 h.

157	To determine the distribution coefficient of daidzein on minerals, kaolinite or illite was
158	mixed with water and daidzein, instead of field soils. For decomposition of soil organic
159	matter, 10 g soils were treated with hydrogen peroxide (Gee & Or, 2002). Field soil
160	(10.0 g) was added to 50 mL of ion-exchanged water, then 10 mL of 30% hydrogen
161	peroxide was added. After 60 min, the mixture was heated on a hot plate to 80 $^{\circ}$ C for 4
162	h. Carbon content was measured by using CN corder (Elementar Vario EL, Elementar,
163	Germany).
164	Soil solutions were centrifuged at 5000 $\times g$ for 10 min, and supernatants were
165	filtered through filter paper (Advantech). The pH was adjusted to 3.0 using HCl. The
166	medium was passed through a Sep-pak C18 Plus short cartridge filter (Waters, Milford,
167	MA, USA), as described previously (Sugiyama et al. 2016). The eluant was dried under
168	nitrogen and reconstituted in 95% MeOH with 1% formic acid. The supernatant was
169	filtered through a Minisart 0.45-µm filter (Sartorius, Göttingen, Germany). Isoflavones
170	were analyzed using a HPLC apparatus (LC-10A, Shimadzu, Kyoto, Japan) under the
171	following conditions: column, TSK-gel ODS-80TM (4.6 mm \times 250 mm; Toso, Tokyo,
172	Japan); solvent A, 0.3% (v/v) formic acid; solvent B, 0.3% (v/v) formic acid in
173	acetonitrile; detection, 260 nm. Elution was at 0.8 mL min ⁻¹ with solvent system A
174	(water containing 0.3% (v/v) formic acid) and B (acetonitrile containing 0.3% (v/v)

175	formic acid) with a linear gradient from 15% to 22% B over 30 min, followed by a
176	linear gradient from 22% to 35% B over 20 min, and a linear gradient from 35% to 70%
177	B over 5 min. The adsorption of daidzein on soils and minerals was caluculated by
178	subtracting the amount of daidzein in the aqueous phase from the added amount in the
179	initial solution (Liang et al., 2011). The degradation of daidzein was negligible during
180	adsorption experiments, because half-life of daidzein was calculated to be more than 7
181	days (Sugiyama et al., 2017).
182	
183	Simulation
184	Movement of daidzein secreted by a single cylindrical root was simulated using a
185	two-dimensional axisymmetric system. The model domain was assumed to be a cylinder
186	of soil with a diameter of 20 cm and depth of 20 cm, with a single root with a diameter
187	of 2 mm and height of 10 cm in the center. The partial differential equation describing
188	transport of the solute (daidzein) had the following general form:
189	$\frac{\partial(\theta c)}{\partial t} + \frac{\partial(\rho c_a)}{\partial t} = -\nabla \cdot q_w c + \nabla \cdot D\nabla c - kc, \qquad (1)$
190	where c is the solute (daidzein) concentration (kg m ⁻³), θ is the volumetric water content

192 the bulk density (1.34 Mg m⁻³), q_w is the water flux induced by root uptake (m s⁻¹), D is

191

(m³ m⁻³), c_a is the daidzein concentration adsorbed onto the solid phase (kg kg⁻¹), ρ is

the solute diffusion coefficient (m² s⁻¹), *k* is the degradation rate constant (s⁻¹), and *t* is the time (s). When assuming a linear adsorption isotherm, c_a can be written as $k_d c$, where k_d is the distribution coefficient (m³ kg⁻¹).

- 196 As described in Eq. (1), advective daidzein movement caused by root uptake of water
- 197 was also considered in the simulation. Water movement in the soil, without considering
- 198 gravity, can be described by the Richards equation as:

199
$$\frac{\partial \theta}{\partial t} = -\nabla \cdot q_w = \nabla \cdot \left[K \left(\nabla h \right) \right], \tag{2}$$

200 where h is the water pressure head (m), and K is the unsaturated hydraulic function. The

201 van Genuchten–Mualem soil hydraulic properties model (Millington & Quirk, 1961;

202 van Genuchten, 1980) was adopted as an unsaturated hydraulic function:

203
$$K(h) = K_s S_e^{0.5} \left[1 - \left(1 - S_e^{1/m} \right)^m \right]^2, \qquad (3)$$

where K_s is the saturated hydraulic conductivity (m s⁻¹), *m* is the van Genuchten

205 parameter, and S_e is the effective water content, described by $(\theta - \theta_r)/(\theta_s - \theta_r)$ where θ_s

and $\theta_{\rm r}$ are saturated water content and residual water content, respectively. Note that the

- 207 van Genuchten water retention model was adopted for the relationship between h and
- 208 Se) (van Genuchten, 1980).
- 209 The degradation kinetics of daidzein (*k*) have previously been reported (Sugiyama et

211	the Millington and Quirk model (Millington & Quirk, 1961) as a function of θ . To
212	determine the distribution coefficient (k_d), batch experiments were conducted, in which
213	30 g of dry soils were mixed with 300 mL of daidzein solution with concentrations
214	ranging from 17 to 270 ppb; the soil suspensions were shaken for 2 h. Based on the
215	obtained adsorption isotherm, the distribution coefficient was set as 0.067 $\text{m}^3 \text{kg}^{-1}$
216	(Supplementary Fig. 1). Parameters for water retention model and unsaturated hydraulic
217	function were estimated by a pedotransfer function (ROSETTA model) (Schaap, Leij, &
218	van Genuchten, 2001) based on the measured soil texture data, giving $\theta_s = 0.48$, $\theta_r =$
219	0.08, m = 0.28, and α = 1.61 m ⁻¹ as van Genuchten water retention model parameters.
220	In the simulation, root surface contact with the soil domain was considered as an
221	influx boundary for daidzein secretion and an efflux boundary for water movement due
222	to root uptake. The daidzein secretion rate (i.e., influx boundary at root surface)
223	determined in a previous study was used (Sugiyama et al., 2016). Water uptake rate (i.e.,
224	efflux boundary for water movement) was obtained from the rhizobox experiments
225	$(5.43 \times 10^{-8} \text{ m s}^{-1})$. The upper, lower, and outer surfaces of the soil domain were
226	considered as zero flux boundaries for solute and water movement. The initial water
227	content of the soil domain was set as 0.43 m ³ m ⁻³ . Eqs. (1)–(3) were solved using the
228	COMSOL Multiphysics 5.4 software (Keisoku Engineering System Co., Ltd., Tokyo,

Japan). The parameters used in this study were summarized in Supplementary Table 1.

231	Growth of soybean in the rhizobox and analysis of daidzein
232	The rhizobox was purchased from Tohoku Materials (Sendai, Japan). Soybeans were
233	grown in a plant box containing vermiculite for 4 days before being transferred to the
234	rhizobox. The water content ratio (mass of soil water / dry soil weight x 100 (%)) of the
235	soil in the rhizobox was 28%. Mixing of soil and water was performed before packing
236	the soil layer. When placing the nylon mesh, a cellulose acetate membrane capable of
237	adsorbing daidzein was placed beyond the nylon mesh on all sides (Supplementary Fig.
238	2). Soybean seedlings were removed from vermiculite, washed with distilled water,
239	dried with a Kimwipe, and sandwiched between two layers of nylon mesh. The top of
240	the rhizobox was covered with an acrylic plate. After 14 days of growth, cellulose
241	acetate membranes and soil layers within 2 mm of plant roots were removed. Extraction
242	of daidzein was performed as described previously (BolanosVasquez & Warner, 1997;
243	Sugiyama et al., 2017). In brief, the cellulose acetate filters were rinsed with distilled
244	water and then extracted with two sequential rinses with 1 ml of methanol for 5 min.
245	Extracts were dried under a nitrogen stream at 50 °C and stored at -30°C prior to HPLC
246	analysis. Soil samples were extracted in 3×4 mL of methanol at 50 °C (1 h each) and

231 Growth of soybean in the rhizobox and analysis of daidzein

247	centrifuged at 5000 \times g for 10 min. The combined supernatant was dried under a
248	nitrogen stream at 50 °C and stored at -30 °C prior to HPLC analysis. The detection
249	limit was 0.01 nmol/g soil. Water content ratio was determined by measureing the exact
250	weight before and after drying the sample in an oven at 105 °C for 24 hours (Gardner,
251	2002).
252	
253	Analysis of bacterial communities after incubation with daidzein
254	Soybean field soil was air-dried, and 2 g of soil was mixed with sterilized water to
255	obtain a water content ratio of 30%. To prevent the methanol from affecting the
256	bacterial community, daidzein in methanol was first added to a plastic tube and dried
257	under nitrogen gas. Moistened soils were transferred to a tube containing daidzein (0.04,
258	0.2, and 1 mM to obtain final concentrations of 10, 50, and 250 nmol, respectively), and
259	mixed thoroughly using a vortex mixer (Supplementary Fig. 3). Daidzein was added
260	every 3 days. The water content ratio was adjusted by addition of water after weighing
261	the soil. After 15 days of culture at 28 °C in the dark, sample tubes were stored at
262	-30 °C until extraction of DNA and daidzein.
263	DNA was extracted from 0.25 g soil with a Power Soil DNA Isolation Kit (Mo Bio,
264	Carlsbad, CA, USA) according to the manufacturer's protocol and quantified using a

265	dsDNA HS Assay Kit for the Qubit Quantification Platform (Invitrogen, Carlsbad, CA,
266	USA). PCR amplification of 16S rRNA genes was performed in a 25- μ L reaction
267	volume containing 10 ng template DNA, 0.3 μ L of KOD FX neo (Toyobo, Japan), 12.5
268	μL of buffer (provided with the polymerase), 5 μL of dNTPs (2 mM), 0.5 μL of 515F
269	(5'-ACACTCTTTCCCTACACGACGCTCTTCCGATCT-GTGCCAGCMGCCGCGGT
270	AA-3') and 806R (5'-
271	GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT-GGACTACHVGGGTWTCT
272	AAT-3') primers (10 μ M) in triplicate. PCR conditions were as follows: denaturation at
273	94 °C for 2 min; 20 cycles of 98 °C for 10 s, 50 °C for 30 s, and 68 °C for 30 s. PCR
274	amplicons were purified with Ampure magnetic beads (Beckman Coulter, Danvers, MA,
275	USA) prior to the second round of PCR. To attach MiSeq adaptors, a second round of
276	PCR was performed in a 25- μ L reaction volume containing 2.5 μ L template DNA, 0.3
277	μL of KOD FX neo, 12.5 μL of buffer (provided with the polymerase), 5 μL of dNTPs
278	(2 mM), and 0.5 μL of primers provided with Fasmac Co. Ltd. Final PCR products were
279	purified using Ampure magnetic beads, and the concentration of the purified PCR
280	product was measured using a Qubit 2.0 Fluorometer (Life Technologies). PCR
281	products were sent to FASMAC Co. Ltd. for a single sequencing run using a MiSeq
282	reagent kit v3 on a MiSeq platform (Illumina) to obtain 2×300 -bp paired-end

sequences. Sequence data have been deposited in the DDBJ (DNA Data Bank of Japan)

- 284 Sequence Read Archive under the accession number DRA008649.
- 285 Sequence data for the amplicons were analyzed using the QIIME2 platform, version
- 286 2018.11 (Bolyen, 2018). For all paired reads, the first 20 bases of both sequences were
- trimmed (to remove primer sequences) and the bases after position 200 were truncated
- 288 (to remove low-quality sequence data), and potential amplicon sequencing errors were
- corrected using DADA2 (Callahan et al., 2016) to produce an amplicon sequence
- 290 variant (ASV) dataset. The resultant ASVs were aligned using MAFFT (Katoh &
- 291 Standley, 2013) and then used to construct a phylogenetic tree with FastTree2 (Price,
- 292 Dehal, & Arkin, 2010). The α and β -diversity metrics were estimated from a
- subsampled ASV dataset, with 45,000 sequences per sample (Supplementary Table 2).
- 294 Each ASV was identified using a Naïve Bayes classifier trained on 16S rRNA gene
- sequences from the Greengenes release 13_8 dataset (Bokulich et al., 2018)
- 296 (Supplementary Table 3). Principal coordinate analysis and other statistical analyses
- 297 were performed using custom R and Python scripts.

298

299 Analysis of rhizosphere bacterial communities of soybean

300 Field experiments were conducted in an experimental field of Kyoto University of

301	Advanced Science, Kameoka, Kyoto, Japan (34°99'38''N, 135°55'14''E). Soybean
302	plants (cv. Shintambaguro) were irrigated as needed, and weeds were manually removed
303	throughout the crop season on a weekly basis. Rhizosphere and bulk soil samples were
304	collected at the vegetative stage (V8). Bulk soil, defined as soil that does not adhere to
305	plant roots, was obtained at least 20 cm from the plants. Rhizosphere soil was collected
306	using two methods: traditional dry sampling using brushes, as described previously
307	(Sugiyama, Ueda, Zushi, Takase, & Yazaki, 2014), and fractionation using phosphate
308	buffer with some modification, as follows (Bulgarelli et al., 2012). Roots from five
309	plants were pooled into a 1000-mL glass beaker with 500 mL sterile PBS buffer
310	containing 130 mM NaCl, 7 mM Na ₂ HPO ₄ , 3 mM NaH ₂ PO ₄ (pH 7.0), and 0.02%
311	Silwet L-77, and washed on a shaking platform for 5 min at 100 rpm. Roots were
312	removed, the buffer was centrifuged (5000 $\times g$, 10 min), and the resulting pellet was
313	defined as rhizosphere soil. DNA extraction and PCR amplification for sequencing were
314	performed as described above.
315	

316 **Results**

317 Simulation of daidzein distribution

318 Metabolites secreted into the rhizosphere are degraded by microbes and adsorbed onto

319	soil organic matter and clay minerals, depending on the soil type and microbes present
320	(Canarini, Kaiser, Merchant, Richter, & Wanek, 2019; Soma & Soma, 1989; Sugiyama,
321	2019). In order to gain insight into daidzein distribution in soybean fields, we used gray
322	lowland soils obtained from a soybean farm where soybeans had been cultivated for
323	more than 5 years. Fig. 1 shows a simulated daidzein distribution near a single root.
324	During early stages of vegetative growth (7, 14 days), the predicted daidzein
325	distribution was limited to within a few millimeters of the root surface (Fig. 1A, B).
326	These results were based on the assumption that soybean root secretes equivalent
327	amount of daidzein from all parts of roots, and the growth of roots (i.e., enlargement of
328	daidzein influx area) was not considered. Even during later growth stages (70 days), the
329	predicted daidzein distribution was limited to within 1 cm of the root, as shown in the
330	daidzein concentration profile (Fig. 1C). These results indicate that soil adsorption
331	greatly reduces daidzein's soil mobility. Because the daidzein secretion rate is highest
332	during earlier vegetative growth stages (Sugiyama et al., 2016), the daidzein
333	concentration at the root surface peaked at 28 days. After that time, decomposition and
334	reduced secretion of daidzein decreased the concentration at the root surface.
335	

336 Adsorption of daidzein to organic matter in gray lowland soil

337	Possible adsorption sites contained in the gray lowland soil are humic substances and
338	clay minerals. Major structural sites of humic substances include carboxyl groups,
339	hydroxyl groups, and phenolic hydroxyl groups, which are reported to be involved in
340	the formation of complexes with heavy metal ions and organic substances (Gan & Li,
341	2013). To analyze adsorption of daidzein to humic substances, organic matter in gray
342	lowland soil was decomposed to approximately 65% with hydrogen peroxide treatment
343	(Fig. 2). In these soils, daidzein adsorption was reduced to approximately 40%
344	compared with controls, suggesting that humic substances are involved in adsorption of
345	daidzein (Fig. 2).
346	Adsorption of daidzein to clay minerals was analyzed using two minerals typical of
347	this lowland gray soil, kaolinite, which is classified as a 1:1 type silicate mineral, and
348	illite, which is classified as 2:1 type silicate mineral. The adsorption data for different
349	concentrations of daidzein were fitted by a linear line based on the Henry's law, and the
350	distribution coefficient was calculated to be $0.0042 \text{ (m}^3 \text{ kg}^{-1})$ (Supplementary Fig. 4).
351	When daidzein adsorption experiments were carried out with illite, adsorption of
352	daidzein was not observed and distribution coefficients could not be calculated.
353	

354 Validation of daidzein distribution using a rhizobox

355	Daidzein distribution was validated using a rhizobox. To grow soybean for 14 days
356	without additional water supply, the water content ratio was set to 28%, which is higher
357	than the normal field condition (24%). After 14 days, the water content ratio was
358	reduced to 24% due to the water absorption by roots (Supplementary Table 4). A
359	cellulose acetate membrane filter was set at 2 mm from the root surface. In HPLC
360	analysis, daidzein could only be detected in the soil layer within 2 mm of the root
361	surface, and could not be detected on the cellulose acetate membrane filter (Fig. 3). In
362	addition, daidzein was not detected in soil layers > 2 mm from the root surface when
363	cellulose acetate membrane filters were not applied (n=4, data not shown).
364	
365	Effect of daidzein on bacterial community
366	Daidzein is known to induce the expression of <i>nod</i> genes in rhizobia to initiate
367	symbiosis, but our previous observation that the daidzein concentration remained
368	consistent throughout growth stages in field-grown soybean (Sugiyama et al., 2017)
369	suggests that daidzein also performs other functions. To determine the effects of
370	daidzein on soil bacteria, a steady daidzein concentration was maintained in a test tube
371	
	containing soil collected from the soybean field. After 15 days of incubation, the

373	added to the soil (Supplementary Fig. 8). The daidzein concentration of soils
374	supplemented with 1250 nmol was within the range of daidzein concentrations observed
375	in the rhizosphere of field-grown soybean (10-20 nmol g^{-1} soil) at the end of incubation.
376	To clarify the daidzein-mediated effects on bacterial diversity, the α -diversity of
377	each sample was calculated using QIIME2 (Bolyen et al., 2018), as observed
378	operational taxonomic units (OTUs) and Shannon diversity. Daidzein treatment reduced
379	the α -diversity of bacterial communities, and observed OTUs were markedly reduced at
380	daidzein concentrations greater than 250 nmol g^{-1} soil (Supplementary Fig. 5),
381	suggesting that daidzein affected the assemblage of the bacterial community. Daidzein
382	possesses antimicrobial activity (Gorniak, Bartoszewski, & Kroliczewski, 2019) and
383	serves as a carbon source for a particular group of bacteria that metabolize daidzein. The
384	reduction of α -diversity is a typical change observed in the bacterial communities in the
385	rhizosphere (Duran et al., 2018).
386	In the principal coordinate analysis (PCoA) of Bray–Curtis similarity (β-diversity),
387	the microbial diversity of untreated soil was clearly distinct from that of
388	daidzein-treated soil (Supplementary Fig. 6A and B), indicating that daidzein had a
389	significant effect on microbiome assemblage. Especially in the weighted Unifrac
390	distance, which compared bacterial community structures using the relative abundance

391 of each bacterial member, the daidzein concentration influenced bacterial community392 assemblage (Fig. 4A and B).

393	To understand the extent to which daidzein shapes the rhizosphere bacterial
394	communities of soybean in the field, we compared the bacterial communities of
395	daidzein-treated soils (1250 nmol) with those of bulk and soybean rhizosphere soils.
396	Bacterial communities of daidzein-treated soils were closer to those of the soybean
397	rhizosphere than those of bulk field soil (Fig. 5). These communities were then
398	compared at the family level (Fig. 6, Supplementary Fig. 7, Supplementary Table 5 and
399	6). Seven families of microbes were enriched in the daidzein-treated soils, and two of
400	these seven families, Comamonadaceae and Microbacteriaceae, were enriched in both
401	daidzein-treated and soybean rhizosphere soils (Fig. 5B). The relative abundance of
402	Comamonadaceae was positively correlated with the daidzein concentration
403	(Supplementary Fig. 8). In contrast, 17 of the 37 families found to be depleted in
404	daidzein-treated soil were also depleted in rhizosphere soil (Fig. 5B). These results
405	suggest that daidzein functions more as a repellent than an attractant in assemblage of
406	bacterial communities.

Discussion

409	The importance of the rhizosphere for plant growth and sustainable crop production is
410	widely recognized (Berendsen et al., 2012; Vorholt, Vogel, Carlstrom, & Muller, 2017).
411	Since Lorenz Hiltner coined the term rhizosphere more than 100 years ago, researchers
412	have used various methods to define the rhizosphere, including brushes, buffers, or
413	sensors for microbial, mineral, physical, and metabolite analyses (Kuzyakov & Razavi,
414	2019). Unlike heat, ions, and water, other factors that influence soil in the vicinity of
415	plant roots, root-secreted metabolites can be metabolized by soil microbes. This
416	characteristic makes analysis of root-secreted metabolites in the rhizosphere particularly
417	difficult (Oburgera, 2018). Traditionally, most studies of root exudates have been
418	conducted in hydroponic cultures, but the analysis of root-secreted metabolites in field
419	environments has garnered increasing attention over the past decade (Oburger et al.,
420	2013; Sugiyama et al., 2017). To gain a more precise understanding of the rhizosphere
421	in the field, it is essential to define the zone of influence of these metabolites in the soil.
422	In this study, we aimed to define the rhizosphere of soybean, by incorporating soil
423	physical and microbial analysis using daidzein as a model metabolite.
424	Based on simulations using a fluid model, the daidzein distribution was limited to
425	within a few millimeters of the roots, largely due to high adsorption by soil organic
426	matter. In this simulation, the soil water content was constant; however, in actual

427	soybean fields, the water content changes depending on irrigation and precipitation. In
428	reality, daidzein has a wider distribution under wet conditions and a narrower
429	distribution during dry conditions. Our rhizobox experiments revealed that the daidzein
430	distribution is limited to within 2 mm of the root surface, concordant with the results of
431	our simulation. Incorporating a combination of wet and dry conditions into the
432	simulation would permit even more precise modeling of daidzein concentrations, and
433	would require precise measurement of field water content during soybean growth. The
434	growth of roots and the difference of daidzein secretion rate depending on the part of
435	roots are also to be incorporated into the simulation to predict the daidzein distribution
436	in soybean fields. The distribution of released carbon and nitrogen, as measured using
437	isotopes, and of root-secreted enzymes such as phosphatase and β -glucosidase is limited
438	to within a few millimeters as well (Kuzyakov & Razavi, 2019; Oburger et al., 2013).
439	The distribution and fate of plant metabolites in the rhizosphere had been analyzed in
440	rhizobox or by mass spectrometry imaging (Blossfeld, Gansert, Thiele, Kuhn, & Losch,
441	2011; Holscher et al., 2014; Veličković & Anderton, 2017). In this report, we
442	demonstrated that simulation based on a fluid model can be used to predict the
443	rhizosphere distribution of plant specialized metabolites. Plant root secretes tremendous
444	varieties of metabolites into the rhizosphere (Massalha et al. 2017). By analyzing the

445	degradation rate and distribution coefficient of each metabolite in field soils, we can
446	simulate the distribution of root exudates in the rhizosphere. Revealing the
447	spatiotemporal distribution of metabolites functioning in the rhizosphere interactions
448	could expand our understanding of the rhizosphere into a 4-dimensional scale. One of
449	the largest limitations of this simulation is that we need different parameters depending
450	on the soil characteristics, for example, the distribution of daidzein could be wider in
451	soils with low organic matters and clay minerals such as sandy soils (Supplementary Fig.
452	4) or in soils with lower daidzein-degradation activity. We also have to appropriately
453	consider actual root growth and their function (e.g., root water uptake) in the field.
454	Recently, disruption of genes involved in synthesis of triterpene, sesterterpene, or
455	coumarin has permitted modulation of the rhizosphere microbiome of Arabidopsis
456	(Chen et al., 2019; Huang et al., 2019; Stringlis I.A., 2018; M. J. E. E. E. Voges, Bai, Y.,
457	Schulze-Lefert, P., Sattely, E.S., 2019). In this study, we showed that addition of
458	daidzein at rhizosphere concentrations modulated the bacterial community in vitro and
459	increased the abundance of Comamonadaceae. Rhizobiaceae was enriched in the
460	rhizosphere, but depleted to one-half in daidzein treated soils (Supplementary Table 6).
461	This is probably because daidzein is not suitable carbon source to bacteria in this family,
462	in contrast to other bacteria enriched in daidzein treated soils. When the bacterial

463	communities of daidzein-treated soils were compared with those of soybean fields,
464	daidzein treatment produced bacterial communities more similar to those in soybean
465	rhizosphere soil than those in bulk soil. This finding supports the notion that plant
466	specialized metabolites play key roles in formulating rhizosphere bacterial communities.
467	Daidzein treatment of soil reduced the α -diversity and depleted more bacterial families
468	than it enriched, as in soil from the soybean rhizosphere. These results indicate that
469	daidzein restricts the growth of certain bacteria to shape the rhizosphere bacterial
470	community. Enterobacteria that metabolize food-derived isoflavones have been reported
471	to metabolize daidzein (Feng, Li, Oppong, & Qiu, 2018), but the daidzein-metabolizing
472	enzymes in soil bacteria are still unknown. Bacteria in the Comamonadaceae and/or
473	Microbacteriaceae may possess genes that allow them to use daidzein as a carbon
474	source. Comamonadaceae are common in the soybean rhizosphere (Hamid et al., 2017;
475	White et al., 2017), with >10% relative abundance (Supplementary Fig. 9). This family
476	contains plant growth promoting bacteria such as <i>Delftia</i> sp., which enhance nodulation
477	and pulse yield when co-inoculated with Bradyrhizobium elkanii (Cagide, Riviezzi,
478	Minteguiaga, Morel, & Castro-Sowinski, 2018), and Variovorax paradoxus, a soybean
479	endophyte with characteristics related to plant growth promotion (Lopes,
480	Carpentieri-Pipolo, Oro, Pagliosa, & Degrassi, 2016). Soil type primary influences the

481	assemblage of rhizosphere microbial communities (Liu et al., 2019; Xiao et al., 2017),
482	and Comamonadaceae was abundant in the rhizosphere of successive
483	soybean-monoculture cropping (Hamid et al., 2017), which is concordant with our
484	findings using soils from soybean field under continuous cropping. It should also be
485	noted that daidzein is not the only metabolite to promote the abundance of
486	Comamonadaceae in the soybean rhizosphere, because the silencing of IFS gene in
487	soybean hairy roots resulted in the slight increase of Comamonadaceae in the
488	rhizosphere of IFS-silenced roots (White et al., 2017). A synthetic community-based
489	approach to the daidzein-mediated interaction among soybean, Comamonadaceae and
490	other bacteria could identify the molecular basis of these interactions.
491	Daidzein was discovered to act as a signaling molecule for initiation of rhizobial
492	symbiosis in the 1980s (Kosslak et al., 1987). Following our previous finding that
493	rhizosphere concentrations of daidzein remain high even after the key period for
494	establishment of rhizobial symbiosis, we found that daidzein has additional functions in
495	shaping the bacterial community in the rhizosphere, answering a long-unresolved
496	question. Plants modulate the rhizosphere microbial community, assembling beneficial
497	microbes to reduce damage from pathogens (Kwak MJ., 2018; Stringlis I.A., 2018)
498	and enhance uptake of nutrients (Castrillo et al., 2017). It is tempting to speculate that

499	soybean secretes daidzein into the soil within the vicinity of the root surface, where
500	daidzein helps to assemble a beneficial microbial community by acting as more of a
501	repellant than an attractant.
502	
503	Acknowledgments
504	We thank Ms. Yuko Kobayashi and Mr. Takahito Tastuno for technical assistance. We
505	thank Dr. Hisabumi Takase of the Kyoto University of Advanced Science for assistance
506	with soil sampling. We also thank DASH/FBAS, the Research Institute for Sustainable
507	Humanosphere, Kyoto University, and Kyoto Prefectural Agriculture, Forestry and
508	Fisheries Technology Research Center for the soybean seeds. This work was supported
509	in part by JST CREST grant JPMJCR17O2 (to YA and AS), JSPS KAKENHI grants
510	18H02313 (to SH and AS), and funds from the Research Institute for Sustainable
511	Humanosphere and the Research Unit for Development of Global Sustainability, Kyoto
512	University (to AS).
513	
514	Author Contributions
515	Conceived and designed the experiments: SH, AS. Performed the experiments: FO, SH,

516 NN, AS. Analyzed the data: FO, SH, YA, MN, NN, TN, KY, AS. Wrote the paper: FO,

519	References
520	Bakker, P., Pieterse, C. M. J., de Jonge, R., & Berendsen, R. L. (2018). The Soil-Borne
521	Legacy. Cell, 172(6), 1178-1180. doi:10.1016/j.cell.2018.02.024
522	Berendsen, R. L., Pieterse, C. M. J., & Bakker, P. (2012). The rhizosphere microbiome
523	and plant health. Trends in Plant Science, 17(8), 478-486.
524	doi:10.1016/j.tplants.2012.04.001
525	Blossfeld, S., Gansert, D., Thiele, B., Kuhn, A. J., & Losch, R. (2011). The dynamics of
526	oxygen concentration, pH value, and organic acids in the rhizosphere of Juncus
527	spp. Soil Biology & Biochemistry, 43(6), 1186-1197.
528	doi:10.1016/j.soilbio.2011.02.007
529	Bokulich, N. A., Kaehler, B. D., Rideout, J. R., Dillon, M., Bolyen, E., Knight, R.,
530	Caporaso, J. G. (2018). Optimizing taxonomic classification of marker-gene
531	amplicon sequences with QIIME 2 's q2-feature-classifier plugin. Microbiome,
532	6. doi:10.1186/s40168-018-0470-z
533	BolanosVasquez, M. C., & Warner, D. (1997). Effects of Rhizobium tropici, R-etli, and
534	R-leguminosarum by phaseoli on nod gene-inducing flavonoids in root exudates
535	of Phaseolus vulgaris. Molecular Plant-Microbe Interactions, 10(3), 339-346.
536	doi:10.1094/mpmi.1997.10.3.339
537	Bolyen, E., Rideout, J. R., Dillon, M. R., Bokulich, N. A., Abnet, C., Al-Ghalith, G. A.
538	(2018). QIIME 2: Reproducible, interactive, scalable, and extensible
539	microbiome data science. PeerJ, preprints.27295v2
540	Bulgarelli, D., Rott, M., Schlaeppi, K., van Themaat, E. V. L., Ahmadinejad, N.,

541	Assenza, F., Schulze-Lefert, P. (2012). Revealing structure and assembly
542	cues for Arabidopsis root-inhabiting bacterial microbiota. Nature, 488(7409),
543	91-95. doi:10.1038/nature11336
544	Cagide, C., Riviezzi, B., Minteguiaga, M., Morel, M. A., & Castro-Sowinski, S. (2018).
545	Identification of Plant Compounds Involved in the Microbe-Plant
546	Communication During the Coinoculation of Soybean with Bradyrhizobium
547	elkanii and Delftia sp strain JD2. Molecular Plant-Microbe Interactions, 31(11),
548	1192-1199. doi:10.1094/mpmi-04-18-0080-cr
549	Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A., & Holmes,
550	S. P. (2016). DADA2: High-resolution sample inference from Illumina amplicon
551	data. Nature Methods, 13(7), 581-+. doi:10.1038/nmeth.3869
552	Calvert, H. E., Pence, M. K., Pierce, M., Malik, N. S. A., & Bauer, W. D. (1984).
553	Anatomical analysis of the development and distribution of Rhizobium
554	infections in soybean roots. Canadian Journal of Botany-Revue Canadienne De
555	Botanique, 62(11), 2375-2384. doi:10.1139/b84-324
556	Canarini, A., Kaiser, C., Merchant, A., Richter, A., & Wanek, W. (2019). Root
557	Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant
558	Responses to Environmental Stimuli. Frontiers in Plant Science, 10.
559	doi:10.3389/fpls.2019.00157
560	Castrillo, G., Teixeira, P. J. P. L., Paredes, S. H., Law, T. F., de Lorenzo, L., Feltcher, M.
561	E., Dangl, J. L. (2017). Root microbiota drive direct integration of phosphate
562	stress and immunity. Nature, 543(7646), 513-518. doi:10.1038/nature21417
563	Chen, Q., Jiang, T., Liu, YX., Liu, H., Zhao, T., Liu, Z., Wang, G. (2019). Recently
564	duplicated sesterterpene (C25) gene clusters in Arabidopsis thaliana modulate
565	root microbiota. Science China. Life sciences. doi:10.1007/s11427-019-9521-2

566	Crush J.R., C. D. A., Gourdin A., Woodfield D.R. (2005). Root growth media effects on
567	root morphology and architecture in white clover. New Zealand Journal of
568	Agricultural Research, 48(2), 255-263. doi:10.1080/00288233.2005.9513654
569	Duncan, S. J., Daly, K. R., Sweeney, P., & Roose, T. (2018). Mathematical modelling of
570	water and solute movement in ridged versus flat planting systems. European
571	Journal of Soil Science, 69(6), 967-979. doi:10.1111/ejss.12711
572	Duran, P., Thiergart, T., Garrido-Oter, R., Agler, M., Kemen, E., Schulze-Lefert, P., &
573	Hacquard, S. (2018). Microbial Interkingdom Interactions in Roots Promote
574	Arabidopsis Survival. Cell, 175(4), 973-983. doi:10.1016/j.cell.2018.10.020
575	Feng, X. C., Li, Y., Oppong, M. B., & Qiu, F. (2018). Insights into the intestinal
576	bacterial metabolism of flavonoids and the bioactivities of their microbe-derived
577	ring cleavage metabolites. Drug Metabolism Reviews, 50(3), 343-356.
578	doi:10.1080/03602532.2018.1485691
579	Gan, P. P., & Li, S. F. Y. (2013). Biosorption of Elements. In A. J. Hunt (Ed.), Element
580	Recovery and Sustainability (pp. 80-113).
581	Gardner, W. H. (2002). Water Content. Method of Soil Analysis, Part 1 Madison: Soil
582	Science Society of America.
583	Gee, G. W., & Or, D. (2002). Particle Size Analysis. Method of Soil Analysis, Part 4
584	Madison: Soils Science Society of America.
585	Gkarmiri, K., Mahmood, S., Ekblad, A., Alstrom, S., Hogberg, N., & Finlay, R. (2017).
586	Identifying the Active Microbiome Associated with Roots and Rhizosphere Soil
587	of Oilseed Rape. Applied and Environmental Microbiology, 83(22).
588	doi:10.1128/aem.01938-17
589	Gorniak, I., Bartoszewski, R., & Kroliczewski, J. (2019). Comprehensive review of
590	antimicrobial activities of plant flavonoids. Phytochemistry Reviews, 18(1),

241-272. doi:10.1007/s11101-018-9591-z

- 592 Gunina, A., & Kuzyakov, Y. (2015). Sugars in soil and sweets for microorganisms:
- Review of origin, content, composition and fate. *Soil Biology & Biochemistry*,
 90, 87-100. doi:10.1016/j.soilbio.2015.07.021
- 595 Guo, Z. Y., Kong, C. H., Wang, J. G., & Wang, Y. F. (2011). Rhizosphere isoflavones
- (daidzein and genistein) levels and their relation to the microbial community
 structure of mono-cropped soybean soil in field and controlled conditions. *Soil Biology & Biochemistry*, 43(11), 2257-2264. doi:10.1016/j.soilbio.2011.07.022
- 599 Hamid, M. I., Hussain, M., Wu, Y. P., Zhang, X. L., Xiang, M. C., & Liu, X. Z. (2017).
- Successive soybean-monoculture cropping assembles rhizosphere microbial
 communities for the soil suppression of soybean cyst nematode. *Fems Microbiology Ecology*, 93(1). doi:10.1093/femsec/fiw222
- Hartmann, A., Rothballer, M., & Schmid, M. (2008). Lorenz Hiltner, a pioneer in
- rhizosphere microbial ecology and soil bacteriology research. *Plant and Soil, 312*(1-2), 7-14. doi:10.1007/s11104-007-9514-z

606 Hiltner, L. (1904). Über neuere Erfahrungen und Probleme auf dem Gebiet der

- Bodenbakteriologie und unter besonderer Berücksichtigung der Gründüngung
 und Brache. Arbeiten der Deutschen Landwirtschaftlichen Gesellschaft, 98,
 59-78.
- Holscher, D., Dhakshinamoorthy, S., Alexandrov, T., Becker, M., Bretschneider, T.,
 Buerkert, A., . . . Swennen, R. L. (2014). Phenalenone-type phytoalexins
- 612 mediate resistance of banana plants (Musa spp.) to the burrowing nematode
- 613 Radopholus similis. Proceedings of the National Academy of Sciences of the
- 614 United States of America, 111(1), 105-110. doi:10.1073/pnas.1314168110
- 615 Holz, M., Zarebanadkouki, M., Kaestner, A., Kuzyakov, Y., & Carminati, A. (2018).

616	Rhizodeposition under drought is controlled by root growth rate and rhizosphere
617	water content. Plant and Soil, 423(1-2), 429-442.
618	doi:10.1007/s11104-017-3522-4
619	Huang, A. C., Jiang, T., Liu, YX., Bai, YC., Reed, J., Qu, B., Osbourn, A. (2019).
620	A specialized metabolic network selectively modulates Arabidopsis root
621	microbiota. Science (New York, N.Y.), 364(6440). doi:10.1126/science.aau6389
622	Jones, D. L., & Murphy, D. V. (2007). Microbial response time to sugar and amino acid
623	additions to soil. Soil Biology & Biochemistry, 39(8), 2178-2182.
624	doi:10.1016/j.soilbio.2007.03.017
625	Katoh, K., & Standley, D. M. (2013). MAFFT Multiple Sequence Alignment Software
626	Version 7: Improvements in Performance and Usability. Molecular Biology and
627	Evolution, 30(4), 772-780. doi:10.1093/molbev/mst010
628	Kosslak, R. M., Bookland, R., Barkei, J., Paaren, H. E., & Appelbaum, E. R. (1987).
629	Induction of Bradyrhizobium japonicum common nod genes by isoflavones
630	isolated from Glycine max. Proc Natl Acad Sci USA, 84(21), 7428-7432.
631	Kuzyakov, Y., & Razavi, B. S. (2019). Rhizosphere size and shape: Temporal dynamics
632	and spatial stationarity. Soil Biology and Biochemistry, 135, 343-360.
633	doi:10.1016/j.soilbio.2019.05.011
634	Kwak MJ., K. H. G., Choi K., Kwon SK., Song J.Y., Lee J., Lee P.A., Choi S.Y., Seo
635	M., Lee H.J., Jung E.J., Park H., Roy N., Kim H., Lee M.M., Rubin E.M., Lee
636	SW., Kim J.F (2018). Rhizosphere microbiome structure alters to enable wilt
637	resistance in tomato (vol 36, pg 1100, 2018). Nature Biotechnology, 36(11),
638	1117-1117. doi:10.1038/nbt1118-1117
639	Liang, B., Yang, C. L., Gong, M. B., Zhao, Y. F., Zhang, J., Zhu, C. X., Li, S. P.
640	(2011). Adsorption and degradation of triazophos, chlorpyrifos and their main

641	hydrolytic metabolites in paddy soil from Chaohu Lake, China. Journal of
642	Environmental Management, 92(9), 2229-2234.
643	doi:10.1016/j.jenvman.2011.04.009
644	Liu, F., Hewezi, T., Lebeis, S. L., Pantalone, V., Grewal, P. S., & Staton, M. E. (2019).
645	Soil indigenous microbiome and plant genotypes cooperatively modify soybean
646	rhizosphere microbiome assembly. Bmc Microbiology, 19(1).
647	doi:10.1186/s12866-019-1572-x
648	Lopes, K. B. D., Carpentieri-Pipolo, V., Oro, T. H., Pagliosa, E. S., & Degrassi, G.
649	(2016). Culturable endophytic bacterial communities associated with
650	field-grown soybean. Journal of Applied Microbiology, 120(3), 740-755.
651	doi:10.1111/jam.13046
652	Lundberg, D. S., Lebeis, S. L., Paredes, S. H., Yourstone, S., Gehring, J., Malfatti, S.,
653	Dangl, J. L. (2012). Defining the core Arabidopsis thaliana root microbiome.
654	Nature, 488(7409), 86-90. doi:10.1038/nature11237
655	Massalha, H., Korenblum, E., Tholl, D., Aharoni, A. (2017). Small molecules
656	below-ground: the role of specialized metabolites in the rhizosphere. Plant
657	Journal, 90(4), 788-807. doi:10.1111/tpj.13543
658	Mazur, W. M., Duke, J. A., Wahala, K., Rasku, S., & Adlercreutz, H. (1998).
659	Isoflavonoids and lignans in legumes: Nutritional and health aspects in humans.
660	Journal of Nutritional Biochemistry, 9(4), 193-200.
661	doi:10.1016/s0955-2863(97)00184-8
662	Mendes, R., Garbeva, P., & Raaijmakers, J. M. (2013). The rhizosphere microbiome:
663	significance of plant beneficial, plant pathogenic, and human pathogenic
664	microorganisms. Fems Microbiology Reviews, 37(5), 634-663.
665	doi:10.1111/1574-6976.12028

666	Millington, R., & Quirk, J. P. (1961). Permeability of porous solids. <i>Transactions of the</i>
667	Faraday Society, 57(8), 1200-1207. doi:10.1039/tf9615701200
668	Oburger, E., Dell'mour, M., Hann, S., Wieshammer, G., Puschenreiter, M., & Wenzel, W.
669	W. (2013). Evaluation of a novel tool for sampling root exudates from
670	soil-grown plants compared to conventional techniques. Environmental and
671	Experimental Botany, 87, 235-247. doi:10.1016/j.envexpbot.2012.11.007
672	Oburgera, E., Jones, D.L. (2018). Sampling root exudates - Mission impossible?
673	Rhizosphere, 6, 116-133. doi:10.1016/j.rhisph.2018.06.004
674	Pichersky, E., & Lewinsohn, E. (2011). Convergent Evolution in Plant Specialized
675	Metabolism. In S. S. Merchant, W. R. Briggs, & D. Ort (Eds.), Annual Review of
676	Plant Biology, Vol 62 (Vol. 62, pp. 549-566). Palo Alto: Annual Reviews.
677	Prashar, P., Kapoor, N., & Sachdeva, S. (2014). Rhizosphere: its structure, bacterial
678	diversity and significance. Reviews in Environmental Science and
679	<i>Bio-Technology</i> , 13(1), 63-77. doi:10.1007/s11157-013-9317-z
680	Price, M. N., Dehal, P. S., & Arkin, A. P. (2010). FastTree 2-Approximately
681	Maximum-Likelihood Trees for Large Alignments. PLoS One, 5(3).
682	doi:10.1371/journal.pone.0009490
683	Rasmann, S., Kollner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U.,
684	Turlings, T. C. J. (2005). Recruitment of entomopathogenic nematodes by
685	insect-damaged maize roots. Nature, 434(7034), 732-737.
686	doi:10.1038/nature03451
687	Razavi, B. S., Zarebanadkouki, M., Blagodatskaya, E., & Kuzyakov, Y. (2016).
688	Rhizosphere shape of lentil and maize: Spatial distribution of enzyme activities.
689	Soil Biology & Biochemistry, 96, 229-237. doi:10.1016/j.soilbio.2016.02.020
690	Ruyter-Spira, C., Al-Babili, S., van der Krol, S., & Bouwmeester, H. (2013). The

- 691 biology of strigolactones. *Trends in Plant Science*, *18*(2), 72-83.
- 692 doi:10.1016/j.tplants.2012.10.003
- 693 Sasse, J., Martinoia, E., & Northen, T. (2018). Feed Your Friends: Do Plant Exudates
- 694 Shape the Root Microbiome? *Trends in Plant Science*, 23(1), 25-41.
- 695 doi:10.1016/j.tplants.2017.09.003
- 696 Schaap, M. G., Leij, F. J., & van Genuchten, M. T. (2001). ROSETTA: a computer
- 697 program for estimating soil hydraulic parameters with hierarchical pedotransfer
- 698 functions. *Journal of Hydrology*, 251(3-4), 163-176.
- 699 doi:10.1016/s0022-1694(01)00466-8
- 700 Schulz-Bohm, K., Gerards, S., Hundscheid, M., Melenhorst, J., de Boer, W., & Garbeva,
- P. (2018). Calling from distance: attraction of soil bacteria by plant root volatiles. *Isme Journal*, *12*(5), 1252-1262. doi:10.1038/s41396-017-0035-3
- 703 Seto, Y., Kameoka, H., Yamaguchi, S., & Kyozuka, J. (2012). Recent Advances in
- 704 Strigolactone Research: Chemical and Biological Aspects. *Plant and Cell*
- 705 *Physiology*, *53*(11), 1843-1853. doi:10.1093/pcp/pcs142
- 706 Soma, Y., & Soma, M. (1989). CHEMICAL-REACTIONS OF
- 707 ORGANIC-COMPOUNDS ON CLAY SURFACES. Environmental Health
- 708 *Perspectives*, 83, 205-214. doi:10.2307/3430656
- 709 Stringlis I.A., Y. K., Feussner K., de Jonge R., Van Bentum S., Van Verk M.C.,
- 710 Berendsen R.L., Bakker P.A.H.M., Feussner I., Pieterse C.M.J. (2018).
- 711 MYB72-dependent coumarin exudation shapes root microbiome assembly to
- 712 promote plant health. *Proceedings of the National Academy of Sciences of the*
- 713 United States of America, 115(22), E5213-E5222. doi:10.1073/pnas.1722335115
- 714 Sugiyama, A. (2019). The soybean rhizosphere: Metabolites, microbes, and beyond-A
- review. Journal of Advanced Research, 19, 67-73.

doi:10.1016/j.jare.2019.03.005

717	Sugiyama, A., Ueda, Y., Zushi, T., Takase, H., & Yazaki, K. (2014). Changes in the
718	bacterial community of soybean rhizospheres during growth in the field. PLoS
719	One, 9(6), e100709. doi:10.1371/journal.pone.0100709
720	Sugiyama, A., Yamazaki, Y., Hamamoto, S., Takase, H., & Yazaki, K. (2017). Synthesis
721	and Secretion of Isoflavones by Field-Grown Soybean. Plant and Cell
722	Physiology, 58(9), 1594-1600. doi:10.1093/pcp/pcx084
723	Sugiyama, A., Yamazaki, Y., Yamashita, K., Takahashi, S., Nakayama, T., & Yazaki, K.
724	(2016). Developmental and nutritional regulation of isoflavone secretion from
725	soybean roots. Bioscience Biotechnology and Biochemistry, 80(1), 89-94.
726	doi:10.1080/09168451.2015.1062714
727	Sugiyama, A., & Yazaki, K. (2014). Flavonoids in plant rhizospheres: secretion, fate and
728	their effects on biological communication. <i>Plant Biotechnology</i> , 31(5), 431-443.
729	doi:10.5511/plantbiotechnology.14.0917a
730	van Genuchten, M. T. (1980). A Closed-form Equation for Predicting the Hydraulic
731	Conductivity of Unsaturated Soils. Soil Science Society of America Journal,
732	44(5), 892-898. doi:10.2136/sssaj1980.03615995004400050002x
733	Veličković, D., & Anderton, C. R. (2017). Mass spectrometry imaging: Towards
734	mapping the elemental and molecular composition of the rhizosphere.
735	Rhizosphere, 3(2), 254-258. doi:10.1016/j.rhisph.2017.03.003
736	Vereecken, H., Schnepf, A., Hopmans, J. W., Javaux, M., Or, D., Roose, D. O. T.,
737	Young, I. M. (2016). Modeling Soil Processes: Review, Key Challenges, and
738	New Perspectives. Vadose Zone Journal, 15(5). doi:10.2136/vzj2015.09.0131
739	Voges, M. J. E. E., Bai, Y., Schulze-Lefert, P., & Sattely, E. S. (2019). Plant-derived
740	coumarins shape the composition of an Arabidopsis synthetic root microbiome.

- 741 Proceedings of the National Academy of Sciences of the United States of
- 742 *America*. doi:10.1073/pnas.1820691116
- 743 Vorholt, J. A., Vogel, C., Carlstrom, C. I., & Muller, D. B. (2017). Establishing
- 744 Causality: Opportunities of Synthetic Communities for Plant Microbiome
- 745 Research. Cell Host & Microbe, 22(2), 142-155.
- 746 doi:10.1016/j.chom.2017.07.004
- 747 White, L. J., Ge, X., Brozel, V. S., & Subramanian, S. (2017). Root isoflavonoids and
- hairy root transformation influence key bacterial taxa in the soybean
- rhizosphere. . *Environ Microbiol.*, 19(4), 1391-1406. doi:
- 750 10.1111/1462-2920.13602
- 751 Xiao, X., Chen, W., Zong, L., Yang, J., Jiao, S., Lin, Y., ... Wei, G. (2017). Two
- cultivated legume plants reveal the enrichment process of the microbiome in the
- rhizocompartments. *Molecular Ecology*, 26(6), 1641-1651.
- 754 doi:10.1111/mec.14027
- Zarebanadkouki, M., Fink, T., Benard, P., & Banfield, C. C. (2019). Mucilage Facilitates
 Nutrient Diffusion in the Drying Rhizosphere. *Vadose Zone Journal*, *18*(1).
- 757 doi:10.2136/vzj2019.02.0021
- 758 Zarebanadkouki, M., Kroener, E., Kaestner, A., & Carminati, A. (2014). Visualization of
- 759 Root Water Uptake: Quantification of Deuterated Water Transport in Roots
- 760Using Neutron Radiography and Numerical Modeling. Plant Physiology, 166(2),
- 761 487-499. doi:10.1104/pp.114.243212
- 762 Zhang, X., Dippold, M. A., Kuzyakov, Y., & Razavi, B. S. (2019). Spatial pattern of
- 764 *Biochemistry*, 133, 83-93. doi:10.1016/j.soilbio.2019.02.010

767	Disclosure statement
768	No potential conflict of interest was reported by the authors.
769	
770	Figure legends
771	Fig. 1 Simulation of daidzein distribution in soil. (A) Daidzein concentrations at 7 days
772	after germination from 0 to 6 mm from root surface. (B) Daidzein concentrations at 14
773	days after germination from 0 to 6 mm from root surface. (C) Daidzein distribution
774	from 7 to 70 days.
775	
776	Fig. 2 Daidzein adsorption to soil organic matter. Soils were treated with hydrogen
777	peroxide to remove organic matter. Carbon content was measured by using a CN corder.
778	Adsorption of daidzein by gray lowland soil after hydrogen peroxide treatment to
779	remove organic matter. Values indicate means \pm SD. Soil organic carbon was measured
780	in duplicate, and adsorption of daidzein was measured in triplicate. White circle:
781	control; black circle: hydrogen peroxide-treated soil.
782	

783 Fig. 3 Daidzein distribution in the rhizobox. Daidzein concentrations in soil within 2

784 mm of the root surface and recovered from the cellulose acetate membrane filter (n = 6). 785

786	Fig. 4 Pairwise comparisons between daidzein-treated and untreated soils. Box plots
787	showing mean and variance of average pair-wise weighted UniFrac distances (A) and
788	unweighted UniFrac distance (B) between daidzein-untreated (0 nmol) and
789	daidzein-treated samples. p-values from Wilcoxon rank-sum test are shown.
790	
791	Fig. 5 Comparison of bacterial communities between daidzein-treated soils and soybean
792	field soils. (A) Weighted Unifrac distance between daidzein-treated soils and bulk soils
793	and between daidzein-treated soils and rhizosphere soils. p-value from Wilcoxon
794	rank-sum test is shown. (B) Venn diagrams showing overlap of bacterial families
795	enriched or depleted in soil treated with daidzein and in the soybean rhizosphere.
796	Numbers in the circle represent number of bacterial families.
797	
798	Fig. 6 Families enriched or depleted in daidzein-treated soils and soybean rhizosphere.
799	The heatmap represents the fold-changes. Colored stripes indicate whether the family
800	was enriched or depleted in daidzein-treated soils and soybean rhizosphere. Families

801 either enriched or depleted in both soybean rhizosphere and daidzein treatment are

shown. Comparisons of other Families are shown in Supplementary Fig. 7.

803

804

805	Supple	mentary	Figures
	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		

- 806 Supplementary Fig. 1 Adsorption isotherms of daidzein in gray lowland soil. Initial
- 807 concentrations ranging from 17 to 270 ppb were used to determine the daidzein
- 808 concentration in the aqueous phase (n = 2). Cs; adsorbed concentration in soil, Cw;

809 concentration in water in equilibrium with the soil.

810

811	Supplementary Fi	g. 2 Schematic	illustration o	of the rhizobox.	(A) Soybean roots were
-----	------------------	----------------	----------------	------------------	------------------------

separated with nylon mesh, and a 2-mm soil layer was placed on both sides of plants.

813 Cellulose acetate membranes were set at 2 mm from the root surface. (B) Representative

814 images of the rhizobox.

815

816 Supplementary Fig. 3 Schematic illustration of daidzein treatment to soils.

- 818 Supplementary Fig. 4 Daidzein adsorption to kaolinite. Daidzein at initial
- 819 concentrations ranging from 17 to 270 ppb was used to determine the daidzein

820 concentration in the aqueous phase.

01	1
02	Т

822	Supplementary Fig. 5 Alpha diversity of bacterial communities of soils augmented with
823	daidzein. Observed operational taxonomic units (OTUs) (A) and Shannon diversity
824	index (B) $(n = 4)$.
825	
826	Supplementary Fig. 6 Principal coordinate analysis of bacterial communities of soils
827	augmented with daidzein. (A) Unweighted Unifrac and (B) weighted Unifrac analysis.
828	Different colors represent different concentrations of daidzein in soil.
829	
830	Supplementary Fig. 7 Families enriched or depleted in daidzein-treated soils and
831	soybean rhizosphere. The heatmap represents the fold-changes. Colored stripes indicate
832	whether the family was enriched or depleted in daidzein-treated soils and soybean
833	rhizosphere.
834	
835	Supplementary Fig. 8 Correlation between daidzein concentration after 15 days of
836	incubation and the relative abundance of Comamonadaceae.

838	Supplementary Fig. 9 (A) Relative abundance of Comamonadaceae in soils treated with
839	different concentrations of daidzein and in bulk and rhizosphere soils of soybean field.
840	(B) Relative abundance of Microbacteriaceae in soils treated with different
841	concentrations of daidzein and in bulk and rhizosphere soils of soybean field.
842	
843	Supplementary Table 1. Parameters used in this study
844	
845	Supplementary Table 2. Effective Read Number, Observed ASVs, Faith's Phylogenetic
846	Diversity, Shannon's Entropy, Pielou's Evenness of each sample.
847	
848	Supplementary Table 3. Number of reads assigned to taxonomy categories.
849	
850	Supplementary Table 4. Water content ratio of soils in rhizobox after soybean growth.
851	
852	Supplementary Table 5. Fold changes of bacterial taxa in soybean rhizosphere and
853	daidzein-treated soils. Families either enriched or depleted in both soybean rhizosphere
854	and daidzein treatment are shown. P value of Student's t-test and Q value of false
855	discovery rate for multiple comparison are shown.

857	Supplementary Table 6. Fold changes of bacterial taxa in soybean rhizosphere and
858	daidzein-treated soils. All Families in Supplementary Fig. 7 are shown. P value of
859	Student's t-test and Q value of false discovery rate for multiple comparison are shown.
860	