- 1 **Title:** Ecosystem size predicts the probability of speciation in migratory freshwater fish
- 2
- 3 **Short title:** Ecosystem size predicts speciation

- 5 Authors: Yo Y. YAMASAKI^{1,2*}, Hirohiko TAKESHIMA^{3,4}, Yuichi KANO⁵, Naoharu
- 6 OSEKO⁶, Toshiyuki SUZUKI⁷, Mutsumi NISHIDA⁸, Katsutoshi WATANABE^{1*}

7

- 8 Author affiliations:
- 9 ¹ Graduate School of Science, Kyoto University, Kitashirakawa-oiwake-cho, Sakyo, Kyoto
- 10 606-8502, Japan
- ² Ecological Genetics Laboratory, Department of Genomics and Evolutionary Biology,
- 12 National Institute of Genetics, Yata 1111, Mishima, Shizuoka, 411-8540, Japan
- 13 Research Institute for Humanity and Nature, 457-4 Motoyama, Kamigamo, Kita, Kyoto
- 14 603-8047, Japan
- ⁴Department of Marine Biology, Tokai University, Shimizu 3-20-2, Shizuoka 424-0902,
- 16 Japan
- ⁵ Graduate education and research training program in Decision Science for a Sustainable
- 18 Society, Kyushu University, 744, Motooka, Nishi, Fukuoka 819-0395, Japan
- 19 ⁶ 3-18-5-203, Nagata Ginowan, Okinawa 901-2212, Japan
- ⁷ Kawanishi-midoridai Senior High School, 1-8 Kouyoudai, Kawanishi, Hyogo 666-0115,
- 21 Japan
- 22 8 University of the Ryukyus, 1 Senbaru, Nishihara-cho, Nakagami-gun, Okinawa 903-0213,
- 23 Japan

- 25 * Corresponding authors:
- Yo Y. Yamasaki: yo.yamasaki@terra.zool.kyoto-u.ac.jp
- 27 Katsutoshi Watanabe: watanak@terra.zool.kyoto-u.ac.jp

ABSTRACT

Predicting speciation is a fundamental goal of research in evolutionary ecology. The probability of speciation is often positively correlated with ecosystem size. Although the mechanisms driving this correlation are generally difficult to identify, a shared geographic and ecological context provides a suitable condition to study the mechanisms that promote speciation in large ecosystems by reducing the number of factors to be considered. Here, we determined the correlation between speciation and ecosystem size, and discussed the underlying mechanisms of this relationship, using a probable parallel ecotype formation for freshwater fish. Our population genetic analysis revealed that speciation of the landlocked goby, *Rhinogobius* sp. YB, of the Ryukyu Archipelago, Japan, from its migratory ancestor, *R. brunneus*, occurred in parallel across five islands. Logistic regression analysis showed that speciation probability could be predicted using island size. The results suggest that ecosystem size predicts the occurrence of adaptation and reproductive isolation, likely through its association with three possible factors: divergent selection strength, population persistence, and occurrence probability of habitat separation.

Key words

- ecological speciation, parallel evolution, island biogeography, approximate Bayesian
- 46 computation, speciation-area relationship, *Rhinogobius*

1 | INTRODUCTION

48

77

78

49 Understanding the patterns and mechanisms of speciation is the fundamental goal of 50 evolutionary ecology (Coyne & Orr, 2004; Reznick & Ricklefs, 2009). As macroevolutionary 51 patterns of speciation, such as differences in diversification rate among lineages or regions, 52 are caused by the accumulation of individual speciation events, the patterns are expected to be 53 strongly influenced by speciation mechanisms (i.e., evolution of reproductive isolation). 54 However, the relationships between macropatterns and the underlying mechanisms are not 55 well understood, because they are usually investigated separately (Rosenblum et al., 2012; 56 Cutter & Gray, 2016; Rabosky, 2016; but see Rabosky & Matute, 2013). Explicit 57 consideration of the speciation mechanism would be helpful for obtaining a causal 58 explanation of how macroevolutionary patterns of speciation have been generated (Harvey et 59 al., 2017; Kisel et al., 2012). 60 Ecosystem size, often represented by habitat area, has long been considered as one of the best 61 predictors for variation in species richness (MacArthur & Wilson, 1967). Recent studies on 62 species-area relationships also recognize "in situ speciation" as an important factor, in 63 addition to immigration and extinction rates (Losos & Parent, 2009; Losos & Schluter, 2000; 64 Wagner, Harmon, & Seehausen, 2014; Weigelt, Steinbauer, Cabral, & Kreft, 2016). The 65 positive correlation between ecosystem size and speciation rate is supported by several 66 empirical (Kisel & Barraclough, 2010; Parent & Crespi, 2006) and theoretical (Gavrilets & 67 Vose, 2005; Rosindell & Phillimore, 2011) studies. 68 Several hypotheses have been proposed that explain how speciation rate, or speciation 69 probability, is affected by ecosystem size through speciation processes. For example, the 70 opportunity for geographical isolation, which impedes gene flow, is likely to increase in 71 larger areas (Kisel & Barraclough, 2010; Losos & Schluter, 2000). As larger areas contain 72 heterogeneous environments, this phenomenon might also promote diversification to new 73 environments following speciation (Parent & Crespi, 2006). Moreover, larger areas allow 74 larger population sizes and longer persistence of newly emerged species (Kisel, McInnes, 75 Toomey, & Orme, 2011). However, these hypotheses have been rarely tested empirically, 76 because studies have usually assessed speciation by considering various mechanisms

simultaneously. Thus, it is difficult to evaluate the influence of different factors on the

speciation process. This problem could be addressed by targeting a group with parallel

80 2016; Vamosi, 2003). However, when using such an approach, it is important to first obtain 81 evidence of repeated evolution under the same mechanism as the focal system. 82 Due to clear boundaries and replications, freshwater invasion by migratory fish in island 83 habitats is a suitable case for testing the relationship between ecosystem size and occurrence 84 of speciation. The East Asian goby, genus *Rhinogobius*, is one such fish group, in which the 85 amphidromous (migratory) species R. brunneus might have repeatedly produced strictly 86 freshwater populations (*Rhinogobius* sp. YB sensu Akihito, Sakamoto, Ikeda, & Aizawa, 87 2013) in the Ryukyu Archipelago of Japan (Kano, Nishida, & Nakajima, 2012; Nishida, 2001; 88 Ohara, Takagi, Hashimoto, Miyazaki, & Hirashima, 2008). However, the number of times 89 and geographical scales (i.e., islands, rivers, etc.) of the origin of the freshwater form of this 90 goby have not yet been elucidated. Furthermore, the extent and factors of reproductive 91 isolation between the amphidromous and freshwater forms have not been investigated. 92 We propose that the freshwater colonization of the goby in the Ryukyu Archipelago is a good 93 model system for testing the correlation between ecosystem size and speciation probability for 94 the following reasons. First, the ancestral amphidromous populations might have shared 95 common evolutionary potential, because of possible gene flow through the sea during the 96 larval period. Second, ecosystem age is similar among islands. According to geographical 97 data, most islands in the Ryukyu Archipelago formed nearly simultaneously ~1.5 million 98 years ago by the opening of straits between the islands (Osozawa et al., 2012). Third, 99 ecological conditions are probably similar among the islands, because almost no freshwater 100 fish species, except those of *Rhinogobius*, occur in the upper reaches of the rivers in the 101 Ryukyu Archipelago (Kano et al., 2012; Yoshigou, 2014), resulting in few competitors and 102 predators, which are important components of ecological opportunity (Wellborn & 103 Langerhans, 2014; Yoder et al., 2010). 104 Using the simple system of *Rhinogobius* gobies, we primarily aimed to clarify whether the 105 speciation probability of the freshwater form can be explained by ecosystem size. We first 106 confirmed the existence of genetic isolation between the amphidromous and freshwater forms 107 inhabiting the same islands or rivers. Next, we estimated where and how many times the 108 freshwater forms originated, based on statistically explicit tests among demographic models 109 that hypothesized parallel or single origin scenarios. We then examined whether speciation

diversification under the same mechanism (Lucek, Kristjánsson, Skúlason, & Seehausen,

- probability could be predicted by ecosystem size. The correlation between independent
- origins of the freshwater form inferred from demographic modelling and ecosystem size (e.g.,
- island area) was tested statistically (see Figure 1, concept diagram representing our approach).
- On the basis of these results, we discuss the mechanisms producing the relationships between
- ecosystem size and the speciation process in this system.

2 | MATERIALS AND METHODS

2.1 | Study system

115

- 117 The freshwater resident form derived from the amphidromous species *Rhinogobius brunneus*
- is recognized as an independent species but has not yet been described because of taxonomic
- 119 confusion. Previous studies (e.g., Akihito et al., 2013) tentatively used the name
- "Rhinogobius sp. YB" for this freshwater form. However, until its evolutionary status is
- clarified, we will use the code "FF" (freshwater form) for *Rhinogobius* sp. YB and "AF"
- 122 (amphidromous form) for *R. brunneus* based on their life history modes.
- The FF completes its life in freshwater; conversely, AF larvae hatch in rivers and immediately
- drift down to the sea and return to rivers after 2–3 months (Mizuno, 2001). The eggs and
- larvae of FF are larger than those of AF (Supporting Information methods and results S1).
- These traits are assumed to be an adaptation to the river environment, where small food items
- 127 (i.e., plankton) are scarce and higher level of swimming ability in river currents is needed
- 128 (Hirashima & Tachihara, 2000; Nishida, 2001; Shinomiya, Sasabe, Sakurai, & Kishino, 2005;
- 129 Yamasaki, Nishida, Suzuki, Mukai, & Watanabe, 2015).
- 130 Although the distribution of the two species sometimes overlapped in a single river, their
- distributions were generally different. AF mainly lived in the middle to lower reaches of
- rivers. In fact, AF populations are found only in rivers shorter than 18 km in the central
- Honshu region of Japan (Tamada, 2005). The larvae of AF must rapidly reach the sea to avoid
- starvation because of the scarcity of small food in rivers (Iguchi & Mizuno, 1999; Moriyama,
- 135 Yanagisawa, Mizuno, & Omori, 1998). Thus, they might not be able to reproduce effectively
- in areas far from the sea (Iguchi & Mizuno, 1999). By contrast, FF mainly live in the upper
- reaches of rivers, and are often found in the upper areas of waterfalls where no other fish
- species are distributed (Kano et al., 2012).

2.2 | Sampling

140	Samples were collected on seven islands where populations of FF have been recorded
141	previously (locality code 2. Amami-Ohshima Is., 4. Tokunoshima Is., 5. Okinoerabujima Is.,
142	6. Okinawajima Is., and 7. Kumejima Is. in Middle Ryukyu; 8. Ishigakijima Is. and 9.
143	Iriomotejima Is. in South Ryukyu; Table S1; Figure 2; Ohara et al., 2008; Yoshigo, 2014). In
144	addition, AF specimens were collected from three other islands (Figure 2). The specimens
145	were identified by body colour patterns when fresh (Kano et al., 2012; Suzuki, Shibukawa,
146	Yano, & Senou, 2004). Identification based on body colour was in agreement with the results
147	of the genetic analysis, but some samples were difficult to identify or showed inconsistent
148	genetic characteristics. When genetic data suggested that the focal specimens were not judged
149	as hybrids based on the criteria described below and that incorrect identification based on
150	morphology in the field was likely (see the next section and Supporting methods and results
151	S1), these samples were removed from all subsequent analyses. If a sample was judged to be a
152	hybrid, we tentatively named it based on morphology. As a result, 842 FF and 578 AF
153	specimens from 52 points in 42 river systems were included in the analysis. Both forms were
154	collected from nine river systems; they were sympatrically collected at seven points.
155	2.3 Genetic data and population structure
156	Genetic data of Rhinogobius specimens were obtained by genotyping 20 nuclear
157	microsatellite loci (Table S2; Ohara, Takahashi, & Takagi, 2004). Methods for molecular
158	experiments and genotyping are described in the Supporting methods and results S1.
159	Genotype data were deposited in Dryad (https://doi.org/10.5061/dryad.mpg4f4qvh). To assess
160	the genetic features of the respective populations, we calculated the expected and observed
161	heterozygosity (H_E and H_O , respectively) and allelic richness (Rs) for the respective
162	populations. Pairwise $F_{\mbox{ST}}$ and Jost's D were also calculated. We conducted analysis of
163	molecular variance (AMOVA; Excoffier, Smouse, & Quattro, 1992) separately for AF and FF,
164	to assess hierarchical genetic differentiation. To visualize relatedness among populations, we
165	constructed a neighbour-joining tree among populations based on Nei's Da distance (Nei,
166	Tajima, & Tateno, 1983) using poptree2 (Takezaki, Nei, & Tamura, 2010). The credibility of
167	each clade was evaluated using 1,000 bootstrap resamplings.

168	To infer the existence and extent of gene flow and genetic isolation, we analysed the genetic
169	structure of the population using structure version 2.3.4 (Lawson, van Dorp, & Falush, 2018;
170	Pritchard, Stephen, & Donnelly, 2000). We prepared two data sets: one for both FF and AF
171	populations from each island, and another for only AF populations from all islands. Evanno's
172	ΔK (Earl & von Holdt, 2012; Evanno, Regnaut, & Goudet, 2005) was used as a reference for
173	K value selection. Hybrid individuals were evaluated using q values; we arbitrarily judged
174	specimens as hybrids (or individuals with hybrid origin) in cases where minor genetic
175	components accounted for 10% or more of the aggregate (Vähä & Primmer, 2006). Detailed
176	methods are provided in the Supporting methods and results S1.
177	2.4 Testing the parallel formation of FF by ABC
178	Before testing the relationship between ecosystem size and speciation probability, we needed
179	to infer the islands where speciation of FF occurred. To examine the single or parallel origins
180	of FF statistically, we conducted a demographic model selection under the Approximate
181	Bayesian Computation (ABC) framework (Beaumont, 2010). We briefly describe the
182	procedures of model construction and model selection in this section (for details, see
183	Supporting methods and results S1).
184	Our general model construction strategies for ABC analysis were as follows. First, we
185	generated separate models using three geographical scales (i.e. within-islands, regional
186	[Middle and South Ryukyu], and archipelago scales) and examined FF origins in each
187	geographical scale to reduce the number of models and populations examined in a single
188	analysis. Second, we examined both models with and without gene flow between AF and FF
189	populations. This is because a simulation study suggests that gene flow could alter apparent
190	phylogenetic relationships among populations when simple genetic distance was used (Bierne
191	Gagnaire, & David, 2013). Demographic model comparisons that consider gene flow can
192	overcome this problem (Butlin et al., 2014).
193	In the within-islands analyses, we mainly examined two questions: whether FF had single or
194	parallel origin, and whether gene flow between AF and FF existed on each island. We
195	hypothesized several plausible divergence orders between populations based on the result of
196	structure analysis, phylogeny and geographical locations for respective islands. Thereafter, we
197	compared the models with single/parallel origins and with/without gene flow. Analyses were

198 conducted for the five islands where FF is distributed in multiple rivers (i.e., Amami-Oshima 199 Is., Tokunoshima Is., Okinawajima Is., Kumejima Is. and Iriomotejima Is.). We selected three 200 (or two) river populations for each island to reduce the model complexities. Criteria for 201 population selection are described in the Supporting methods and results S1. The constructed 202 models (a total of 34 models) are described in Figure S1a-e. Summary statistics are given in 203 Table S3. 204 For the among-islands within-region analyses, we constructed several plausible models 205 separately for the regions of Tokunoshima Is. and Okinoerabujima Is., Middle Ryukyu, and 206 South Ryukyu. Five to 10 models were constructed on the basis of the phylogenetic tree and 207 geographical distance between islands. Finally, in the between-region analyses, we compared 208 10 models generated from the results of the previous analyses. All constructed models are 209 described in the Supporting methods and results S1 and Figure S1f-I. Scripts that describe the 210 models have been deposited in Dryad (https://doi.org/10.5061/dryad.mpg4f4qvh). 211 For model selection, we chose the model that had the highest posterior probability in the 212 respective analyses. To evaluate the accuracy of model selection, we calculated a 213 misclassification rate (i.e., the rate at which the focal model was selected despite the other 214 model being true [type 2 error rate]). 215 2.5 | Correlation between ecosystem size and speciation probability 216 We first identified the islands on which the speciation of FF occurred based on the results of 217 structure (genetic isolation) and ABC model selection (independent origin). The relationship 218 between ecosystem size and speciation was analysed for the Middle and South Ryukyu 219 islands. This is because these islands are assumed to be similar in age, were never connected 220 to the continent after separation, and were not catastrophically affected by volcanic activity 221 (Osozawa et al., 2012; Supporting methods and results S1). We acquired distribution 222 information of the two forms from published literature (Yoshigou, 2014) and our own field 223 survey, and we only chose the islands where either or both forms were distributed. This is 224 because we assumed that speciation was not likely to have occurred on the island where either 225 of these species is not currently distributed. We coded the occurrence of speciation in each 226 island as follows: 1 for the island where speciation occurred, and 0 for the island where 227 speciation did not occur. As a proxy of ecosystem size, we used island area (km²; data from

228	the Geospatial Information Authority of Japan), maximum catchment area (km²), maximum
229	river length (m) or the maximum number of waterfalls on each island (Supporting methods
230	and results S1).
231	We performed one-parameter logistic regression analysis in the generalized linear model
232	framework with binomial error structure for the response variable (speciation: 1, presence; 0,
233	absence) using the glm package of r version 3.1.1 (R Core Team, 2014). Due to a strong
234	positive correlation between the four variables (Pearson's correlation coefficient, 0.592-0.993,
235	Supporting methods and results S1), we primarily used island area as the explanatory variable
236	for the main result. Explanatory variables, except the number of waterfalls, were
237	log ₁₀ -transformed. To test the significance of explanatory variables, we conducted a
238	likelihood ratio test using 10,000 rounds of parametric bootstrap sampling with a constant
239	model as a null model that assumes no relationship between ecosystem variables and
240	speciation probability. We calculated McFadden's pseudo R^2 .
241	Furthermore, to examine the effect of the ecosystem size parameters other than island size
242	(i.e., maximum catchment area, river length and number of waterfalls), we constructed
243	another generalized linear model for speciation probability. We used the residuals from a
244	regression between island size and each of the other ecosystem size parameters, together with
245	the island size and their interaction, as explanatory variables. Stepwise model selections by
246	Akaike information criterion (AIC) scores were conducted using the <i>step</i> function on r.
247	3 RESULTS
248	3.1 Basic summary statistics
249	Heterozygosity and allelic richness were generally higher in the AF populations than in the
250	FF populations (Table S1, Figure S2a, b). The AF populations showed relatively little
251	pairwise genetic differentiation within islands and among islands within regions (Tables S4-
252	S6, Figure S2c, d). In comparison, the genetic differentiation of AF populations between
253	regions was large (Tables S4-S6, Figure S2c, d). The FF populations often showed large
254	genetic differentiation within islands and among islands within regions, as well as among
255	regions (Tables S4–S6, Figure S2c, d).
256	3.2 Genetic isolation and hybrids

257	In the AF data set, Evanno's ΔK showed the maximum value at $K = 2$; the populations in
258	North plus Middle Ryukyu and South Ryukyu were clearly separated. In the data set for each
259	island, including FF and AF populations, ΔK had a maximum value at $K = 2$ for all islands,
260	except one (Amami-Oshima Is.). The two genetic clusters corresponded to the two forms,
261	except on Okinawajima Is. (see below; Figure 3; Figure S3).
262	Suspected hybrid individuals were rare (2.0% of the total individuals). No suspected hybrid
263	individuals were detected from five of the seven sympatric collection points. Several
264	suspected hybrid individuals were detected in 11 FF and AF populations. Among these, all FF
265	individuals that were identified based on morphology in the FFOK-4-1 and FFOK-4-2
266	populations (Okinawajima Is.; Figures 2 and 3; Figure S3) exhibited the genetic features of
267	AF as the dominant component.
268	3.3 Genetic relationships among populations
269	The neighbour-joining tree showed two divergent groups separated by the Kerama Gap in all
270	of the FF and AF populations (bootstrap value, 97%; Figure 4). Each group included both
271	forms, which we present as Group 1 (Honshu, North Ryukyu and Middle Ryukyu) and Group
272	2 (South Ryukyu), hereafter. In both groups, FF populations
273	on each island formed a monophyletic group (bootstrap value, 91%-100%), except those on
274	two islands in Group 1 (Amami-Oshima Is., 67%; Okinawajima Is., 33%). In addition, FF
275	populations on different islands (Tokunoshima Is. and Okinoerabujima Is.) formed a
276	monophyletic group (89%). The AF populations within each group were closely related to
277	each other, and the populations of each island in Group 1 tended to form a monophyletic
278	group.
279	3.4 Test for multiple origins of FF
280	In the within-island-scale analysis, the single origin model of FF was selected for all islands
281	(Table 1 and Table S7; Figure 4 and Figure S4). Models including gene flow among all or
282	partial populations of the two forms showed higher posterior probability than those not
283	considering gene flow (Table 1 and Table S7; Figure 4 and Figure S4).

284 At the among-island scale, Group 1 in Middle Ryukyu and Group 2 in South Ryukyu were 285 analysed separately. For Group 1, we first examined the single origin of FF in the adjoining 286 islands, Tokunoshima Is. and Okinoerabujima Is., which was suggested by the phylogenetic 287 analysis. ABC analysis supported their single origin (Table 1 and Table S7), and thus only FF 288 on Tokunoshima Is. was used for subsequent analyses. The model selection for Group 1 289 strongly supported the four independent origins of FF (Table 1; Table S7). The model with 290 gene flow between the two forms provided a higher Bayes factor (BF) than the model not 291 considering gene flow (Table S7). In Group 2, the single origin of FF of Iriomotejima Is. and 292 Ishigakijima Is. was supported (Table 1; Table S7). The model including gene flow between 293 the AF and FF populations was better supported than that not considering gene flow (Table 294 S7). 295 For the between-region scale, the neighbour-joining tree for populations suggested 296 independent origins of FF in Groups 1 and 2. However, no conclusion could be drawn at this 297 scale from ABC, because no single model was successfully selected, probably because of 298 insufficient data (Table 1; Table S7). 299 3.5 | Correlation between speciation probability and ecosystem size 300 We confirmed the occurrence of AF or FF populations on 18 islands from the published 301 literature and our field survey (Table S8). As we could not specify the islands where unique 302 speciation occurred, we tested 20 alternative scenarios that hypothesized that speciation 303 occurred in different combinations of the candidate islands (see Supporting methods and 304 results S1, and Table S9 for details). 305 For all four data sets in the scenario of independent origins between the regions, speciation 306 probability was significantly explained by island area (Table 2 and Table S9; Figure 5 and S5). 307 The relationship was also significant for 12 of the 16 data sets in the nonindependent scenario 308 (Table S9). Almost identical results were obtained for maximum catchment area and river 309 length (Table 2 and Table S9; Figure S5). Furthermore, two of the four data sets for the 310 independent origin scenario and five of the 16 data sets for the nonindependent scenario 311 showed significant relationships between the number of waterfalls and speciation (Table 2 312 and Table S9). Model selection by AIC scores showed that the best model included no

313 variables, except for island area, as the predictors for speciation probability in most data sets 314 when the variables were controlled by island area (Table S9). 315 4 | DISCUSSION 316 Our results revealed that FF repeatedly evolved from AF in the Ryukyu Archipelago, and that 317 the occurrence of FF was highly correlated with island size. These results suggest that the speciation of FF was promoted in larger ecosystems. In the following sections, we discuss the 318 319 mechanisms of speciation and the causes of correlation between ecosystem size and 320 speciation of FF. 321 4.1 | Reproductive isolation between the two forms and its evolution 322 Genetic isolation between the two forms was suggested, even at sympatric sites (Figure 3 and Figure S3); the results support that FF and AF are reproductively isolated. This genetic 323 324 isolation between AF and FF cannot be explained by isolation by distance (IBD), because 325 geographically isolated FF populations in different river systems showed closer relationships 326 than FF and AF in the same river. This relationship was consistent in the respective islands. 327 Some behavioural mechanisms might be responsible for this reproductive isolation, as 328 reported for other species pairs of *Rhinogobius* (Mizuno, 1987), which share common 329 reproductive features with intersexual behavioural interactions (Takahashi & Kohda, 2004). 330 Differences in the breeding season might also contribute to their current reproductive isolation 331 (AF, January to May; FF, March to June; Hirashima, 2016; Katoh, 1996; Tachihara, 2009). 332 Although the presence of pre- and post-zygotic isolations has not been tested for our studied 333 pair of species and their position along a speciation continuum (Nosil, 2012) is not clear, 334 genetic isolation, as well as distinct life history divergence, support that FF populations 335 should be treated as different biological species from AF populations. 336 Although AF and FF currently exhibit genetic isolation, our ABC analysis suggested that 337 reproductive isolation between these two ecologically divergent forms evolved under the 338 existence of gene flow. This result suggests that the evolution of reproductive isolation was 339 not caused simply by allopatry and mutation-order mechanisms but by divergent ecological 340 adaptation between the AF and FF populations (Seehausen & Wagner, 2014).

341 What is the factor that led to the evolution of their reproductive isolation? Previous studies 342 have focused on the differences in food size for larvae between seas and rivers (Nishida, 343 2001). AF larvae generally feed on small food items available in seas. If larvae cannot reach 344 the sea rapidly, large larvae might be favoured by directional selection in rivers (Closs, Hicks, 345 & Jellyman, 2013; Kishi, 1979; Kondo, Maeda, Hirashima, & Tachihara, 2013; Mizuno, 346 1963). A mathematical model has shown that speciation could occur due to differences in 347 favourable egg and larval size between the upper and lower reaches (Omori et al., 2012). Such 348 empirical and theoretical evidence suggests that the primary factor in the evolution of 349 reproductive isolation is divergent selection between the optimal combinations of the 350 within-rivers distribution and larval size. 351 The role of barriers in a river should also be emphasized, because they might promote 352 adaptation to freshwater habitats through reduced gene flow and the invasion of predators and 353 competitors. During repeated sea-level fluctuations during the Pleistocene, steep marine 354 terraces of limestone or coral reef developed in the coastal areas of the Ryukyu Archipelago 355 (Machida, Ota, Kawana, Moriwaki, & Nagaoka, 2001). Such terraces would form many 356 waterfalls near river mouths. Nishida (2001) and Kano et al. (2012) hypothesized an important role of waterfall formation in the landlocking process of FF. The relationship 357 358 between such barriers and divergent selection should be further investigated to understand the 359 early processes of landlocking. 360 Despite the existence of current reproductive isolation, suspected hybrid individuals were 361 occasionally detected. Some hybridization might be explained by artificial disturbances in the 362 distribution and migration schemes of AF. Six of the 11 populations containing suspected hybrids were collected from the waters above artificial dams; they included FFOK-4-1 and 363 364 FFOK-4-2 populations of FF, which primarily exhibited genetic features of AF. Artificial 365 dams would promote hybridization in the following process. 366 Artificial dams have promoted the establishment of a landlocked AF population (Tachihara, 367 2009), because there are small food items in reservoirs that the larvae of AF and hybrids 368 would be able to use. This would induce a sympatric distribution of the two forms and 369 facilitate the survival of hybrids in the upper reaches of the dam. These cases might be 370 examples of human-mediated reverse speciation (Grabenstein & Taylor, 2017; Taylor et al., 371 2006).

The AF and FF populations showed large divergence between the North/Middle Ryukyu 373 374 (Group 1) and South Ryukyu (Group 2). The AF populations were closely related among 375 islands within each region (Figures 3 and 4), suggesting that gene flow by larval drifting is 376 effective at the regional scale, but is prevented between regions by the Kerama Gap. 377 A series of ABC analyses supported the parallel derivation of FF populations on respective 378 islands. The estimated number of times speciation occurred was four or five. The uncertainty 379 in the number is attributed to the unresolved relationship among the FF populations across the 380 Middle and South Ryukyus, which could not be resolved by ABC analysis, probably owing to 381 the limitation of microsatellite markers, such as allele size homoplasy. However, the following reasons support that the FF populations originated independently in each region; 382 383 that is, FF originated five times. First, the independent origins of FF populations among 384 islands within regions were supported (Table 1; Figure 4). Second, the simple tree analysis 385 supported the dichotomous relationship of the populations between the North/Middle and 386 South Ryukyus. Third, the two regions are separated by a deep strait, the Kerama Gap, which 387 is considered to have not emerged above water since the Ryukyu Archipelago separated from 388 the continent (Osozawa et al., 2012). This geographical barrier has also been noted for many 389 other terrestrial animals, such as amphibians and reptiles (Matsui, Ito, et al., 2005; Matsui, 390 Shimada, et al., 2005; Ota, 1998; Tominaga, Matsui, Eto, & Ota, 2015). 391 Our results suggest that the multiple origins of FF were an example of parallel speciation, 392 which is the phenomenon whereby reproductive isolation repeatedly evolves under the same 393 mechanism (Schluter & Nagel, 1995). Nosil (2012) proposed four criteria to distinguish 394 parallel speciation: nonmonophyletic pattern of an ecotype; nonmonophyly of ecologically 395 similar forms representing multiple origins, rather than the effect of gene flow or incomplete 396 lineage sorting; positive correlation between reproductive isolation and ecological divergence; 397 and the genetic basis of reproductive isolation. The ABC analysis, as well as the egg and 398 larval size difference between FF and AF, indicated that our study system satisfies the former 399 two criteria. In addition, the latter two criteria were probably satisfied because of the clear 400 differences in life history and reproductive traits between the two forms (Yamasaki et al., 401 2015), although they need to be confirmed by conducting mate choice and common garden

372

402

experiments in the future.

4.2 | Multiple origins of FF

404 Our logistic regression analysis showed that speciation probability was significantly 405 explained by island size, river length and catchment area in most of the data sets under the 406 various analysis conditions. This result suggests that some mechanisms promoting the 407 speciation process tend to be more effective in larger ecosystems. As the number of waterfalls 408 also explained speciation probability in some data sets, it also partly supported that waterfalls 409 promote speciation in the goby. 410 Why is the speciation probability of FF positively correlated with ecosystem size? To answer 411 this question, understanding the relationships between ecosystem size and the following three 412 components related to the mechanism of speciation is necessary: (a) establishment of 413 reproductive isolation, (b) persistence of diverged populations and (c) enhancement of the 414 former two components by population separation (Allmon, 1992; Mayer, 1963). 415 First, the establishment of reproductive isolation would be promoted in larger ecosystems, 416 because the strength of divergent selection is expected to be positively correlated with 417 ecosystem size. Divergent selection between flowing and staying larvae would become 418 stronger in longer rivers (i.e., larger ecosystems), as the spawning sites of AF are restricted 419 within a certain distance from the sea owing to the mortality of drifting larvae (see above; 420 Moriyama et al., 1998; Omori et al., 2012). Furthermore, divergent selection might have been 421 stronger during glacial periods, when sea level was lower, and hence rivers became longer 422 (Kondo et al., 2013). Therefore, the landscape in the period of low sea level might have 423 affected patterns of speciation. However, unfortunately, we could not test the correlation 424 between speciation probability and island size at the low sea level, represented by the Last 425 Glacial Maximum (i.e., when sea level was -122 m), because the 18 islands investigated were 426 estimated to have been merged into eight, and the statistical power was too low to detect the 427 correlation (data not shown). Although the correlation between the strength of divergent 428 selection and river length should be tested in the future, larger ecosystems might enhance 429 reproductive isolation via divergent selection, when the extent of the focal environmental 430 gradient is positively related to ecosystem size. This relationship might generally lead to the 431 development of a correlation between speciation probability and ecosystem size in other

4.3 | Correlation of ecosystem size and speciation probability

403

432

systems as well.

Second, the amount of available space might increase with ecosystem size, which could result in the greater persistence of freshwater-adapted populations through an increase in population size. In longer rivers, the freshwater population could use larger areas in the upper reaches of the rivers, because the optimal distance between the spawning area and sea for AF does not increase with river length. A larger population size might reduce the risk of demographic extinction. In addition, extinction risk due to fusion with the amphidromous population might be alleviated in the larger freshwater populations. Furthermore, the reinforcement of reproductive isolation might be more effectively developed when the population sizes of the two secondarily contacted species are similar (Liou & Price, 1994). A larger population size is also beneficial for retaining adaptive alleles (Gavrilets & Vose, 2005) and reducing maladaptive gene flow (Hanski, Mononen, & Ovaskainen, 2011). Third, the probability of habitat separation between rivers and seas might be positively correlated with ecosystem size, promoting the previously described two processes during speciation. Correlation between the number of waterfalls and river length suggests the more frequent emergence of barriers to migration in longer rivers. Furthermore, greater river length might hinder migration to the upper reaches. Such habitat separation in longer rivers might be important for population divergence, because the separation would reduce gene flow between FF and AF populations, and would impede the entrance of other predatory and competitive fishes in the upper reaches. **5 | CONCLUSIONS** We have confirmed that speciation probability is explained by ecosystem size in our goby system. This result suggests positive correlations between ecosystem size and several components of the speciation process, including the strength of divergent selection, population persistence and population separation frequency. These correlations could promote the establishment of reproductive isolation and the persistence of new populations, although further explicit tests for these relationships are necessary. These correlations could also be important for understanding species diversification mechanisms at the phylogenetic level. Simple systems, such as our parallel species pairs, could contribute to the development of

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453454

455

456457

458

459

460

461

462

speciation.

theories that link the mechanisms of each speciation to macroevolutionary patterns of

464	ACKNOWLEDGMENTS
465	We thank K. Nakao for collecting samples; S. Matsuzaki, N. Muto, S. Chiba, K. Nakayama
466	and S. Hirase for helping with the molecular experiment; and A. Iwata, M. Hoso, T. Fujisawa,
467	J. Kitano and members of Laboratory of Animal Ecology of Kyoto University for providing
468	valuable comments. We thank C. Riginos and three anonymous reviewers for providing
469	helpful comments. Computations were partially performed on the NIG supercomputer at
470	ROIS National Institute of Genetics. This study was partially supported by the Sasakawa
471	Scientific Grant (No. 27-507) and JSPS KAKENHI (Nos. 26250044, 16J08762, 17H03720).
472	AUTHOR CONTRIBUTIONS
473	Y.Y.Y., M.N. and K.W. planned the project. Y.Y.Y., Y.K., N.O. and T.S. performed field
474	surveys. Y.Y.Y. and H.T. conducted molecular experiments. Y.Y.Y. conducted population
475	genetic and statistical analysis. Y.Y.Y. and K.W. wrote the first draft manuscript, and all
476	authors contributed to the improvement of the manuscript.
477	DATA AVAILABILITY STATEMENT
478	The microsatellite genotype data and scripts of ABC analysis have been deposited in Dryad
479	(https://doi.org/10.5061/dryad.mpg4f 4qvh). NGS data for developing microsatellite makers
480	have been de- posited in DDBJ (accession no. DRA006388).
481	
482	ORCID
483	Yo Y. Yamasaki https://orcid.org/0000-0002-7495-2712
484	Katsutoshi Watanabe https://orcid.org/0000-0003-2244-2902
485	
486	REFERENCES

- 487 Akihito, Sakamoto, K., Ikeda, Y., & Aizawa, M. (2013). Gobioidei. In T. Nakabo (Ed.),
- 488 Fishes of Japan with pictorial keys to species, 3rd ed. (pp. 1374–1608). Tokyo, Japan: Tokai
- 489 University Press. (in Japanese).
- 490 Allmon, W. D. (1992). A causal analysis of stages in allopatric speciation. Oxford Surveys in
- 491 Evolutionary Biology, 8, 219–257.
- Beaumont, M. A. (2010). Approximate Bayesian computation in evolution and ecology.
- 493 Annual Review of Ecology, Evolution, and Systematics, 41, 379–406.
- 494 https://doi.org/10.1146/annurev-ecolsys-102209-144621
- Bierne, N., Gagnaire, P. A., & David, P. (2013). The geography of introgression in a patchy
- 496 environment and the thorn in the side of ecological speciation. *Current Zoology*, 59, 72–86.
- 497 https://doi.org/10.1093/czoolo/59.1.72
- 498 Butlin, R. K., Saura, M., Charrier, G., Jackson, B., Andre, C., Caballero, A., ... Rolán-Alvarez,
- E. (2014). Adaptation and reproductive isolation in the face of gene flow. Evolution, 68, 935–
- 500 949. https://doi. org/10.1111/evo.12329
- 501 Closs, G. P., Hicks, A. S., & Jellyman, P. G. (2013). Life histories of closely related
- amphidromous and non-migratory fish species: A trade-off between egg size and fecundity.
- 503 Freshwater Biology, 58, 1162–1177. https://doi.org/10.1111/fwb.12116
- 504 Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, MA: Sinauer Associates.
- 505 Cutter, A. D., & Gray, J. C. (2016). Ephemeral ecological speciation and the latitudinal
- 506 biodiversity gradient. *Evolution*, 70, 2171–2185. https://doi.org/10.1111/evo.13030
- 507 Earl, D. A., & vonHoldt, B. M. (2012). STRUCTURE HARVESTER: A website and program
- for visualizing STRUCTURE output and implementing the Evanno method. *Conservation*
- 509 Genetics Resources, 4, 359–361. https://doi.org/10.1007/s12686-011-9548-7
- 510 Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals
- using the software STRUCTURE: A simulation study. *Molecular Ecology*, 14, 2611–2620.
- 512 https://doi. org/10.1111/j.1365-294X.2005.02553.x

- 513 Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred
- from metric distances among DNA haplotypes: application to human mitochondrial DNA
- restriction data. *Genetics*, 131, 479–491.
- Gavrilets, S., & Vose, A. (2005). Dynamic patterns of adaptive radiation.
- 517 Proceedings of the National Academy of Sciences of the United States of America, 102,
- 518 18040–18045. https://doi.org/10.1073/pnas.05063 30102
- 519 Grabenstein, K. C., & Taylor, S. A. (2017). Breaking barriers: Causes, consequences, and
- experimental utility of human-mediated hybridization. Trends in Ecology & Evolution, 33,
- 521 198–212. https://doi. org/10.1016/j.tree.2017.12.008
- Hanski, I., Mononen, T., & Ovaskainen, O. (2011). Eco-evolutionary metapopulation
- 523 dynamics and the spatial scale of adaptation. *American Naturalist*, 177, 29–43.
- 524 https://doi.org/10.1086/657625
- Harvey, M. G., Seeholzer, G. F., Smith, B. T., Rabosky, D. L., Cuervo, A. M., & Brumfield,
- R. T. (2017). Positive association between population genetic differentiation and speciation
- 527 rates in New World birds. Proceedings of the National Academy of Sciences of the United
- 528 States of America, 114, 6328–6333. https://doi.org/10.1073/pnas.0506330102
- Hirashima, K. (2016). Variety of life history and strategy of *Rhinogobius* fishes. *Aquabiology*,
- 530 38, 363–369. (in Japanese with English abstract). Hirashima, K., & Tachihara, K. (2000).
- Embryonic development and morphological changes in larvae and juveniles of two
- land-locked gobies, Rhinogobius spp. (Gobiidae), on Okinawa Island. Japanese Journal of
- 533 *Ichthyology*, 47, 29–41. (in Japanese with English abstract). https://
- 534 doi.org/10.11369/jji1950.47.29
- Iguchi, K., & Mizuno, N. (1999). Early starvation limits survival in amphidromous fishes.
- 536 Journal of Fish Biology, 54, 705–712. https://doi.org/10.1111/j.1095-8649.1999.tb02027.x
- Kano, Y., Nishida, S., & Nakajima, J. (2012). Waterfalls drive parallel evolution in a
- freshwater goby. Ecology and Evolution, 2, 1805–1817. https://doi.org/10.1002/ece3.295

- Katoh, M. (1996). Seasonal variation in gonadal activity of females among four species of
- freshwater gobies in the *Rhinogobius brunneus* species complex in Okinawa, Japan.
- 541 *Ichthyological Research*, *43*, 169–174.
- Kisel, Y., & Barraclough, T. G. (2010). Speciation has a spatial scale that depends on levels
- of gene flow. *American Naturalist*, 175, 316–334. https://doi.org/10.1086/650369
- Kisel, Y., McInnes, L., Toomey, N. H., & Orme, C. D. L. (2011). How diversification rates
- and diversity limits combine to create large-scale species—area relationships. *Philosophical*
- 546 Transactions of the Royal Society B, 366, 2514–2525. https://doi.org/10.1098/ rstb.2011.0022
- Kisel, Y., Moreno-Letelier, A. C., Bogarín, D., Powell, M. P., Chase, M. W., & Barraclough,
- T. G. (2012). Testing the link between population genetic differentiation and clade
- diversification in Costa Rican orchids. *Evolution*, 66, 3035–3052. https://doi.
- 550 org/10.1111/j.1558-5646.2012.01663.x
- Kishi, Y. (1979). A geographical model of disruptive selection on offspring size and a
- possible case of speciation in freshwater gobies characterized by egg-size difference.
- *Researches on Population Ecology*, 20, 211–215.
- Kondo, M., Maeda, K., Hirashima, K., & Tachihara, K. (2013). Comparative larval
- development of three amphidromous *Rhinogobius* species, making reference to their habitat
- preferences and migration biology. *Marine and Freshwater Research*, 64, 249–266.
- 557 https://doi. org/10.1071/MF12234
- Lawson, D. J., van Dorp, L., & Falush, D. (2018). A tutorial on how not to over-interpret
- 559 STRUCTURE and ADMIXTURE bar plots. *Nature Communications*, 9, 3258.
- 560 https://doi.org/10.1038/s41467-018- 05257-7
- Liou, L., & Price, T. D. (1994). Speciation by reinforcement of premating isolation. *Evolution*,
- *48*, 1451–1459.
- Losos, J. B., & Parent, C. E. (2009). The speciation–area relationship. In J. B. Losos, & R. E.
- Ricklefs (Eds.), The theory of island biogeography revisited (pp. 415-438). Princeton, NJ,
- 565 USA: Princeton University Press.

- Losos, J. B., & Schluter, D. (2000). Analysis of an evolutionary species-area relationship.
- 567 Nature, 408, 847–850. https://doi. org/10.1038/35048558
- Lucek, K., Kristjánsson, B. K., Skúlason, S., & Seehausen, O. (2016). Ecosystem size
- matters: The dimensionality of intralacustrine diversification in Icelandic stickleback is
- 570 predicted by lake size. *Ecology and Evolution*, 6, 5256–5272. https://doi.org/10.1002/
- 571 ece3.2239
- MacArthur, R. H., & Wilson, E. O. (1967). The theory of island biogeography. Princeton, NJ:
- 573 Princeton University Press.
- Machida, H., Ota, Y., Kawana, T., Moriwaki, H., & Nagaoka, N. (2001). Regional
- 575 geomorphology of the Japanese Islands, vol. 7 Kyushu and Southern Islands. Tokyo, Japan:
- 576 University of Tokyo Press. (in Japanese).
- 577 Matsui, M., Ito, H., Shimada, T., Ota, H., Saidapur, S. K., Khonsue, W., ... Wu, G.-F. (2005).
- 578 Taxonomic relationships within the pan-oriental narrow-mouth toad *Microhyla ornata* as
- 579 revealed by mtDNA analysis (Amphibia, Anura, Microhylidae). Zoological Science, 22, 489-
- 580 495. https://doi.org/10.2108/zsj.22.489
- Matsui, M., Shimada, T., Ota, H., & Tanaka-Ueno, T. (2005). Multiple invasions of the
- Ryukyu Archipelago by Oriental frogs of the subgenus *Odorrana* with phylogenetic
- reassessment of the related subgenera of the genus Rana. Molecular Phylogenetics and
- 584 Evolution, 37, 733–742. https://doi.org/10.1016/j.ympev.2005.04.030
- 585 Mayer, E. (1963). *Animal species and evolution*. Cambridge, MA, USA: Belknap Press.
- Mizuno, N. (1963). Distribution of *Cottus japonicus* Okada (Cottidae) and *Tukugobius*
- 587 flumineus Mizuno (Gobiidae), with special references to their peculiarities in both the
- land-locking and the speciation from amphidromous to ancestors. Bulletin of Osaka Gakugei
- 589 *University*, 11, 129–161. (in Japanese with English abstract).
- Mizuno, N. (1987). Yoshinobori rui (genus *Rhinogobius*). In N. Mizuno, & A. Goto (Eds.),
- Nihon no tansuigyo sono bunpu, hen'i, shubunka wo megutte (Freshwater fishes in Japan –
- 592 Distribution, variation, and speciation) (pp. 179–188). Tokyo, Japan: Tokai University Press.
- 593 (in Japanese).

- Mizuno, N. (2001). *Rhinogobius*. In H. Kawanabe, N. Mizuno, & K. Hosoya (Eds.),
- 595 Freshwater fishes of Japan, 3rd ed. (p. 584) Tokyo, Japan: Yama-Kei Publishers. (in
- Japanese).
- Moriyama, A., Yanagisawa, Y., Mizuno, N., & Omori, K. (1998). Starvation of drifting goby
- larvae due to retention of free embryos in upstream reaches. Environmental Biology of Fishes,
- 599 52, 321–329. https://doi. org/10.1023/A:1007333302864
- Nei, M., Tajima, F., & Tateno, Y. (1983). Accuracy of estimated phylogenetic trees from
- molecular data. *Journal of Molecular Evolution*, 19, 153–170.
- Nishida, M. (2001). Dairanka eno purosesu: Yoshinobori rui (The process toward large egg
- 603 forms: Rhinogobius. In A. Goto, & K. Iguchi (Eds.), Suisei doubutsu no ran-saizu:
- 604 Seikatsushi no hen'i, shubunka no seibutsugaku (Evolutionary biology of egg size in aquatic
- 605 animals) (pp. 149–170). Tokyo, Japan: Kaiyusha. (in Japanese).
- Nosil, P. (2012). *Ecological speciation*. Oxford, UK: Oxford University Press.
- Ohara, K., Takagi, M., Hashimoto, M., Miyazaki, K., & Hirashima, K. (2008). DNA markers
- indicate low genetic diversity and high genetic divergence in the landlocked freshwater goby,
- 609 Rhinogobius sp. YB, in the Ryukyu Archipelago, Japan. Zoological Science, 25, 391–400.
- 610 https://doi.org/10.2108/zsj.25.391
- Ohara, K., Takahashi, D., & Takagi, M. (2004). Isolation of microsatellite loci in the
- freshwater goby, *Rhinogobius* sp. (Gobiidae). *Molecular Ecology Notes*, 4, 449–451.
- 613 https://doi. org/10.1111/j.1471-8286.2004.00677.x
- Omori, K., Ohnishi, H., Hamaoka, H., Kunihiro, T., Ito, S., Kuwae, M., ... Iguchi, K. (2012).
- 615 Speciation of fluvial forms from amphidromous forms of migratory populations. *Ecological*
- 616 *Modelling*, 243, 89–94. https://doi.org/10.1016/j.ecolmodel.2012.06.006
- Osozawa, S., Shinjo, R., Armid, A., Watanabe, Y., Horiguchi, T., & Wakabayashi, J. (2012).
- Palaeogeographic reconstruction of the 1.55 Ma synchronous isolation of the Ryukyu Islands,
- Japan, and Taiwan and inflow of the Kuroshio warm current. International Geology Review,
- 620 54, 1369–1388. https://doi.org/10.1080/00206814.2011.639954

- Ota, H. (1998). Geographic patterns of endemism and speciation in amphibians and reptiles of
- the Ryukyu Archipelago, Japan, with special reference to their paleogeographical implications.
- 623 Researches on Population Ecology, 40, 189–204. https://doi.org/10.1007/BF02763404
- Parent, C. E., & Crespi, B. J. (2006). Sequential colonization and diversification of Galapágos
- 625 endemic land snail genus *Bulimulus* (Gastropoda, Stylommatophora). *Evolution*, 60, 2311–
- 626 2328. https://doi.org/10.1111/j.0014-3820.2006.tb01867.x
- Pritchard, J. K., Stephen, M., & Donnelly, P. (2000). Inference of population genetic structure
- 628 using multilocus genotype data. *Genetics*, 155, 945–959.
- R Core Team (2014). R: A language and environment for statistical computing. Vienna,
- Austria: R Foundation for Statistical Computing. http://www.R-priject.org/
- Rabosky, D. L. (2016). Reproductive isolation and the causes of speciation rate variation in
- 632 nature. *Biological Journal of the Linnean Society*, 118, 13–25.
- 633 https://doi.org/10.1111/bij.12703
- Rabosky, D. L., & Matute, D. R. (2013). Macroevolutionary speciation rates are decoupled
- from the evolution of intrinsic reproductive isolation in *Drosophila* and birds. *Proceedings of*
- 636 the National Academy of Sciences of the United States of America, 110, 15354–15359. https://
- 637 doi.org/10.1073/pnas.1305529110
- Reznick, D. N., & Ricklefs, R. E. (2009). Darwin's bridge between microevolution and
- 639 macroevolution. *Nature*, 457, 837–842. https://doi. org/10.1038/nature07894
- Rosenblum, E. B., Sarver, B. A. J., Brown, J. W., Des Roches, S., Hardwick, K. M., Hether, T.
- D., ... Harmon, L. J. (2012). Goldilocks meets Santa Rosalia: An ephemeral speciation model
- explains patterns of diversification across time scales. Evolutionary Biology, 39, 255–261.
- 643 https://doi.org/10.1007/s11692-012-9171-x
- Rosindell, J., & Phillimore, A. B. (2011). A unified model of island biogeography sheds light
- on the zone of radiation. *Ecology Letters*, 14, 552–560.
- 646 https://doi.org/10.1111/j.1461-0248.2011.01617.x

- 647 Schluter, D., & Nagel, L. M. (1995). Parallel speciation by natural selection. *American*
- 648 Naturalist, 146, 292–301.
- 649 Seehausen, O., & Wagner, C. E. (2014). Speciation in freshwater fishes. *Annual Review of*
- 650 Ecology, Evolution, and Systematics, 45, 621–651.
- 651 https://doi.org/10.1146/annurev-ecolsys-120213-091818
- 652 Shinomiya, A., Sasabe, K., Sakurai, M., & Kishino, T. (2005). Morphological characters of
- newly hatched larvae and their habitat selection of a fluviatile goby, *Rhinogobius* sp. YB in
- 654 the upper stream of Sumiyo River, Amami-oshima Island, Japan. Japanese Journal of
- 655 *Ichthyology*, 52, 1–8. (in Japanese with English abstract). https://doi.org/10.11369
- 656 /jji1950.52.1
- 657 Suzuki, T., Shibukawa, K., Yano, K., & Senou, H. (2004). A photographic giude to the
- 658 gobioid fishes in Japan. Tokyo, Japan: Heibonsha. (in Japanese).
- Tachihara, K. (2009). Two landlocked *Rhinogobius* species in the Ryukyu Archipelago:
- 660 Conservation and the future of gobies endemic to isolated rivers. *Japanese Journal of*
- 661 *Ichthyology*, 56, 70–74. (in Japanese). https://doi.org/10.11369/jji.56.70
- Takahashi, D., & Kohda, M. (2004). Courtship in fast water currents by a male stream goby
- 663 (Rhinogobius brunneus) communicates the parental quality honestiy. Behavioral Ecology and
- 664 Sociobiology, 55, 431–438. https://doi.org/10.1007/s00265-003-0693-1
- Takezaki, N., Nei, M., & Tamura, K. (2010). POPTREE2: Software for constructing
- population trees from allele frequency data and computing other population atatistics with
- Windows interface. *Molecular Biology and Evolution*, 27, 747–752.
- 668 https://doi.org/10.1093/molbev/ msp312
- Tamada, K. (2005). Clutch and egg size in *Rhinogobius* sp. DA inhabiting small rivers.
- 670 Japanese Journal of Ichthyology, 52, 17–20. (in Japanese with English abstract).
- 671 https://doi.org/10.11369/jji1950.52.17
- Taylor, E. B., Boughman, J. W., Groenenboom, M., Sniatynski, M., Schluter, D., & Gow, J. L.
- 673 (2006). Speciation in reverse: Morphological and genetic evidence of the collapse of a

- 674 three-spined stickleback (Gasterosteus aculeatus) species pair. Molecular Ecology, 15, 343–
- 675 355. https://doi.org/10.1111/j.1365-294X.2005.02794.x
- Tominaga, A., Matsui, M., Eto, K., & Ota, H. (2015). Phylogeny and differentiation of
- 677 wide-ranging Ryukyu Kajika frog *Buergeria japonica* (Amphibia: Rhacophoridae):
- 678 Geographic genetic pattern not simply explained by vicariance through strait formation.
- 679 Zoological Science, 32, 240–247. https://doi.org/10.2108/zs140227
- Vähä, J.-P., & Primmer, C. R. (2005). Efficiency of model-based Bayesian methods for
- detecting hybrid individuals under different hybridization scenarios and with different
- numbers of loci. *Molecular Ecology*, 15, 63–72.
- 683 https://doi.org/10.1111/j.1365-294X.2005.02773.x
- Vamosi, S. M. (2003). The presence of other fish species affects speciation in threespine
- sticklebacks. *Evolutionary Ecology Research*, *5*, 717–730.
- Wagner, C. E., Harmon, L. J., & Seehausen, O. (2014). Cichlid species—area relationships are
- shaped by adaptive radiations that scale with area. *Ecology Letters*, 17, 583–592.
- 688 https://doi.org/10.1111/ ele.12260
- Weigelt, P., Steinbauer, M. J., Cabral, J. S., & Kreft, H. (2016). Late Quaternary climate
- change shapes island biodiversity. *Nature*, 532, 99–102. https://doi.org/10.1038/nature17443
- Wellborn, G. A., & Langerhans, R. B. (2014). Ecological opportunity and the adaptive
- 692 diversification of lineages. *Ecology and Evolution*, 5, 176–195.
- 693 https://doi.org/10.1002/ece3.1347
- Yamasaki, Y. Y., Nishida, M., Suzuki, T., Mukai, T., & Watanabe, K. (2015). Phylogeny,
- 695 hybridization, and life history evolution of *Rhinogobius* gobies in Japan, inferred from
- 696 multiple nuclear gene sequences. *Molecular Phylogenetics and Evolution*, 90, 20–33.
- 697 https://doi. org/10.1016/j.ympev.2015.04.012
- Yoder, J. B., Clancey, E., Des roches, S., Eastman, J. M., Gentry, L., Godsoe, W., ... Harmon,
- 699 L. J. (2010). Ecological opportunity and the origin of adaptive radiations. *Journal of*
- 700 Evolutionary Biology, 23, 1581–1596. https://doi.org/10.1111/j.1420-9101.2010.02029.x

- Yoshigou, H. (2014). Annotated checklist and bibliographic records of inland water fishes of
- the Ryukyu Archipelago, Japan. Fauna Ryukyana, 9, 1–153. (in Japanese with English
- abstract).

TABLE 1 Results of model selection by ABC analysis

Tested geographic scale	Origins of freshwater form in the best model	Gene flow	Posterior probability of the best model	Bayes factors of the best model against all models	Bayes factor of the best model against another origin models	Type 2 error rate (all models)	Type 2 error rate (against another origin models)
Within-islands							
Amami-Oshima Is.	Single origin	Partial	0.5087	1.668-37.70	12.04-37.70	0.05-0.17	0.09-0.12
Tokunoshima Is.	Single origin	All	0.3128	1.355-2069	133.5 - 2069	0.02-0.11	0.05-0.07
Okinawajima Is.	Single origin	All	0.6357	1.754 - 4300	544.4 - 4300	0-0.04	0
Kumejima Is.	Single origin	Partial	0.3254	1.047 - 18735	4368- 18735	0.02-0.17	0.02-0.09
Iriomotejima Is.	Single origin	Partial	0.4544	1.321 - 309807	3247- 309807	0.01-0.15	0.01-0.15
Among-islands within-regions							
Middle Ryukyu	Originated in respective islands	All	0.4471	1.090-519.2	23.97-24.37	0-0.35	0
South Ryukyu	Single origin	All	0.8949	13.63 - 191.0	36.98 - 191.0	0-0.08	0-0.08
Tokunoshima Is. – Okinoerabujima Is.	Single origin	All	0.7461	4.680 - 122.6	9.419 -122.6	0.06-0.1	0.06-0.1
Among-regions							
Middle Ryukyu – South Ryukyu	Robust result could not obtain.	-	-	-	-	-	-

TABLE 2 Results of the logistic regression analysis

Explanatory variable	Data Set	P value	Difference of deviance	R^2
Island Area	Larger island	0.0016	12.265	0.577
	Smaller island	0.0061	8.650	0.407
Catchment Area	Larger island	0.0026	12.055	0.567
	Smaller island	0.0187	6.923	0.325
River Length	Larger island	0.0038	11.699	0.550
	Smaller island	0.0172	7.028	0.330
No. Waterfalls	Larger island	0.0013	13.712	0.645
	Smaller island	0.3277	1.407	0.066

Note: The results presented in this table are based on the assumption that the freshwater form (FF) has five independent origins. The data set column indicates the assumption of the islands where speciation occurred. Our ABC analysis indicated that FF in Tokunoshima Is. and Okinoerabujima Is., and Ishigakijima Is. and Iriomotejima Is. shared their origins. "Larger island" in the data set column assumed that the speciation of FF occurred in the larger island (i.e., Tokunoshima Is. and Iriomotejima Is.), whereas "smaller island" assumed that speciation occurred in the smaller island (i.e., Okinoerabujima Is. and Ishigakijima Is.). The *p* values for all combinations are presented in Table S9.

FIGURE 1 Concept diagram of this study based on a hypothetical example. Our final goal was to determine whether ecosystem size explains the occurrence of speciation of the freshwater form (FF). To explain the study workflow, we postulate six islands with the amphidromous form (AF). FF was distributed in three islands among them. Four main analyses were conducted in this study. First, we confirmed genetic isolation between AF and FF by structure analysis for each island. Second, we estimated phylogenetic relationships among populations. Third, we tested independent speciation of FF by demographic comparison based on ABC analysis. The phylogenetic tree and geographical locations were used to construct demographic models. The occurrence of speciation in focal islands was identified by these three analyses. Finally, we tested the correlation between ecosystem size and occurrence of speciation by logistic regression analysis.

FIGURE 2

Samplingpoints in this study. The map in the upper right box indicates distribution ranges of the amphid romous form (AF; grey) and the freshwater form (FF; orange) in Japan as a whole. The central map is the whole area of the Ryukyu Archipelago. Black and orange circles indicate the points from where AF and FF were collected, respectively. Sympatrically collected points are indicated by both colours.

FIGURE 3 Results of genetic clustering analysis performed in structure (Amami-Oshima Is., K = 3; others, K = 2). Sampling points are indicated by black vertical bars in the respective bar plots. Horizontal bars at the top of the plot indicate morphological identification of respective specimens. Sympatric points are indicated by an additional annotation. The specimens morphologically identified as the freshwater form (FF) are presented in orange and yellow colours, whereas those identified as the amphidromous form (AF) are presented in grey.

FIGURE 4 Population relationships and evolutionary scenarios of the amphidromous form (AF) and the freshwater form (FF). (a) Neighbour-joining tree based on Nei's *Da* distance of 20 microsatellites. Numbers on tree nodes indicate bootstrap values. Only bootstrap values >70% are indicated. Island numbers are indicated at tips. (b) The models selected by ABC analysis. AF and FF are represented by black and orange colours, respectively. Arrows between populations indicate gene flow. Only representative populations were used for ABC analysis to reduce the amount of calculation (see Materials and methods and Supporting methods and results S1).

FIGURE 5 Results of logistic regression analysis between island size and speciation probability. Islands with the freshwater form (FF) are represented by filled circles, whereas those without FF are represented by open circles. Filled circles plotted on the *x*-axis (speciation probability = 0) are for the islands with FF that was assumed to be of nonindependent origin. Our ABC analysis indicated that FF in Tokunoshima Is. and Okinoerabujima Is., and Ishigakijima Is. and Iriomotejima Is. shared their origins. (a) Speciation of FF is assumed to have occurred in the larger islands (Tokunoshima Is. and Iriomotejima Is.). (b) Speciation is assumed to have occurred in the smaller islands (Okinoerabujima Is. and Ishigakijima Is.).

1 Supplemental methods and results S1: Complete version of Materials and Methods

2 and Results

- 4 Materials and Methods
- 5 1. Study system
- 6 1.1 Study species
- 7 The genus *Rhinogobius* (Gobiidae) is the most speciose group of gobies occurring
- 8 in freshwater. This group contains more than 85 species in East and Southeast Asia, and
- 9 18 species in Japan (Oijen et al., 2011; Yamasaki et al., 2015). The freshwater resident
- 10 form derived from the amphidromous species R. brunneus is recognized as an
- independent species but has not been described to date because of taxonomic confusion.
- 12 Previous studies (e.g., Akihito et al., 2013) tentatively used the name "*Rhinogobius* sp.
- 13 YB" for this freshwater form. However, until its evolutionary status is clarified, we will
- use the code 'FF' (freshwater form) for *Rhinogobius* sp. YB and 'AF' (amphidromous
- form) for *R. brunneus* based on their life history modes.
- The FF completes its life in freshwater; conversely, AF larvae hatch in rivers and
- immediately drift down to the sea and return to rivers after 2–3 months (Mizuno, 2001).
- 18 The eggs and larvae of FF are larger than those of AF. The sizes of eggs and hatched
- 19 larvae of respective forms and islands have already reported by some studies. As
- 20 follows, the both egg and larval sizes are greater in FF than in AF. The mean and
- standard deviation of egg size of FF varies across islands; namely, long axis 3.07 and
- 22 3.36 mm, short axis 1.55 and 1.52 mm on Amami-Oshima Island (Kon et al., 2003);
- long axis 5.06 ± 0.39 mm, short axis 1.77 ± 0.10 mm on Amami-Oshima Is. (Shinomiya
- 24 et al., 2005); long axis 3.4 and 4.4 mm, short axis 1.4 and 1.7 mm on Tokunoshima
- Island (measured from the Figure 2 of Oshiro, 1981), long axis 4.3 ± 0.2 mm, short axis
- 1.4 ± 0.1 mm on Okinawajima Island (Hirashima & Tachihara, 2000); long axis 5.4 mm,
- short axis 1.7 mm on Ishigakijima Island (measured from the Figure 2 of Oshiro, 1981).
- We also measured the egg size of FF spawned in a tank by one individual collected
- from Shirase River on Kumejima Island (long axis 3.52 ± 0.24 mm, short axis $1.31 \pm$
- 30 0.07 mm, n=26). The mean and standard deviation of egg size of AF was recorded on
- Okinawajima Island; namely, long axis 2.8 ± 0.1 mm, short axis 0.9 ± 0.04 mm (Kondo
- et al., 2013). The mean and standard deviation for notochord length of hatched larvae of
- FF varies across islands; namely, 5.0 mm on Amami-Oshima Is. (Kon et al., 2013);

- 34 5.96–6.60 mm on Amami-Oshima Is. (Shinomiya et al., 2004); 5.3 mm on Okinawajima
- 35 Is. (Hirashima & Tachihara 2000). The mean and standard deviation in notochord length
- of hatched larvae of AF on Okinawajima Is. was 3.7 ± 0.2 mm (Kondo et al., 2013);
- 3.59 ± 0.087 mm on Shikoku Island in the Japanese archipelago (Moriyama et al., 1998).
- 38 Fluvial species of this genus tend to produce larger eggs and larvae (Yamasaki et al.,
- 39 2015). Such traits are considered to be an adaptation to river environments, where small
- 40 food items (i.e., plankton) are scarce and higher level of swimming ability in river
- 41 current is needed during the larval period (Nishida, 2001; Shinomiya et al., 2005;
- 42 Hirashima & Tachihara, 2000; Yamasaki et al., 2015).
- Although the distribution of the two species sometimes overlapped in a single river,
- 44 the tendencies of their distributions were different. AF mainly lived in the middle to
- lower reaches of rivers. In fact, AF populations are actually only found in rivers shorter
- 46 than 18 km in the central Honshu region of Japan (Tamada, 2005). The larvae of AF
- 47 must rapidly reach the sea to avoid starvation because of the scarcity of small food in
- 48 rivers (Moriyama, Yanagisawa, Mizuno, & Omori, 1998; Iguchi & Mizuno, 1999).
- Thus, they might not be able to reproduce effectively in areas far from the sea (Iguchi &
- Mizuno, 1999). On the other hand, FF mainly live in the upper reaches of rivers, and are
- often found in the upper areas of waterfalls where no other fishes are distributed (Kano
- 52 et al., 2012).

1.2 Study area

- The Ryukyu Archipelago is a series of islands located in the southwestern part of
- Japan (Figure 2). The islands separated simultaneously from the continent about 1.5
- 57 million years ago (Osozawa et al., 2012). Three deep straits (Tokara Gap, Kerama Gap,
- and Yonaguni Gap) divide this archipelago into three regions: North Ryukyu, Middle
- 59 Ryukyu, and South Ryukyu. These gaps act as biogeographic barriers for terrestrial
- organisms (Ota 1998). On the islands of North Ryukyu, the biota was destroyed by
- pyroclastic flow 7300 years ago (Machida et al., 2001). AF is distributed in all three
- regions, as well as mainland Japan, whereas FF is only distributed in Middle and South
- Ryukyu (Yoshigou, 2014). In the Ryukyu Archipelago, primary freshwater fishes are
- almost absent, and most fishes are diadromous. Therefore, fish assemblages in
- freshwater areas are simple and similar among islands (Yoshigou, 2014).

2. Sampling

67

68 All animal experiments followed the rules, regulations, and guidelines relating to animal 69 experimentation of Kyoto University. Sampling of FF and AF was conducted from June 70 2012 to March 2015 on seven islands where former populations have been recorded 71 previously (Locality code 2. Amami-Oshima Is., 4. Tokunoshima Is., 5. Okinoerabujima 72 Is., 6. Okinawajima Is., and 7. Kumejima Is. in Middle Ryukyu; 8. Ishigakijima Is. and 73 9. Iriomotejima Is. in South Ryukyu; Figure 2; Table S1; Ohara et al. 2008; Yoshigo, 74 2014). In addition, AF specimens were collected from Kikaijima Is. (Locality code 3) in 75 Middle Ryukyu, Yakushima Is. (1) in North Ryukyu, and mainland Japan (10). The 76 specimens were identified by body colour patterns under fresh conditions (Suzuki et al., 77 2004; Kano et al., 2012). Identification based on body colour was validated by the 78 results of the genetic analysis; however, some samples were difficult to identify or 79 showed inconsistent genetic characteristics (3.2% of specimens in total, including 80 potential hybrids). When genetic data suggested the focal specimens were not judged as 81 hybrids based on the criteria described below and that wrong identification based on 82 morphology in the field was likely, these samples were removed from further analysis. 83 In the case that a sample was judged to be a hybrid (see 4.2), we tentatively named it 84 based on the morphology. It should be noted that we found that morphologically 85 identified FFOK-4-1 and FFOK-4-2 populations of FF largely reflected the genetic 86 features of AF (Figure 3 and Supporting Information Figure S3). We judged them as 87 hybrid populations and did not remove any specimens from the analysis even if they 88 were not judged as hybrid (see Discussion). Specimens were anesthetized with iced 89 water or 2-phenoxy-ethanol, and then a fin was clipped and preserved in 99% ethanol. 90 Most specimens were fixed in 10% formalin or 99% ethanol. As a result, 842 FF and 91 578 AF specimens from 52 points in 42 river systems were included in the population 92 genetic analysis. The average numbers of localities and specimens per island were 5.2 93 and 142, respectively. Both forms were collected from nine river systems; they were 94 sympatrically collected at seven points.

95 96

97

98

99

3. Molecular experiment

3.1 Microsatellite marker development

We developed new microsatellite markers following the methods of Takeshima et al.

100 (2017). Total genomic DNA was extracted from one AF specimen collected from 101 DAIR-4 in Iriomotejima Island by using a Genomic DNA Purification Kit (Promega, 102 Madison, Wisconsin, USA). We concentrated CA repeat regions by using the target 103 capture method and sequenced them using the Roche 454 GS Junior system (Accession 104 No. DRA006388). Primers and multiplex systems were designed using QDD ver. 2 105 (Meglecz et al., 2010) and Multiplex Manager v. 1.2 (Holleley & Geerts 2009), 106 respectively. One out of four universal tail sequences was added to each forward primer 107 for fluorescent labelling during PCR (Blacket et al., 2012).

108

109

3.2 DNA extraction, PCR, and genotyping

110 Total genomic DNA was extracted from the fin clip by using the Genomic DNA 111 Purification Kit. Before PCR amplification, a droplet of 1.25 µL extracted DNA was 112 placed on a 96 well plate and dried. Total 21 microsatellite markers (18 originally 113 developed loci and three loci reported by Ohara et al. (2004)) were analyzed. We 114 developed four multiplex sets and simultaneously amplified 4-10 loci (Table S2). For 115 the markers that were developed, the final concentration of each forward and reverse 116 primer was 1 and 2 µM, respectively. The 1 µM tailed fluorescent primer for each 117 forward primer was also added to the multiplex reaction mixture. For the three loci 118 reported by Ohara et al. (2004), 5'-fluorescent-labelled forward primers were used, and 119 the final concentration of each forward and reverse primers was adjusted to 1 µM. PCR 120 amplification was performed in a 4 µL volume containing 2.43 µL of ultrapure water, 121 0.066 μL of primer mix, and 1.5 μL of Type–IT Microsatellite PCR Kit (Qiagen, Hilden, 122 Germany) with the dried DNA. The PCR settings for the originally developed markers 123 included a first step of denaturation at 95°C for 5 min, followed by 35 cycles of the 124 second step (denaturation: 94°C, 30 s; annealing: 63°C, 90 s; and extension: 72°C, 75 s), 125 and the final extension at 72°C for 30 min. For the PCR for the loci of Ohara et al. 126 (2004), the second step was changed as follows: 28 cycles of denaturation at 94°C for 127 30 s; annealing at 53°C for 90 s; and extension at 72°C for 60 s. We directly added 10 128 μL HiDi Formamide (Thermo Fisher Scientific, Waltham, MA, USA) and 0.2 μL of 129 GeneScan 500Liz dye Size Standard or GeneScan 400HD Rox dye Size Standard 130 (Thermo Fisher Scientific) for the respective PCR products. Next, we subjected the 131 products to heat shock treatment (95°C, 5 min; 0°C, 5 min). The peak size data were 132 acquired using ABI 3130xl sequencer (Applied Biosystems, Foster City, CA, USA) and

133 were analyzed using GeneMapper v.4.0 (Applied Biosystems). The acquired allele size 134 data were transformed for integral number by using tandem v.1.09 (Matschiner & 135 Salzburger 2009). 136 We genotyped a total of 21 microsatellite loci for population genetic analyses 137 (Table S2). Null alleles were checked using software Micro-checker ver.2.2.3 (van 138 Oosterhout et al., 2004) under 100% interval condition for the 25 populations of R. 139 brunneus, which were assumed to not be affected by the bottleneck effect. Null alleles 140 were detected in several R. brunneus populations. We excluded locus by b 04 from the 141 analysis because null alleles were detected at this locus in both North Ryukyu and 142 Middle Ryukyu populations. Null alleles in other loci occurred sporadically; hence, we 143 used the other 20 loci for the following analysis to avoid reduction of information. 144 Linkage disequilibrium among loci was tested using 10,000 times of permutation 145 implemented in Arlequin ver.3.5 (Excoffier & Lischer 2010), and Bonferroni collection 146 was applied to P-values to avoid type I errors. No significant linkage disequilibrium 147 between loci was detected (adjusted $P \ge 0.05$). The final genotype data were deposited 148 in dryad (doi: 10.5061/dryad.mpg4f4qvh). 149 150 4. Data analysis 151 4.1 Calculation of summary statistics and estimation of phylogenetic trees 152 We calculated the expected and observed heterozygosity (He and Ho, respectively), the 153 effective number of alleles (Ae) for the respective populations, and population-pairwise 154 F_{ST} and Jost's D by using GenoDive 2.0b27 (Meirmans & van Tienderen 2004). We 155 also calculated allelic richness (Rs) of the respective populations by using FSTAT 156 v2.9.3.2 (Goudet 1995). Phylogenetic relationships among populations were estimated 157 based on Nei's Da distance by using the neighbor-joining method implemented in 158 Poptree2 (Takezaki et al., 2010). The credibility of each clade was evaluated using 159 1,000 bootstrap resamplings. To assess hierarchical genetic differentiation, we 160 conducted AMOVA (Excoffier, Smouse, & Quattro, 1992) implemented in GenoDive 161 separately for AF and FF. The number of hierarchies to be tested was five. However, 162 AMOVA could include only four hierarchies in one analysis. To deal with this problem, 163 we conducted AMOVA separately in two geographic scales. In the among-islands 164 within-regions scale, we set following four hierarchies: within-individuals, 165 among-individuals, among-rivers, and among-islands. This analysis was separately

conducted for Middle Ryukyu and South Ryukyu. In the among-regions scale, we set the following four hierarchies: within-individuals, among-individuals, among-islands, and among-regions. $F_{\rm ST}$ -analog distance was applied. Significance was tested using 999 permutations.

4.2 STRUCTURE analysis

To infer the existence and extent of gene flow and genetic isolation, we analyzed the genetic structure of the population using STRUCTURE v.2.3.4 (Pritchard, Stephen, & Donnelly, 2000; Lawson, van Dorp, & Falush, 2018). We prepared two datasets: one for both FF and AF populations from each island, and another for only AF populations from all islands. Because AF was not found on Okinoerabujima Is., the FF on the island were analyzed along with the AF from the nearest island, Tokunoshima Is. Admixture model with correlated allele frequencies was assumed. Markov Chain Monte Carlo was performed with 100,000 generations for burn-in and final 1,000,000 generations. Ten independent runs for each K from 1 to 10 were evaluated. After a run finished, we calculated Evanno's ΔK by using STRUCTURE Harvester (Evanno, Regnaut, & Goudet, 2005; Earl & von Holdt, 2012) was used for a reference for K value selection. Hybrid individuals were evaluated using q-values; we arbitrarily judged specimens as hybrids (or individuals with hybrid origin) in cases where minor genetic components accounted for 10% or more of the aggregate (Vähä & Primmer 2006).

4.3 Testing parallel speciation of FF by using ABC

- To statistically examine the single or parallel origins of FF, and to estimate which FF
- populations shared their origins we conducted a demographic model selection under the
- approximate Bayesian computation (ABC framework, Beaumont, 2010; Bertorelle et
- al., 2010) implemented in ABCtoolbox v.1 (Wegmann et al., 2010) and R package 'abc'
- v.2.1 (Csilléry et al., 2012). Coalescent simulation was conducted using fastsimcoal2
- v.2.5.2.1.1 (Excoffier & Foll 2011; Excoffier et al., 2013). Summary statistics were
- calculated using arlsumstat v.3.5 for each simulation (Excoffier & Lischer 2010).

4.3.1 Prior distribution, summary statistics, and simulation

Prior distribution and summary statistics were determined after several preliminary analyses. When the range of the prior distribution of a parameter was across the digits,

the value was \log_{10} transformed. A uniform distribution for each parameter was assumed. 200 We set a larger prior range for population size of AF $(10^2-10^{5.3})$ than for FF $(10^2-10^{4.7})$. The prior distribution of coalescent time (generation) was set to $10^3-10^{6.2}$, considering 201 202 that the Ryukyu Archipelago had separated from the continents 1.5 million years ago, 203 and the generation time of the *Rhinogobius* species was one to two years (Yamasaki, personal observation). The prior distribution of the migration rate was set to 10^{-9} – 10^{-3} . 204 205 In the case that the models of two or more populations were merged, the ancestral 206 population size was set to the range of 0.5 to 2 times of either of the derived populations. 207 We applied a generalized stepwise mutation model for microsatellite evolution. Our data 208 did not match the simulated data produced using the models under a previously reported 209 average mutation rate of microsatellites in fish (common carp: 5.56 × 210 10^{-4} /locus/generation, 95% interval, 1.52×10^{-4} – 1.63×10^{-3} , Yue et al., 2007) from 211 principal component analysis (PCA) (see 4.3.3). Simulated data under several average 212 mutation rates were tested, and then the value of 1.0×10^{-4} was selected, under which 213 the generated data matched the acquired data. The prior distribution of the mutation rate 214 for each locus was set to a Gamma distribution. The maximum difference of repeat 215 number of alleles of each microsatellite in coalescent simulations was set to 45. 216 To capture information regarding population size and differentiation, we selected 217 summary statistics listed in Table S3. Detailed formulae of respective summary statistics 218 are described in the Arlequin 3.5 manual (Excoffier & Lischer 2010). A total of 46 to 219 132 summary statistics for each analysis were used according to the number of the 220

analyzed populations. We performed 1.0×10^6 simulations for each demographic model.

221 222

223

224

225

226

227

228

229

230

231

199

4.3.2 General strategy for the construction of demographic models

Our general model construction strategies for ABC analysis were as follows. First, we generated separate models using three geographic scales, i.e. within-islands, regional (Middle and South Ryukyu), and archipelago scales, and examined FF origins in each geographic scale to reduce the number of models and populations examined in a single analysis. Second, we examined both models with and without gene flow between AF and FF populations. This is because a simulation study suggests that gene flow could alter apparent phylogenetic relationships among populations when simple genetic distance was used (Bierne, Gagnaire, & David, 2013). Demographic model comparisons that consider gene flow can overcome this problem (Butlin et al., 2014).

In the within-islands analyses, we mainly examined two questions: whether FF had single or parallel origin, and whether gene flow between AF and FF existed on each island. We hypothesized several plausible divergence orders between populations based on the result of STRUCTURE analysis, phylogeny, and geographic locations for respective islands. Thereafter, we compared the models with single/parallel origins and with/without gene flow. Analyses were conducted for the five islands where FF is distributed in multiple rivers (i.e., Amami-Oshima Is., Tokunoshima Is., Okinawajima Is., Kumejima Is., and Iriomotejima Is.). Ishigakijima Is. and Okinoerabujima Is. were not included in the analyses because the FF population was only found in one river system on each island. We selected three (or two) river populations for each island to reduce the model complexities and calculation loading. FF specimens from a single river system were merged to increase calculation accuracy. Populations were selected by the following criteria to extract information of population history as much as possible; geographically distant river systems, to avoid bias from shared population history among geographically nearby populations; and lower rates of missing data. The constructed models (a total of 34 models) are described in Supporting Information Figure S1A–E.

For the among-islands within-region analyses, we constructed several plausible models separately for the regions of Tokunoshima Is. and Okinoerabujima Is., Middle Ryukyu, and South Ryukyu. Five to ten models were constructed on the basis of the phylogenetic tree and geographic distance between islands. Gene flow settings followed the results of within-islands scale analysis. For each island, we selected only one FF population whose population size was the largest, as judged from *He* values. Finally, in the between-region analyses, we compared ten models generated from the results of the previous analyses. All constructed models are described in Figure S1F–I. Scripts that described models were deposited in Dryad (doi: 10.5061/dryad.mpg4f4qvh).

4.3.3 Prior check

We performed PCA by using *gfitpca* function implemented in *abc* package to check the validity of the prior distribution. We confirmed that the observed summary statistics included of the 90% envelope of each simulation result (data not shown).

4.3.4 Posterior probabilities of models

The posterior probability of each model based on the observed value was estimated using the *neuralnet* method, which is a non-linear regression method involving neural networks. We used *postpr* function implemented in the *abc* package. The regression step was performed using 30 neural networks and 10 hidden layer units. Five hidden layer units were set in the analysis of the archipelago scale, because an error occurred when 10 hidden layers were set. We used 1% of simulations with summary statistic values closest to the observed ones (tolerance rate = 1%). We conducted 10 calculations for each model selection by changing the tolerance rates from 0.1% to 1.0% with increments of 0.1% to evaluate the robustness of the results by using a tolerance rate of 1%.

4.3.5 Confidence in model selection

To evaluate the accuracy of the model selection, we calculated the misclassification rate by using function *cv4postpr* implemented in *abc* package. We randomly generated 100 pseudo-observed data sets (pods) of each model from the prior distribution and performed model selection for the respective pods with 10⁵ simulations for each model. Model selection was performed using *neuralnet* method under 10 neural networks and 10 hidden layer units. Five hidden layer units were set in the analysis at the archipelago scale as in the calculation of posterior probabilities. Type 1 and type 2 errors were evaluated for each model: type 1 error rate is the probability that the other model was selected despite the focal model being true, and type 2 error rate is the probability that the focal model was selected despite the other model being true. For evaluating the accuracy of the model selection results, the type 2 error rate should be carefully considered (Cornuet et al., 2010; Lombert et al., 2014).

4.3.6 Estimating posterior distributions of parameters

We calculated the posterior distribution of each parameter under the selected model by using function *abc* implemented in the *abc* package. We retained 1% of simulations close to the observed summary statistics, and we performed regression analysis by using the *neuralnet* method under 30 neural networks and five hidden layer units. Parameters of population size and event time were log transformed before regression analysis.

4.3.7 Posterior predictive check

We checked whether the selected model could produce the observed value under the posterior distribution. We generated 1000 simulations under the posterior distribution of the selected model and calculated summary statistics. In addition to the originally used summary statistics, the following summary statistics were also calculated: the mean allelic range over loci for each population (R_pop) and its standard deviation (Rsd_pop), the mean allelic range over loci and populations (MEAN_R) and its standard deviation (MEAN_Rsd), and the mean total allelic range over loci and populations (TOT_R), and F_{IS} (FIS). Next, PCA using function *gfitpca* implemented in *abc* package was performed to check whether the observed summary statistics were included in the range of summary statistics generated from the posterior distribution.

308309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

298

299

300

301

302

303

304

305

306

307

5. Correlation between island size and speciation probability

We first identified the islands on which the speciation of FF occurred based on the results of STRUCTURE (genetic isolation) and ABC model selection (independent origin). The relationship between ecosystem size and speciation was analyzed for the Middle and South Ryukyu Islands between the Tokara Gap and Yonaguni Gap. This analysis was conducted because these islands are assumed to be similar in age, were never connected to any continent after separation, and were not catastrophically affected by volcanic activity (Osozawa et al., 2012). We acquired distribution information for the two forms from published literature (Yoshigou 2014) and our own field survey, and we only chose the islands where either or both forms were distributed. This is because we assumed that speciation was not likely to have occurred on the island where either of these species is not currently distributed. We coded the occurrence of speciation in each island as follows: 1 for the island where speciation occurred; 0 for the island where speciation did not occur. As a proxy of ecosystem size, we used island area (km²; data obtained from Geospatial Information Authority of Japan), the maximum catchment area (km²), the maximum river length (m), or the maximum number of waterfalls in each island. The data on rivers on the islands where FF is distributed were only obtained for rivers with FF. The latter three parameters were calculated using the 10 m mesh digital elevation model (Geographic Information Authority of Japan) by using ArcGIS10.3 (ESRI Japan, Tokyo). Because of strong positive correlations among the four variables (Pearson's correlation coefficient: island size and catchment area, 0.959; island size and river length, 0.951; catchment area and river length, 0.993; island size

332 length and number of waterfalls, 0.865), we primarily used island area as the 333 explanatory variable. 334 We performed one-parameter logistic regression analysis in the generalized linear 335 model framework with binomial error structure for the response variable (speciation: 1, 336 presence; 0, absence) using glm package of R v. 3.1.1 (R Core Team, 2014). 337 Explanatory variables, except the number of waterfalls, were log₁₀ transformed. To test 338 the significance of explanatory variables, we conducted a likelihood ratio test using 339 10,000 rounds of parametric bootstrap sampling by using a constant model as the null 340 model that assumes no relationship between ecosystem variables and speciation 341 probability. We calculated McFadden's pseudo R^2 by using the following formula: $r^2 = 1$ 342 – (SSE/SST). In this formula, SSE and SST refer to the deviances of the focal and null 343 models, respectively. 344 Furthermore, to examine the effect of the ecosystem size parameters other than 345 island size (i.e., maximum catchment area, river length, and number of waterfalls), we 346 constructed another generalized linear model for speciation probability. We used the 347 residuals from a regression between island size and each of the other ecosystem-size 348 parameters, together with the island size and their interaction, as explanatory variables. 349 Stepwise model selections by AIC scores were conducted using *step* function on R. 350 351 352 **Results** 353 1. Basic summary statistics 354 Heterozygosity and allelic richness were generally higher in the AF populations than in 355 the FF ones, possibly suggesting a larger current or historical population size in the 356 former (AF: He, 0.296–0.554 and Rs, 1.94–3.65; FF: He, 0.070–0.390 and Rs, 1.21– 357 3.08; Supporting Information Table S1, Figure S2A, B). The AF populations showed 358 relatively little pairwise genetic differentiation within-islands ($F_{ST} = -0.008-0.145$; 359 Jost's D = -0.009 - 0.102; Supporting Information Tables S4, 5, Figure S2C, D). In the 360 case of the among-islands within-regions scale, pairwise genetic differentiation was 361 moderate (F_{ST} , 0.022–0.168; Jost's D, 0.025–0.219). AMOVA showed significant 362 differentiation in the among-rivers hierarchy in both Middle Ryukyu and South Ryukyu, 363 and in the among-islands hierarchy in Middle Ryukyu (Supporting Information Table

and number of waterfalls, 0.592; catchment area and number of waterfalls, 0.865; river

- 364 S6). Most of the variation was explained by within-individuals hierarchy. Compared
- with this, the genetic differentiation of AF populations between regions was large (F_{ST} ,
- 366 0.110–0.456; Jost's D, 0.124–0.613). AMOVA showed significant differentiation in both
- among-islands and among-regions hierarchies (Supporting Information Table S6).
- Variations were mainly explained by within-individuals, among-islands, and
- among-regions hierarchies. The FF populations often showed large genetic
- differentiation within-islands (F_{ST} , 0.003–0.804; Jost's D, 0.001–0.529; Supporting
- Information Tables S4, 5, Figure S2C, D) and among-islands within-regions (F_{ST} ,
- 0.312-0.859; Jost's D, 0.146-0.778), as well as among-regions (F_{ST} , 0.507-0.914;
- Jost's D, 0.580–0.890). AMOVA for FF showed significant genetic differentiation in the
- hierarchies of among-individuals, among-rivers, among-islands, and among-regions,
- except among-islands in South Ryukyu (Supporting Information Table S6). In the
- among-islands within-regions scale analysis, genetic variation was mainly explained by
- within-individuals, among-rivers, and among-islands hierarchies.

2 Genetic isolation and hybrids

- In the AF dataset, Evanno's ΔK showed the maximum value at K = 2; the populations in
- North plus Middle Ryukyu and South Ryukyu were clearly separated. In the dataset for
- each island, including FF and AF populations, ΔK had the maximum value at K = 2 for
- all islands, except one (Amami-Oshima Is.). The two genetic clusters corresponded to
- 384 the two forms, except on Okinawajima Is. (see below; Figure 3 and Supporting
- Information Figure S3). ΔK on Amami-Oshima Is. showed the maximum value at K = 3,
- in which FF was further divided into two clusters. Suspected hybrid individuals
- 387 (q-value, $\ge 10\%$) were rare (2.0% of total individuals). No suspected hybrid individuals
- were detected from five of the seven sympatric collection points. Several suspected
- 389 hybrid individuals were detected in 11 FF and AF populations, including two FF
- 390 populations on Tokunoshima Is. (FFTO-4-2, FFTO-5), three FF on Okinawajima Is.
- 391 (FFOK-3, FFOK-4-1, and FFOK-4-2), one FF on Ishigakijima Is. (FFIS-1), three FF on
- 392 Iriomotejima Is. (FFIR-3-1, FFIR-6, and FFIR-8), and two AF on Okinawajima Is.
- 393 (AFOK-1, AFOK-3). Among these, all FF individuals that were identified based on
- morphology in the FFOK-4-1 and FFOK-4-2 populations (Okinawajima Is.; see Figures
- 395 2, 3 and Supporting Information Figure S3) exhibited the genetic features of AF as the
- dominant component. Except for these two populations, the proportion of suspected

397 hybrid individuals ranged from 3.6% to 21.2% of individuals in a population. Potential 398 hybrids found in the FF populations contained 10.1%–80.5% of the AF component, 399 whereas those of the AF populations contained 25.6%–69.0% of the FF component. 400 401 3 Genetic relationships among populations 402 The neighbor-joining tree showed two divergent groups separated by the Kerama Gap in all of the FF and AF populations (bootstrap value, 97%; Figure 4). Each group 403 404 included both forms, which we present as Group 1 (Honshu, North Ryukyu, and Middle 405 Ryukyu) and Group 2 (South Ryukyu), hereafter. 406 In both groups, FF populations on each island formed a monophyletic group 407 (bootstrap value, 89%–100%), except those on two islands in Group 1 (Amami-Oshima 408 Is., 67%; Okinawajima Is., 33%). In addition, FF populations on different islands 409 (Tokunoshimajima Is. and Okinoerabujima Is.) formed a monophyletic group (89%). 410 The AF populations within each group were closely related to each other, and the 411 populations of each island in Group 1 tended to form a monophyletic group. 412 413 414 4 Test for multiple origins of FF 415 In the within-island scale analysis, the single origin model of FF was selected for all 416 islands (Table 1 and Supporting Information Table S7; Figure 4 and Supporting 417 Information Figure S4). Models including gene flow among all or partial populations of 418 the two forms showed higher posterior probability than those not considering gene flow 419 (Table 1 and Supporting Information Table S7; Figure 4 and Supporting Information 420 Figure S4). Type 2 error rates for the selected single origin model against alternative 421 parallel origin models were generally low (Table 1 and Supporting Information Table 422 S7; Figure 4 and S4). 423 At the among-island scale, Group 1 in Middle Ryukyu and Group 2 in South 424 Ryukyu were analyzed separately. For Group 1, we first examined the single origin of 425 FF in the adjoining islands, Tokunoshima Is. and Okinoerabujima Is., which was 426 suggested by the phylogenetic analysis. ABC analysis supported their single origin 427 (posterior probability (PP), 0.746; Bayes factor (BF), 9.42–122.57; Type 2 error rate, 428 0.06–0.1; BFs and Type 2 error rates are of the selected model against parallel origin 429 models; Table 1 and Supporting Information Table S7; Figure S4); thus, only FF on

430	Tokunoshima Is. was used for subsequent analyses. The model selection for Group 1
431	strongly supported the four independent origins of FF (PP, 0.447; BF, 23.97-519.23;
432	Type 2 error rate, 0; BFs and Type 2 error rates are of the selected model against the
433	other non-four origin models; Tables 1 and S7; Figure S4). The model with gene flow
434	between the two forms obtained higher BF than the model not considering gene flow
435	(BF, 4.72; Type 2 error rate, 0.125). In Group 2, the single origin of FF of Iriomotejima
436	Is. and Ishigakijima Is. was supported (PP, 0.895; BF, 36.98–191.0; Type 2 error rate, 0-
437	0.08; BFs and Type 2 error rates are of the selected model against parallel origin models
438	Tables 1 and S7; Figure S4). The model including gene flow between the AF and FF
439	populations was better supported than that not considering gene flow (BF, 13.63; Type 2
440	error rate, 0.06).
441	For the between-region scale, the neighbor-joining tree for populations suggested
442	independent origins of FF in Groups 1 and 2. However, we could not obtain a
443	conclusion at this scale from ABC, because no single model was successfully selected,
444	probably because of insufficient data (PP, 0.0024-0.14; Table S7; Figure S4).
445	
446	5 Correlation between speciation probability and ecosystem size
447	We confirmed the occurrence of AF or FF populations on 18 islands from the published
448	literature and our field survey (Supporting Information Table S8). As we could not
449	conclude from the ABC analysis whether the FF population originated independently
450	between Groups 1 and 2, we analyzed independent and non-independent scenarios
451	between the Middle and South Ryukyus. In addition, because the single origin of FF
452	was supported for Tokunoshima Is. and Okinoerabujima Is. populations, as well as for
453	Ishigakijima Is. and Iriomotejima Is. populations, we could not conclude which island
454	FF originated in. We developed four datasets for the independent scenario between
455	Groups 1 and 2 with all possible combinations of islands in which speciation would
456	have occurred independently: dataset 1, speciation in Tokunoshima Is. and Iriomotejima
457	Is.; dataset 2, in Tokunoshima Is. and Ishigakijima Is.; dataset 3, Okinoerabujima Is. and
458	Iriomotejima Is.; and dataset 4, Okinoerabujima Is. and Ishigakijima Is. We also
459	developed 16 datasets for the non-independent scenario (Supporting Information Table
460	S9).
461	For all four datasets in the scenario of independent origins between the regions,
462	speciation probability was significantly explained by island area ($P = 0.0016-0.0061$,

403	difference of deviance $-8.030-12.203$, $7^{2}-0.407-0.377$; Table 2 and Supporting
464	Information Table S9; Figure 5 and S5). The relationship was also significant for 12 of
465	the 16 datasets in the non-independent scenario (Supporting Information Table S9).
466	Almost identical results were obtained for the maximum catchment area and river
467	length (Table 2 and Supporting Information Table S9). Furthermore, two of the four
468	datasets for the independent origin scenario and five of the 16 datasets for the
469	non-independent scenario, showed significant relationships between the number of
470	waterfalls and speciation (Table 2 and Supporting Information Table S9). Model
471	selection by AIC scores showed that the best model included no variables, except for
472	island area, as the predictors for speciation probability in most datasets when the
473	variables were controlled by the island area (Supporting Information Table S9).
474	
475	
476	References
477	Akihito, Sakamoto, K., Ikeda, Y., & Aizawa, M. (2013). Gobioidei. In T. Nakabo (Ed.),
478	Fishes of Japan with Pictorial Keys to Species (Third ed.). (pp. 1374-1608). Tokyo
479	Japan: Tokai University Press. (in Japanese).
480	Beaumont, M. A. (2010). Approximate Bayesian computation in evolution and ecology
481	Annual Review of Ecology, Evolution, and Systematics, 41, 379–406.
482	https://doi.org/10.1146/annurev-ecolsys-102209-144621
483	Bertorelle, G., Benazzo, A., & Mona, S. (2010). ABC as a flexible framework to
484	estimate demography over space and time: some cons, many pros. Molecular
485	Ecology, 19, 2609–2625. https://doi.org/10.1111/j.1365-294X.2010.04690.x
486	Blacket, M. J., Robin, C., Good, R. T., Lee, S. F., & Miller, A. D. (2012). Universal
487	primers for fluorescent labelling of PCR fragments-an efficient and cost-effective
488	approach to genotyping by fluorescence. Molecular Ecology Resources, 12, 456-
489	463. https://doi.org/10.1111/j.1755-0998.2011.03104.x
490	Cornuet, JM., Ravigné, V., & Estoup, A. (2010). Inference on population history and
491	model checking using DNA sequence and microsatellite data with the software
492	DIYABC (v1.0). BMC Bioinformatics, 11, 401.
493	https://doi.org/10.1186/1471-2105-11-401

- 494 Csilléry, K., François, O., & Blum, M. G. B. (2012). abc: an R package for approximate
- Bayesian computation (ABC). *Methods in Ecology and Evolution*, 3, 475–479.
- 496 https://doi.org/10.1111/j.2041-210X.2011.00179.x
- 497 Earl, D. A., & vonHoldt, B. M, (2012). STRUCTURE HARVESTER: a website and
- 498 program for visualizing STRUCTURE output and implementing the Evanno
- method. Conservation Genetics Resources, 4, 359–361.
- 500 https://doi.org/10.1007/s12686-011-9548-7
- 501 Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of
- individuals using the software STRUCTURE: a simluation study. *Molecular*
- 503 Ecology, 14, 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x
- Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of
- programs to perform population genetics analyses under Linux and Windows.
- 506 *Molecular Ecology Resources*, 10, 564–567.
- 507 https://doi.org/10.1111/j.1755-0998.2010.02847.x
- 508 Excoffier, L., & Foll, M. (2011). fastsimcoal: a continuous-time coalescent simulator of
- genomic diversity under arbitrarily complex evolutionary scenarios. *Bioinformatics*,
- 510 27, 1332–1334. https://doi.org/10.1093/bioinformatics/btr124
- Excoffier, L., Dupanloup, I., Huerta-SÃ nchez, E., Sousa, V. C., & Foll, M. (2013).
- Robust Demographic Inference from Genomic and SNP Data. *PLoS Genetics*, 9,
- 6103905–17. https://doi.org/10.1371/journal.pgen.1003905
- Goudet, J. (1995). Fstat version 1.2: a computation program to calculate Fstatistics.
- 515 *Journal of Heredity*, 86, 485–486.
- 516 https://doi.org/10.1093/oxfordjournals.jhered.a111627
- 517 Hirashima, K., & Tachihara, K. (2000). Embryonic development and morphological
- changes in larvae and juveniles of two land-locked gobies, *Rhinogobius* spp.
- (Gobiidae), on Okinawa Island. *Japanese Journal of Ichthyology*, 47, 29–41 (in
- Japanese with English abstract). https://doi.org/10.11369/jji1950.47.29
- Holleley, C., & Geerts, P. (2009). Multiplex Manager 1.0: a cross-platform computer
- 522 program that plans and optimizes multiplex PCR. *Biotechniques*, 46, 511–517.
- 523 https://doi.org/10.2144/000113156
- 524 Iguchi, K., & Mizuno, N. (1999). Early starvation limits survival in amphidromous
- fishes. *Journal of Fish Biology*, 54, 705–712.
- 526 https://doi.org/10.1111/j.1095-8649.1999.tb02027.x

- 527 Kano, Y., Nishida, S., & Nakajima, J. (2012). Waterfalls drive parallel evolution in a
- freshwater goby. *Ecology and Evolution*, 2, 1805–1817.
- 529 https://doi.org/10.1002/ece3.295
- Kon, T., & Yoshino, T. (2003). Coloration and ontogenetic features of fluviatile species
- of *Rhinogobius* (Gobioidei: Gobiidae in Amami-oshima Island, Ryukyu Islands,
- Japan. Ichthyological Research, 50, 109–116.
- 533 https://doi.org/10.1007/s10228-002-0145-3
- Kondo, M., Maeda, K., Hirashima, K., & Tachihara, K. (2013). Comparative larval
- development of three amphidromous *Rhinogobius* species, making reference to
- their habitat preferences and migration biology. *Marine and Freshwater Research*,
- 537 64, 249–266. https://doi.org/10.1071/MF12234
- Lombert, E., Guillemaud, T., Lundgren, J., Koch, R., Facon, B., Grez, A., ... Estoup, A.
- 539 (2014). Complementarity of statistical treatments to reconstruct worldwide routes
- of invasion: the case of the Asian ladybird *Harmonia axyridis*. *Molecular Ecology*,
- 541 23, 5979–5997. https://doi.org/10.1111/mec.12989
- Machida, H., Ota, Y., Kawana, T., Moriwaki, H., & Nagaoka, N. (2001). Regional
- Geomorphology of the Japanese Island vol. 7 Kyushu and Southern Islands. Tokyo,
- Japan: University of Tokyo Press. (in Japanese)
- Matschiner, M., & Salzburger, W. (2009). TANDEM: integrating automated allele
- binning into genetics and genomics workflows. *Bioinformatics* 25:1982–1983.
- https://doi.org/10.1093/bioinformatics/btp303
- Meglecz, E., Costedoat, C., Dubut, V., Gilles, A., Malausa, T., Pech, N., & Martin, J. F.
- 549 (2010). QDD: a user-friendly program to select microsatellite markers and design
- primers from large sequencing projects. *Bioinformatics*, 26, 403–404.
- https://doi.org/10.1093/bioinformatics/btp670
- Meirmans, P. G., & van Tienderen, P. H. (2004). genotype and genodive: two programs
- for the analysis of genetic diversity of asexual organisms. *Molecular Ecology Notes*,
- 554 4, 792–794. https://doi.org/10.1111/j.1471-8286.2004.00770.x
- Mizuno, N. (2001). Rhinogobius. In H. Kawanabe, N. Mizuno, & K. Hosoya (Eds.),
- 556 Freshwater fishes of Japan (Third ed.). (p. 584) Tokyo, Japan: Yama-Kei
- 557 Publishers (in Japanese).

- Moriyama, A., Yanagisawa, Y., Mizuno, N., & Omori, K. (1998). Starvation of drifting
- goby larvae due to retention of free embryos in upstream reaches. *Environmental*
- 560 Biology of Fishes, 52, 321–329. https://doi.org/10.1023/A:1007333302864
- Ohara, K., Takahashi, D., & Takagi, M. (2004). Isolation of microsatellite loci in the
- freshwater goby, *Rhinogobius* sp. (Gobiidae). *Molecular Ecology Notes*, 4, 449–
- 563 451. https://doi.org/10.1111/j.1471-8286.2004.00677.x
- Oijen, M. J. P., Suzuki, T., & Chen, I. S. (2011). On the earliest published species of
- *Rhinogobius.* With a redescription of *Gobius brunneus* Temminck and Schlegel,
- 566 1845. *Journal of the National Taiwan Museum*, 64, 1–17.
- Omori, K., Ohnishi, H., Hamaoka, H., Kunihiro, T., Ito, S., Kuwae, M., ... Iguchi K.
- 568 (2012). Speciation of fluvial forms from amphidromous forms of migratory
- populations. *Ecological Modelling*, 243, 89–94.
- 570 https://doi.org/10.1016/j.ecolmodel.2012.06.006
- Oshiro, N. (1981). Ryukyu rettousan Yoshinobori no yomoyamabanashi (Some topics
- about *Rhinogobius* fishes in Ryukyu Island). *Tansuigyo*, 7, 14–18 (in Japanese).
- 573 Osozawa, S., Shinjo, R., & Armid, A. (2012). Palaeogeographic reconstruction of the
- 574 1.55 Ma synchronous isolation of the Ryukyu Islands, Japan, and Taiwan and
- 575 inflow of the Kuroshio warm current. *International Geology Review*, 54, 1369–
- 576 1388. https://doi.org/10.1080/00206814.2011.639954
- Ota, H. (1998). Geographic patterns of endemism and speciation in amphibians and
- 578 reptiles of the Ryukyu Archipelago, Japan, with special reference to their
- paleogeographical implications. *Researches on Population Ecology*, 40, 189–204.
- 580 https://doi.org/10.1007/BF02763404
- Pritchard, J. K., Stephen, M., & Donnelly, P. (2000). Inference of population genetic
- structure using multilocus genotype data. *Genetics*, 155, 945–959.
- 583 Shinomiya, A., Sasabe, K., Sakurai, M., & Kishino, T. (2005). Morphological
- characters of newly hatched larvae and their habitat selection of a fluviatile goby,
- *Rhinogobius* sp. YB in the upper stream of Sumiyo River, Amami-oshima Island,
- Japan. *Japanese Journal of Ichthyology*, 52, 1–8 (in Japanese with English abstract).
- 587 https://doi.org/10.11369/jji1950.52.1
- Suzuki, T., Shibukawa, K., Yano, K., & Senou, H. (2004). A photographic giude to the
- gobioid fishes in Japan. Tokyo, Japan: Heibonsha (in Japanese).
- Takeshima, H., Muto, N., Sakai, Y., Ishiguro, N., Iguchi, K., Ishikawa, S., & Nishida, M.

591	(2017). Rapid and effective isolation of candidate sequences for development of
592	microsatellite markers in 30 fish species by using kit-based target capture and
593	multiplexed parallel sequencing. Conservation Genetics Resources, 9, 479-490.
594	https://doi.org/10.1007/s12686-017-0730-4
595	Takezaki, N., Nei, M., & Tamura, K. (2010). POPTREE2: Software for constructing
596	population trees from allele frequency data and computing other population
597	atatistics with Windows interface. Molecular Biology and Evolution, 27, 747-752.
598	https://doi.org/10.1093/molbev/msp312
599	Tamada, K. (2005). Clutch and egg size in Rhinogobius sp. DA inhabiting small rivers.
600	Japanese Journal of Ichthyology, 52, 17-20 (in Japanese with English abstract).
601	https://doi.org/10.11369/jji1950.52.17
602	Vähä, JP., & Primmer, C. R. (2005). Efficiency of model-based Bayesian methods for
603	detecting hybrid individuals under different hybridization scenarios and with
604	different numbers of loci. Molecular Ecology, 15, 63-72.
605	https://doi.org/10.1111/j.1365-294X.2005.02773.x
606	van Oosterhout, C., Hutchinson, W. F., Willis, D. P. M., & Shipley. P. (2004). MICRO-
607	CHECKER; software for identifying and correcting genotyping errors in
608	microsatellite data. Molecular Ecology Notes, 4, 535-538.
609	https://doi.org/10.1111/j.1471-8286.2004.00684.x
610	Wegmann, D., Leuenberger, C., Neuenschwander, S., & Excoffier, L. (2010).
611	ABCtoolbox: a versatile toolkit for approximate Bayesian computations. BMC
612	Bioinformatics, 11, 116. https://doi.org/10.1186/1471-2105-11-116
613	Yamasaki, Y. Y., Nishida, M., Suzuki, T., Mukai, T., & Watanabe, K. (2015).
614	Phylogeny, hybridization, and life history evolution of Rhinogobius gobies in Japan
615	inferred from multiple nuclear gene sequences. Molecular Phylogenetics and
616	Evolution, 90, 20-33. https://doi.org/10.1016/j.ympev.2015.04.012
617	Yoshigou, H. (2014). Annotated checklist and bibliographic records of inland water
618	fishes of the Ryukyu Archipelago, Japan. Fauna Ryukyana, 9, 1-153
619	http://w3.u-ryukyu.ac.jp/naruse/lab/Fauna_Ryukyuana.html
620	Yue, G. H., David, L., & Orban, L. (2007). Mutation rate and pattern of microsatellites
621	in common carp (Cyprinus carpio L.). Genetica, 129, 329-331
622	https://doi.org/10.1007/s10709-006-0003-8

Figure S1 Tested demographic models and their relationships.

F4. Tokunoshima Is.– 5. Okinoerabujima Is.

FFTO-1

Parallel origin

Different divergence Model 4 (simultaneous divergence) order

Figure S1 Continued.

Model 5 (recent divergence of FFTO-1)

H South Ryukyu

Figure S1 Continued.

Figure S2 Distributions of summary statistics for genetic diversities within and between populations of the *Rhinogobius* species. Red dots and error bars indicate mean values and intermedian quantiles ranges, respectively. Genetic diversity values of populations were measured by expected heterozygosity (He, A) and allelic richness (Rs, B). Pairwise population differences were measured by $F_{\rm ST}(C)$ and Jost's D (D).

Figure S3 Results of STRUCTURE analysis for each island and AF. Sympatric points are indicated by additional annotation. Dominant genetic features in AF identified by morphology are shown in grey, whereas those in FF are shown in the other colours. Graphs of ΔK are also shown.

Figure S3 Continued.

Fig. S3 Continued.

Figure S4 Tested demographic models and results of ABC model selection. Result of posterior predictive check conducted using principal component analysis for the selected model is also shown. Amphidromous and fluvial forms are indicated by black and orange, respectively. Arrows between populations indicate gene flow. The model that was selected is enclosed in a red square.

C 6. Okinawajima Is.

Posterior probability of models Figure S4 Continued

Figure S4 Continued

Figure S4 Continued

F

4. Tokunoshima Is. – 5. Okinoerabujima Is.

Posterior predictive check PCA

Figure S4 Continued

Posterior probability of models

Н South Ryukyu n_FF_ iriomote (FFIR-6) ishigaki (FFIS-1) 9. Iriomotejima Is. 8. Ishigakijima Is. t_root ---t_root t_root iriomb m*n FF --t FF t_AF_ FFIS-1 n_FF n_FF n AF n_AF n_FF n_FF n FF ishigaki iriomote ishigaki iriomote ishigaki iriomote Model 1 (single origin, no gene flow) Model 2 (simultaneous divergence, Model 3 (parallel origin, no gene flow) no gene flow) ---t_root t_root а -- t_FF --t AF FFIS-1 <mark>C</mark>→ n_AF n_AF n_FF n_FF n_FF n_FF ishigaki iriomote ishigaki iriomote Model 5 (single origin, gene flow) Model 4 (parallel origin, gene flow) 2 0.8 Posterior probability 0.6 0.4 2 0.2 0.0

0.009

-15

-10

-5 PC1

Posterior predictive check PCA

5

10

Figure S4 Continued

0.003

0.005

tolerance rate

Posterior probability of models

0.001

Parameters except gene flow between amphidromous form in Middle and South Ryukyu were omitted in this figure.

Figure S4 Continued

Figure S5 Results of logistic regression analysis between ecosystem size other than island size and speciation probability. Islands with the freshwater form (FF) are represented by filled circles, whereas those without FF are represented by open circles. Filled circles plotted on the x-axis (speciation probability = 0) are for the islands with FF that was assumed to be of non-independent origin. Our ABC analysis indicated that FF in Tokunoshima Is. and Okinoerabujima Is., and Ishigakijima Is. and Iriomotejima Is. shared their origins. Plots in the left colomun (A,C,E) assumed that the speciation of FF occurred in the larger island (Tokunoshima Is. and Iriomotejima Is.). Plots in the right colomun (B,D,F) assumed that speciation occurred in the smaller island (Okinoerabujima Is. and Ishigakijima Is.).

Region	Island	Form	River system	n Point	Population Name	River length m	Catchment area ha	N	Но	He	Rs	ABC
Middle Ryukyı	Amami-Oshima	FF	Sumiyo	Sumiyo	FFAM-1	18478	4858	28	0.337	0.371	2.38575	Amami-Oshima/Middle Ryukyu/Ryukyu
			Akina	Akina	FFAM-2	9969	1135	16	0.228	0.235	2.6299	Amami-Oshima
			Kawauchi	Kawauchi	FFAM-3	12484	2817	31	0.239	0.234	1.65095	Amami-Oshima
			Asado	Asado-2	FFAM-4	13155	3238	30	0.128	0.181	2.77865	-
		AF	Asado	Asado-1	AFAM-1	13155	3238	29	0.507	0.507	3.5093	Amami-Oshima/Middle Ryukyu/Ryukyu
	Kikaijima	AF	Kikai-1	Kikai-1	AFKI-1	1859	69	11	0.495	0.514	3.3566	-
			Kikai-2	Kikai-2	AFKI-2	1825	56	10	0.438	0.489	3.5747	-
	Tokunoshima	FF	Akirigami	Akirigami-1	FFTO-1-1	15754	3400	26	0.312	0.325	2.70765	Tokunoshima/Tokunoshima-Okinoerabu/Middle Ryukyu/Ryukyu
				Akirigami-2	FFTO-1-2			18		0.323	2.74675	Tokunoshima/Tokunoshima-Okinoerabu/Middle Ryukyu/Ryukyu
				Akirigami-3				9		0.323	2.61145	
			Oose	Oose	FFTO-2	8262	886	19		0.254	2.74265	
			Uwanaru	Uwanaru	FFTO-3	6791	403	24	0.253	0.262	2.68755	Tokunoshima
			Agon	Agon-1	FFTO-4-1	6958	492	24	0.3	0.311		Tokunoshima
				Agon-2	FFTO-4-2			16		0.287		Tokunoshima
			Shikaura	Shikaura	FFTO-5	9038	1184	7		0.298	1.7933	
		AF	Manda	Manda	AFTO-1	8817	1361	32		0.522		Tokunoshima/Tokunoshima-Okinoerabujima/Middle Ryukyu/Ryukyu
			Kametoku	Kametoku		9034	969	19		0.539	3.49895	
	Okinoerabujima		Amata	Amata	FFOE-1	8813	10.8	34	0.2	0.227		Tokunoshima-Okinoerabujima
	Okinawajima	FF	Sukuta		FFOK-1	5573	369	28	0.294	0.289		Okinawajima/Middle Ryukyu/Ryukyu
			Yofuke	Yofuke	FFOK-2	4442	403	31	0.098	0.121		Okinawajima
			Okukubi	Okukubi	FFOK-3	8967	1682	33		0.274		Okinawajima
			Hija	Hija-1	FFOK-4-1	17218	5330	20		0.331	2.14305	
				Hija-2	FFOK-4-2			8		0.293	2.07295	
			Kyodafukuji	Kyodafukuj	FFOK-5	6445	479	32		0.176	2.35485	-
			Kushiookawa	Kushi	FFOK-6	5299	662	32		0.144	1.92765	
		AF	Sukuta	Sukuta-1	AFOK-1			26	0.506	0.554	3.62115	Okinawajima/Middle Ryukyu/Ryukyu
			Yofuke	Yofuke	AFOK-2			25	0.533	0.542	3.55845	Okinawajima/Middle Ryukyu/Ryukyu
			Okukubi	Okukubi	AFOK-3			27	0.477	0.523	3.6047	
			Hija	Hija-2	AFOK-4			6	0.475	0.493	3.16775	
			Sate	Sade	AFOK-5	7213	670	36	0.517	0.526	3.5023	-
			Yona Yona	Yona	AFOK-6	7700	1179	33	0.482	0.518	3.5941	-
	Kumejima	FF	Shirase	Shirase	FFKM-1	5925	699	31	0.241	0.274		Kumejima/Middle Ryukyu/Ryukyu
			Suhara	Suhara	FFKM-2	3118	150	30	0.073	0.077	1.53105	Kumejima
		AF	Shirase	Shirase	AFKM-1			32		0.544		Kumejima/Middle Ryukyu/ryukyu
			Suhara	Suhara	AFKM-2			32		0.52		Kumejima
South Ryukyu	ı Ishigakijima	FF	Miyara		FFIS-1	14750	3275	28		0.301		South Ryukyu
		AF	Arakawa	Arakawa	AFIS-1	2861	205	15		0.486		South Ryukyu/Ryukyu
			Nagura	Nagura	AFIS-2	8423	1604	24		0.496		South Ryukyu/Ryukyu
	Iriomotejima	FF	Pinai	Pinai	FFIR-1	4705	361	24		0.202		Iriomotejima
			Kura	Kura	FFIR-2	2937	160	24	0.094	0.104	1.21535	-
			Geda	Geda-1	FFIR-3-1	2885	131	24	0.083	0.106	1.2767	
				Geda-2	FFIR-3-2			32		0.07	1.24555	-
			Yuchin	YuchinR-1		4266	498	13		0.248	2.6738	-
				YuchinR-2	FFIR-4-2			42	0.24	0.238	2.2249	-
				YuchinL	FFIR-5			24	0.103	0.118	1.62565	-
			Urauchi	Urauchi	FFIR-6	21736	6437	24	0.329	0.39	3.0796	Iriomotejima/South Ryukyu/Ryukyu
			Arabara	Arabara	FFIR-7	3697	179	25	0.181	0.194	1.8484	-
			Aira	Aira	FFIR-8	6130	557	46	0.289	0.305	2.9351	Iriomotejima
			Nishida	Nishida	FFIR-9	4759	476	9	0.3	0.299	2.74405	-
		AF	Geda	Geda-2	AFIR-1	4266	498	32	0.46	0.456	2.8527	Iriomotejima/South Ryukyu/Ryukyu
			Omija	Omija	AFIR-2	3395	227	24	0.508	0.502		Iriomotejima/South Ryukyu/Ryukyu
			Yuchin	YuchinR-2	AFIR-3	4266	498	24	0.437	0.46	2.7118	-
			Nakama	Nakama	AFIR-4	15379	3355	27	0.437	0.466	2.9053	-
North Ryukyu	Yakushima	AF	Takinokawa	Nunobiki-1		2000	70	34	0.426	0.457	2.97495	-
				Nunobiki-2				27	0.417	0.456	3.07295	-
			Isso	Isso	AFYK-2	10521	1471	25	0.424	0.468	3.4101	-
Honshu	Honshu	AF	Esuno	Wakayama	AFHS-1			17	0.429	0.392	2.74215	-
			D-44-	Kagawa-1	A FLIC O			5	0.31	0.296	2.6938	
			Betto	Nagawa-1	AFRO-2			J	0.01	0.230	2.0000	-

Table S2 Primer pairs used in this study.

Locus name	Motif	Forward primer sequence (5' \rightarrow 3') for microsatellite analysis.	Reverse primer sequence (5' →3')	Tm value Fluorescent	Size range (bp)	No. of alleles
Ohara et al (200	04)					
Rhi-3	$(CA)_5(CA)_4(CA)_{10}$	GGATATTCTGTCTCTGTT	ATCTATTCCCTTTCTGTTTGTCT	53 6-FAM	131-163	9
Rhi-8	(CA) ₁₈	ATACGCATAGTTTACCTTGA	CCTATGGTTTGAACTTGGGTGTG	53 HEX	155-195	8
Rhi-13	$(TG)_2(TG)_4(GT)_4$	GACTCGCCATCAAATACAAAAA	AGTCTCCTCCTCACCCGCACACC	53 NED	99-132	7
New loci (This	study)					
br_a_02	(AC) ₁₁	(GCCTTGCCAGCCCGC)ACTCCTAGCCTACAGCTCACTCG	GCGTCAATGCAGCACTATATTACC	63 VIC	82-126	22
br_a_05	(AC) ₁₀	(GCCTCCCTCGCGCCA)CCACTCAAGGCATTCTCCAGTTT	ATGTTTCCTCTCACAACAATCGC	63 6-FAM	195-243	14
br_a_06	(AC) ₉	(GCCTTGCCAGCCCGC)AACGTCATTATCAGATCCGCTCC	CTCCTAACTTGGCAATCACATGG	63 VIC	200-242	17
br_a_07	(AC) ₁₂	(CAGGACCAGGCTACCGTG)AGTTCATCGATCCATTCACCAGA	CGTGGAGCTCTAAACAAGAGGTG	63 NED	174-226	14
br_a_08	(AC) ₁₃	(CGGAGAGCCGAGAGGTG)GTTCGTCTTCATCCATCACCAGT	TAAGATTTGTGCAGATGCGAAGG	63 PET	194-252	17
br_a_09	(AC) ₁₈	(GCCTCCCTCGCGCCA)CCAGCTGAACATGGTGTAGCTTT	TCTCAGCTGCCAGTGAACTGAAC	63 6-FAM	278-334	29
br_a_10	(AC) ₁₁	(GCCTTGCCAGCCCGC)CGCTGTCAATCACGGTAAGAGTT	CCTATAAGCACGACCTCCATGTG	63 VIC	306-338	15
br_b_05	(AC) ₁₂	(GCCTCCCTCGCGCCA) GGAGCGGAGTTGTTGTGTCTTAC	TGTCCCAAGATAGTGCACAAATG	63 6-FAM	182-280	45
br_b_06	(AC) ₁₁	(GCCTTGCCAGCCCGC) ATCCTTAGGCCAACACAAAGCTC	TTAACCATATGCAAACCTCTCCC	63 VIC	190-243	22
br_c_01	(AC) ₁₃	(GCCTCCCTCGCGCCA) TGCAGTGGTTGTGTTGAAAGGTA	CCTTGCACAGATGTGTCTTAGCAT	63 6-FAM	100-156	20
br_c_02	(AC) ₁₀	(GCCTTGCCAGCCCGC) GACAGCAGCACACTCCTAAGCTC	CAGATCCAGATCCTCTGTTGACAT	63 VIC	111-135	8
br_c_05	(AC) ₁₀	(GCCTCCCTCGCGCCA) TGGCTCTAGAACTCTTGATGATGG	GCACAGTATAGACGCTCTGCACAT	63 6-FAM	212-286	35
br_c_06	(AC) ₁₀	(GCCTTGCCAGCCCGC) CTGAGCAGGACAGGAAGGAAATC	TGAATTGTTTGGACCATGAGACAG	63 VIC	195-283	39
br_c_07	(AC) ₁₄	(CAGGACCAGGCTACCGTG) CCGTTTGACCGACTTCTTAAGGT	TTATCCTCACGCCTCCTTTCTTC	63 NED	209-251	17
br_c_08	(AC) ₁₀	(CGGAGAGCCGAGAGGTG) TCTTGCATGACCACAATGTCAAC	AAGCTTGGTTTGTTTCCCTCTTG	63 PET	222-258	15
br_c_09	(AC) ₁₀	(GCCTCCCTCGCGCCA) TCCCACCAAACTAAGCCACAATA	GCTCCTCTGATGGTACTTGCTCA	63 6-FAM	334-386	22
br_c_10	(AC) ₁₁	(GCCTTGCCAGCCCGC) GACAGGAGCTCTGATCATCTCCA	CCACCATCCACCTCTATAACTCTTTC	63 VIC	340-380	17

The sequence in parentheses in forward primers indicate in tail sequence for universal fluorescent primers (Blacket et al., 2012).

Table S3 List of summary statistics used in ABC analysis.

Summary statistics	Abbreviation	Analysis the summary statistics used
Mean number of alleles over loci for each population	K_pop	All analysis
Standard deviation of Mean number of alleles over loci for each population	Ksd_pop	All analysis
Mean number of alleles over loci and population	MEAN_K	All analysis
Standard deviation of mean number of alleles over loci and population	SD_K	All analysis
Mean total number of alleles over loci	TOT_K	All analysis
Mean heterozygosity over loci for each population	H_pop	All analysis
Standard deviation of mean heterozygosity over loci for each population	Hsd_pop	All analysis
Mean heterozygosity over loci and population	MEAN_H	All analysis
Standard deviation of Mean heterozygosity over loci and population	SD_H	All analysis
Mean total heterozygosity	ALL_H	All analysis
Mean Graza-Williamson statistic over loci for each population	GW_pop	All analysis
Standard deviation of mean Graza-Williamson statistic over loci for each population	GWSD_pop	All analysis
Mean Graza-Williamson statistic over loci and population	MEAN_GW	All analysis
Standard deviation of mean Graza-Williamson statistic over loci and population	SD_GW	All analysis
Mean Graza-Williamson statistic over all populations	TOT_GW	All analysis
Mean modified Graza-Williamson statistic over loci for each population	NGW_pop	All analysis
Standard deviation of mean modified Graza-Williamson statistic over loci for each population	NGWSD_pop	All analysis
Mean modified Graza-Williamson statistic over loci and population	MEAN_NGW	All analysis
Standard deviation of mean modified Graza-Williamson statistic over loci and population	SD_NGW	All analysis
Global Fst	FST	All analysis
Global Fit	FIT	All analysis
Pairwise Fst	FST_pop1_pop2	All analysis
Mean number of pairwise differences over populations	PI_pop1_pop2	All analysis
Mean delta mu-square	DMUSQ_pop1_pop2	All analysis
Mean allele range over loci for each population	R_pop	Posterior predictive check only
Standard deviation of mean allele range over loci for each population	Rsd_pop	Posterior predictive check only
Mean allelic range over loci and populations	MEAN_R	Posterior predictive check only
Standard deviation of mean allelic range over loci and populations	MEAN_Rsd	Posterior predictive check only
Mean total allelic range over loci and populations	TOT_R	Posterior predictive check only
Global Fis	FIS	Posterior predictive check only

ible S5 Pairwise Jost'D values.

					Amami-Oshir		Tokunoshima		OkinoerabujimaOki	inawajima					Kumejima	Ishigakijin	a k	omotejima		Yakushima	Honshu
					FF	AF AF	FF	AF	FF	FF		Al	:		FF AF	FF	AF	FF	AF	AF	AF
Region		eclesRiver s	ystem point	Population Name		FFAM-2FFAM-3FFAM-4AFAM-1 AFKI-1 AFK	KI-2 FFTO-1-1 F	FTO-1-2FFTO-1-3FFTO-2 FFTO-3FFTO-4-1FFTO-4-2FFTO-5AFTO-1 AFTO-	2 FFOE-1 F	FFOK-1 FFC								FFIR-1 FFIR-2 FFIR-3-1	FFIR-3-2 FFIR-4-1 FFIR-4-2 FFIR-5 FFIR-6 FFIR-7 FFIR-8 FFIR-9 AFIR-1 AFIR-2 AFIR-3 AFI	IB-4 AFYK-1-1 AFY	rk-1-2AFYK-2AFHS-1AFHS-2AFHS-3
Middle Ryukyu	Amami-Oshima	FF Sur		FFAM-1	0.000	0.486 0.084 0.529 0.514 0.472 0.4	148 0.573	0.574 0.599 0.611 0.668 0.590 0.600 0.575 0.416 0.435	0.539	0.520 0.5	522 0.558 0.490 F		7 0.444 0.495 0.468				0.631 0.617	0.855 0.771 0.868	0.877 0.774 0.766 0.778 0.718 0.746 0.725 0.736 0.608 0.592 0.610 0	611 0.538 0.	.525 0.529 0.506 0.533 0.571
			ina Akina	FFAM-2		0.000 0.491 0.178 0.360 0.411 0.3	359 0.536	0.530 0.538 0.537 0.547 0.421 0.453 0.445 0.374 0.371		0.547 0.4	491 0.519 0.486 F		2 0.395 0.432 0.414						0.859 0.769 0.770 0.832 0.791 0.760 0.781 0.732 0.712 0.713 0.721 0		
			auchi Kawauchi		0.084	0.491 0.000 0.502 0.522 0.482 0.4		0.582 0.608 0.614 0.667 0.605 0.620 0.595 0.424 0.451		0.550 0.5									0.879 0.794 0.793 0.815 0.741 0.744 0.724 0.738 0.610 0.605 0.611 0		.548 0.557 0.548 0.575 0.608
			ado Asado	FFAM-4		0.178 0.502 0.000 0.414 0.462 0.4		0.514 0.524 0.480 0.497 0.422 0.441 0.466 0.403 0.401		0.575 0.5									0.859 0.778 0.778 0.809 0.788 0.767 0.774 0.745 0.689 0.679 0.693 0		
	_	AF As	ado Asado	AFAM-1	0.514	0.360 0.522 0.414 0.000 0.121 0.10	0.370	0.349	0.344	0.382 0.4	414 0.396 0.311 0	0.299 0.442 0.522 0.15	4 0.155 0.155 0.146	0.124 0.123	0.544 0.644 0.219	0.214 0.696	0.571 0.582	0.848 0.817 0.878	0.879 0.748 0.755 0.809 0.709 0.764 0.730 0.712 0.593 0.575 0.603 0	609 0.241 0.	230 0.218 0.283 0.305 0.330
	Kikaijima	AF Kik	ai-1 Kikai-1	AFKI-1	0.472	0.411 0.482 0.462 0.121 0.000 0.0	0.312	0.294 0.284 0.326 0.320 0.256 0.293 0.231 0.051 0.050					8 0.055 0.051 0.064		0.538 0.645 0.128	0.140 0.618	0.529 0.527	0.778 0.739 0.804	0.808 0.680 0.686 0.722 0.623 0.688 0.664 0.627 0.536 0.513 0.532 0	529 0.168 0.	167 0.157 0.249 0.283 0.299
		Kik	ai-2 Kikai-2	AFKI-2	0.448	0.359 0.455 0.417 0.105 0.049 0.0	000 0.311	0.299 0.291 0.338 0.304 0.224 0.293 0.227 0.063 0.054	0.267				8 0.071 0.076 0.076		0.499 0.599 0.128				0.836 0.716 0.726 0.752 0.652 0.716 0.689 0.669 0.559 0.530 0.556 0		181 0.162 0.246 0.250 0.279
	Tokunoshima	FF Akiri	gami Akirigami-	1 FFTO-1-1	0.573	0.536 0.580 0.512 0.370 0.312 0.3	0.000	0.001 0.056 0.067 0.161 0.152 0.155 0.135 0.289 0.281	0.212	0.455 0.4	491 0.508 0.414 (0.423 0.499 0.566 0.28	6 0.297 0.302 0.284	0.278 0.289	0.657 0.718 0.361	0.374 0.685	0.612 0.624	0.811 0.776 0.847	0.850 0.673 0.684 0.791 0.695 0.623 0.695 0.660 0.599 0.595 0.595 0	605 0.425 0.	421 0.408 0.443 0.452 0.488
			Akirigami-	2 FFTO-1-2	0.574	0.530 0.582 0.514 0.349 0.294 0.2	0.001	0.000 0.053 0.071 0.147 0.137 0.136 0.114 0.276 0.266	0.192	0.433 0.4	464 0.497 0.398 0	0.411 0.468 0.569 0.28	4 0.293 0.291 0.276	0.267 0.280	0.633 0.700 0.361	0.364 0.682	0.621 0.625	0.831 0.794 0.867	0.870 0.685 0.697 0.804 0.705 0.641 0.708 0.675 0.616 0.606 0.610 0	617 0.418 0.	409 0.398 0.433 0.446 0.481
			Akirigami-	3 FFTO-1-3	0.599	0.538 0.608 0.524 0.335 0.284 0.2	291 0.056	0.053 0.000 0.111 0.117 0.120 0.138 0.111 0.258 0.252			454 0.469 0.407 0								0.845 0.670 0.681 0.784 0.681 0.660 0.672 0.652 0.594 0.575 0.589 0		371 0.362 0.419 0.418 0.428
		Oc	se Oose	FFTO-2	0.611	0.537 0.614 0.480 0.375 0.326 0.3	338 0.067	0.071 0.111 0.000 0.189 0.169 0.173 0.162 0.304 0.295	0.245	0.500 0.5	545 0.543 0.425 0	0.440 0.559 0.578 0.33	2 0.335 0.345 0.306	0.312 0.324	0.637 0.699 0.396	0.421 0.690	0.664 0.666	0.837 0.807 0.869	0.871 0.674 0.688 0.780 0.720 0.689 0.673 0.673 0.657 0.654 0.656 0	654 0.437 0.	434 0.417 0.450 0.432 0.462
		Uwa	naru Uwanaru	FFTO-3	0.668	0.547 0.667 0.497 0.356 0.320 0.3	0.161	0.147 0.117 0.189 0.000 0.115 0.148 0.128 0.284 0.267	0.289	0.520 0.5	527 0.484 0.425 0	0.444 0.527 0.625 0.28	8 0.313 0.277 0.251	0.268 0.261	0.581 0.637 0.356	0.336 0.649	0.534 0.548	0.776 0.729 0.803	0.805 0.619 0.641 0.791 0.684 0.629 0.645 0.618 0.550 0.528 0.539 0	550 0.368 0.	358 0.345 0.390 0.375 0.373
		Ag	on Agon-1	FFTO-4-1	0.590	0.421 0.605 0.422 0.316 0.256 0.2	224 0.152	0.137 0.120 0.169 0.115 0.000 0.023 0.028 0.240 0.225	0.225	0.458 0.4	490 0.471 0.414 /	0.397 0.503 0.624 0.24	5 0.259 0.246 0.244	0.233 0.226	0.555 0.614 0.296	0.313 0.662	0.596 0.593	0.818 0.776 0.840	0.844 0.686 0.690 0.801 0.716 0.670 0.720 0.659 0.603 0.590 0.589 0	604 0.337 0.	319 0.308 0.365 0.345 0.350
			Agon-2	FFTO-4-2	0.600	0.453 0.620 0.441 0.369 0.293 0.2	293 0.155	0.136 0.138 0.173 0.148 0.023 0.000 0.048 0.303 0.282	0.232	0.473 0.5	515 0.479 0.463 0	0.446 0.516 0.656 0.21	9 0.314 0.300 0.315	0.283 0.286	0.584 0.641 0.352	0.365 0.664	0.634 0.629	0.828 0.774 0.849	0.853 0.700 0.702 0.805 0.724 0.692 0.734 0.676 0.644 0.634 0.632 0	640 0.383 0.	366 0.358 0.417 0.398 0.400
		Shik	aura Shikaura	FFTO-5	0.575	0.445 0.595 0.466 0.304 0.231 0.2	227 0.135	0.114 0.111 0.162 0.128 0.028 0.048 0.000 0.228 0.218	0.146	0.425 0.4	440 0.465 0.381 0	0.382 0.461 0.582 0.24	0 0.251 0.224 0.221	0.219 0.216	0.566 0.632 0.311	0.321 0.681	0.578 0.578	0.812 0.777 0.845	0.848 0.686 0.689 0.788 0.709 0.660 0.703 0.655 0.587 0.573 0.576 0	588 0.346 0.	321 0.319 0.383 0.377 0.385
	_	AF Ma	nda Manda	AFTO-1	0.416	0.374 0.424 0.403 0.104 0.051 0.0	063 0.289	0.276 0.258 0.304 0.284 0.240 0.303 0.228 0.000 -0.009	0.278	0.309 0.3	361 0.336 0.238 0	0.216 0.388 0.438 0.0	8 0.069 0.073 0.062	0.043 0.039	0.486 0.577 0.109	0.126 0.620	0.473 0.476	0.747 0.735 0.779	0.783 0.649 0.657 0.734 0.593 0.646 0.625 0.603 0.478 0.459 0.480 0	486 0.163 0.	150 0.141 0.194 0.240 0.262
		Kam	etoku Kametoku	AFTO-2	0.435	0.371 0.451 0.401 0.101 0.050 0.0	054 0.281	0.266 0.252 0.295 0.267 0.225 0.282 0.218 0.009 0.000	0.294	0.318 0.3	382 0.329 0.238 0	0.220 0.398 0.470 0.0	8 0.065 0.068 0.063	0.036 0.032	0.473 0.576 0.104	0.117 0.622	0.482 0.483	0.752 0.731 0.777	0.781 0.661 0.664 0.737 0.594 0.667 0.628 0.621 0.484 0.464 0.483 0	489 0.149 0.	135 0.124 0.178 0.218 0.234
	Okinoerabujima	FF Am	ata Amata	FF0E-1	0.539	0.534 0.548 0.581 0.344 0.248 0.2	0.212	0.192 0.237 0.245 0.289 0.225 0.232 0.146 0.278 0.294	0.000	0.453 0.4	463 0.463 0.401 (0.409 0.500 0.589 0.28	6 0.274 0.252 0.280	0.261 0.265	0.603 0.670 0.388	0.401 0.684	0.581 0.587	0.792 0.748 0.853	0.858 0.675 0.676 0.740 0.696 0.669 0.698 0.657 0.591 0.575 0.592 0	597 0.472 0.	451 0.448 0.496 0.497 0.531
	Okinawalima	FF Sui		FFOK-1	0.520	0.547 0.550 0.575 0.382 0.337 0.3	345 0.455	0.433	0.453	0.000 0.1	146 0.336 0.336 (0.369 0.090 0.335 0.30	5 0.314 0.304 0.312	0.310 0.306	0.577 0.653 0.340	0.325 0.697	0.683 0.655	0.801 0.795 0.867	0.872 0.790 0.792 0.788 0.739 0.779 0.793 0.719 0.676 0.652 0.670 0	671 0.395 0.	386 0.404 0.410 0.421 0.487
		Yof	uke Yofuke	FFOK-2	0.522	0.491 0.539 0.566 0.414 0.394 0.3	376 0.491	0.464 0.454 0.545 0.527 0.490 0.515 0.440 0.361 0.382	0.463	0.146 0.0	.000 0.377 0.375 /	0.395 0.140 0.316 0.38	3 0.386 0.361 0.367	0.379 0.370	0.576 0.674 0.423	0.410 0.809	0.707 0.706	0.853 0.849 0.887	0.889 0.851 0.850 0.845 0.807 0.830 0.839 0.761 0.708 0.691 0.710 0	709 0.498 0.	481 0.488 0.521 0.541 0.582
		Oku	kubi Okukubi	FFOK-3	0.558	0.519 0.590 0.505 0.396 0.361 0.3	349 0.508	0.497 0.469 0.543 0.484 0.471 0.479 0.465 0.336 0.329	0.463	0.336 0.3	377 0.000 0.291 /	0.287 0.381 0.459 0.3	4 0.320 0.232 0.329	0.316 0.303	0.543 0.582 0.383	0.354 0.720	0.589 0.603	0.721 0.625 0.781	0.787 0.712 0.709 0.697 0.642 0.728 0.743 0.709 0.630 0.619 0.642 0	640 0.442 0.	439 0.439 0.467 0.479 0.503
		н	ia Hia-1	FFOK-4-1	0.490	0.486 0.498 0.522 0.311 0.269 0.2	256 0.414	0.398 0.407 0.425 0.425 0.414 0.463 0.381 0.238 0.238	0.401	0.336 0.3	375 0.291 0.000 4	0.079 0.396 0.452 0.27	6 0.265 0.244 0.228	0.244 0.256	0.502 0.477 0.288	0.290 0.580	0.482 0.503	0.736 0.700 0.748	0.754 0.646 0.654 0.676 0.586 0.629 0.625 0.658 0.513 0.491 0.497 0	508 0.392 0.	380 0.368 0.410 0.417 0.450
			Hia-2	FFOK-4-2	0.474	0.453 0.492 0.479 0.299 0.261 0.2	0.423	0.411 0.417 0.440 0.444 0.397 0.446 0.382 0.216 0.220	0.409	0.369 0.3	395 0.287 0.079 0	0.000 0.429 0.497 0.27	2 0.255 0.238 0.216	0.237 0.239	0.497 0.468 0.264	0.276 0.625	0.528 0.557	0.797 0.719 0.815	0.821 0.727 0.725 0.720 0.651 0.684 0.714 0.690 0.560 0.546 0.556 0	562 0.347 0.	326 0.324 0.350 0.382 0.394
		Kyodi	atukuli Kvodatuku	i FFOK-5	0.582	0.585 0.598 0.596 0.442 0.416 0.4	36 0.499	0.468 0.459 0.559 0.527 0.503 0.516 0.461 0.388 0.398	0.500	0.090 0.1	140 0.381 0.396 /	0.429 0.000 0.340 0.38	3 0.400 0.380 0.389	0.394 0.383	0.569 0.636 0.462	0.413 0.753	0.716 0.706	0.845 0.847 0.881	0.884 0.844 0.842 0.843 0.803 0.839 0.825 0.803 0.703 0.686 0.705 0	704 0.436 0.	419 0.435 0.449 0.466 0.518
		Ku	shi Kushi	FFOK-6	0.551	0.621 0.553 0.595 0.522 0.491 0.5	541 0.566	0.569 0.552 0.578 0.625 0.624 0.656 0.582 0.438 0.470	0.589	0.335 0.3	316 0.459 0.452 /	0.497 0.340 0.000 0.49	4 0.496 0.497 0.485	0.499 0.497	0.660 0.732 0.509	0.516 0.712	0.630 0.666	0.725 0.750 0.791	0.795 0.743 0.740 0.763 0.702 0.703 0.728 0.666 0.648 0.642 0.643 0	640 0.534 0.	536 0.554 0.587 0.612 0.622
	_	AF Sui	uta Sukuta	AFOK-1	0.437	0.392 0.484 0.423 0.154 0.058 0.0	068 0.286	0.284 0.283 0.332 0.288 0.245 0.299 0.240 0.068 0.058	0.266	0.305 0.3	393 0.314 0.276 (0.272 0.393 0.494 0.00	0 -0.001 0.035 0.015	0.020 0.014	0.514 0.623 0.079	0.092 0.588	0.488 0.484	0.719 0.668 0.767	0.773 0.635 0.647 0.680 0.568 0.643 0.605 0.591 0.493 0.454 0.480 0	488 0.165 0.	163 0.147 0.205 0.215 0.252
			uke Yofuke	AFOK-2	0.444	0.395 0.482 0.428 0.155 0.055 0.0	71 0.297	0.293 0.293 0.335 0.313 0.259 0.314 0.251 0.069 0.065	0.274	0.314 0.3	386 0.320 0.265 0	0.255 0.400 0.496 -0.0	01 0.000 0.038 0.010	0.019 0.015	0.497 0.612 0.075	0.087 0.599	0.507 0.505	0.725 0.684 0.772	0.776 0.660 0.668 0.684 0.573 0.670 0.616 0.602 0.510 0.473 0.497 0	506 0.172 0.	170 0.153 0.220 0.231 0.262
		Oku	kubi Okukubi	AFOK-3	0.495	0.432 0.517 0.461 0.155 0.051 0.0	0.302	0.291 0.274 0.345 0.277 0.246 0.300 0.224 0.073 0.068	0.252	0.304 0.3	361 0.232 0.244 0	0.238 0.380 0.497 0.00	15 0.038 0.000 0.046	0.017 0.017	0.515 0.605 0.118	0.115 0.630	0.491 0.499	0.712 0.669 0.772	0.776 0.641 0.647 0.677 0.583 0.636 0.651 0.585 0.515 0.484 0.513 0	514 0.199 0.	193 0.181 0.257 0.282 0.304
		н	ia Hija	AFOK-4	0.468	0.414 0.503 0.447 0.146 0.064 0.0	76 0.284	0.276 0.261 0.306 0.251 0.244 0.315 0.221 0.062 0.063	0.280	0.312 0.3	367 0.329 0.228 0	0.216 0.389 0.485 0.01	5 0.010 0.046 0.000	0.020 0.011	0.513 0.596 0.091	0.096 0.603	0.453 0.476	0.674 0.665 0.741	0.743 0.629 0.646 0.662 0.543 0.625 0.559 0.581 0.479 0.446 0.471 0	477 0.165 0.	163 0.147 0.212 0.227 0.252
		Sa	de Sade	AFOK-5	0.461	0.400 0.479 0.437 0.124 0.025 0.00	054 0.278	0.267 0.258 0.312 0.268 0.233 0.283 0.219 0.043 0.036	0.261	0.310 0.3	379 0.316 0.244 0	0.237 0.394 0.499 0.03	0 0.019 0.017 0.020	0.000 +0.001	0.510 0.608 0.083	0.086 0.599	0.483 0.491	0.717 0.684 0.769	0.772 0.638 0.646 0.686 0.567 0.634 0.613 0.576 0.496 0.468 0.493 0	494 0.152 0.	147 0.135 0.211 0.222 0.245
		Yo	na Yona	AFOK-6	0.458	0.376 0.486 0.413 0.123 0.042 0.0	054 0.289	0.280 0.258 0.324 0.261 0.226 0.286 0.216 0.039 0.032	0.265	0.306 0.3	370 0.303 0.256 0	0.239 0.383 0.497 0.0	4 0.015 0.017 0.011	-0.001 0.000	0.491 0.600 0.087	0.087 0.613	0.490 0.492	0.718 0.684 0.773	0.776 0.646 0.655 0.681 0.580 0.644 0.616 0.600 0.497 0.464 0.492 0	497 0.149 0.	142 0.128 0.197 0.206 0.230
	Kumejima	FF Shi	ase Shirase	FFKM-1	0.675	0.630 0.713 0.630 0.544 0.538 0.40	199 0.657	0.633 0.598 0.637 0.581 0.555 0.584 0.566 0.486 0.473	0.603	0.577 0.5	576 0.543 0.502 0	0.497 0.569 0.660 0.5	4 0.497 0.515 0.513	0.510 0.491	0.000 0.248 0.542	0.538 0.724	0.661 0.645	0.857 0.839 0.882	0.885 0.832 0.823 0.764 0.677 0.760 0.748 0.759 0.668 0.633 0.654 0	665 0.537 0.	507 0.506 0.542 0.512 0.491
		Sul	nara Suhara	FFKM-2	0.757	0.706 0.778 0.688 0.644 0.645 0.50	99 0.718	0.700 0.678 0.699 0.637 0.614 0.641 0.632 0.577 0.576	0.670	0.653 0.6	674 0.582 0.477 (0.468 0.636 0.732 0.69	3 0.612 0.605 0.596	0.608 0.600	0.248 0.000 0.599	0.596 0.720	0.627 0.655	0.817 0.810 0.837	0.838 0.780 0.775 0.776 0.695 0.743 0.780 0.765 0.668 0.650 0.652 0	667 0.590 0.	.564 0.552 0.584 0.590 0.541
			ase Shirase	AFKM-1	0.428	0.394 0.467 0.419 0.219 0.128 0.13		0.361 0.357 0.396 0.356 0.296 0.352 0.311 0.109 0.104											0.761 0.637 0.643 0.678 0.538 0.621 0.582 0.550 0.481 0.445 0.466 0		
		Sul	nara Suhara	AFKM-2	0.468	0.437 0.489 0.457 0.214 0.140 0.14	143 0.374	0.364 0.353 0.421 0.336 0.313 0.365 0.321 0.126 0.117											0.750 0.629 0.638 0.704 0.560 0.634 0.594 0.559 0.500 0.461 0.488 0		179 0.165 0.217 0.221 0.247
South Ryukyu	Ishigakijima	FF	Sokohara	FFIS-1	0.669	0.768 0.675 0.745 0.696 0.618 0.6		0.682 0.681 0.690 0.649 0.662 0.664 0.681 0.620 0.622											0.669 0.631 0.636 0.600 0.515 0.572 0.528 0.572 0.399 0.385 0.376 0		
		AF Arai	cawa Arakawa	AFIS-1	0.631	0.720 0.649 0.725 0.571 0.529 0.5		0.621 0.582 0.664 0.534 0.596 0.634 0.578 0.473 0.482											0.421 0.429 0.418 0.448 0.332 0.414 0.355 0.391 0.081 0.082 0.083 0		
			gura Nagura	AFIS-2	0.617			0.625 0.600 0.666 0.548 0.593 0.629 0.578 0.476 0.483		0.655 0.7									0.579 0.573 0.568 0.575 0.449 0.516 0.451 0.534 0.049 0.044 0.058 0		.523 0.533 0.549 0.579 0.563
	Iriomotejima	FF Pi		FFIR-1		0.890 0.854 0.890 0.848 0.778 0.8		0.831 0.808 0.837 0.776 0.818 0.828 0.812 0.747 0.752											0.214 0.320 0.323 0.357 0.179 0.371 0.301 0.357 0.566 0.554 0.550 0		
			ıra Kura	FFIR-2		0.830 0.799 0.835 0.817 0.739 0.7	776 0.776	0.794 0.768 0.807 0.729 0.776 0.774 0.777 0.735 0.731											0.335 0.269 0.234 0.265 0.291 0.402 0.341 0.321 0.504 0.494 0.490 0		.744 0.743 0.755 0.745 0.720
		Ge		FFIR-3-1	0.868	0.851 0.872 0.853 0.878 0.804 0.8	333 0.847	0.867 0.842 0.869 0.803 0.840 0.849 0.845 0.779 0.777		0.867 0.8									0.001 0.305 0.289 0.412 0.273 0.382 0.359 0.352 0.552 0.553 0.544 0		795 0.792 0.831 0.822 0.793
			Geda-2	FFIR-3-2		0.859 0.879 0.859 0.879 0.808 0.8		0.870 0.845 0.871 0.805 0.844 0.853 0.848 0.783 0.781											0.000 0.306 0.288 0.412 0.270 0.395 0.361 0.360 0.559 0.561 0.551 0		796 0.793 0.833 0.825 0.796
		Yu	chin YuchinR-1			0.769 0.794 0.778 0.748 0.680 0.7		0.685 0.670 0.674 0.619 0.686 0.700 0.686 0.649 0.661		0.790 0.8									0.306 0.000 0.013 0.285 0.198 0.239 0.326 0.154 0.565 0.560 0.567 0		.698 0.688 0.738 0.734 0.717
			YuchinR-2		0.766	0.770 0.793 0.778 0.755 0.686 0.75		0.697 0.681 0.688 0.641 0.690 0.702 0.689 0.657 0.664	0.676	0.792 0.8									0.288 0.013 0.000 0.268 0.210 0.253 0.336 0.166 0.559 0.557 0.563 0		.707 0.700 0.742 0.743 0.727
			YuchinL	FFIR-5		0.832 0.815 0.809 0.809 0.722 0.75		0.804 0.784 0.780 0.791 0.801 0.805 0.788 0.734 0.737			345 0.697 0.676 C								0.412 0.285 0.268 0.000 0.203 0.404 0.312 0.353 0.570 0.553 0.566 0		
			uchi Urauchi	FFIR-6		0.791 0.741 0.788 0.709 0.623 0.6		0.705		0.739 0.8	307 0.642 0.586 C								0.270 0.198 0.210 0.203 0.000 0.253 0.210 0.210 0.447 0.424 0.432 0		.613 0.619 0.637 0.654 0.629
		Aral		FFIR-7	0.746	0.760 0.744 0.767 0.764 0.688 0.7	716 0.623	0.641 0.660 0.689 0.629 0.670 0.692 0.660 0.646 0.667		0.779 0.8									0.395 0.239 0.253 0.404 0.253 0.000 0.384 0.212 0.503 0.499 0.492 0		.703 0.708 0.730 0.713 0.711
		A		FFIR-8	0.725	0.781 0.724 0.774 0.730 0.664 0.6	889 0.695	0.708											0.361 0.326 0.336 0.312 0.210 0.384 0.000 0.391 0.438 0.406 0.421 0		
	_		hida Nishida	FFIR-9		0.732 0.738 0.745 0.712 0.627 0.6		0.675 0.652 0.673 0.618 0.659 0.676 0.655 0.603 0.621			761 0.709 0.658 0								0.360 0.154 0.166 0.353 0.210 0.212 0.391 0.000 0.514 0.504 0.518 0		.655 0.655 0.703 0.703 0.676
			da Geda-2	AFIR-1	0.608	0.712 0.610 0.689 0.593 0.536 0.5		0.616 0.594 0.657 0.550 0.603 0.644 0.587 0.478 0.484											0.559 0.565 0.559 0.570 0.447 0.503 0.438 0.514 0.000 0.007 0.005 #		536 0.542 0.575 0.595 0.586
			nija Omija	AFIR-2	0.592	0.713 0.605 0.679 0.575 0.513 0.5		0.606 0.575 0.654 0.528 0.590 0.634 0.573 0.459 0.464											0.561 0.560 0.557 0.553 0.424 0.499 0.406 0.504 0.007 0.000 0.000 0		501 0.507 0.539 0.566 0.554
			shin YuchinR2		0.610			0.610 0.589 0.656 0.539 0.589 0.632 0.576 0.480 0.483		0.670 0.7			0 0.497 0.513 0.471								519 0.526 0.555 0.578 0.563
			ama Nakama	AFIR-4	0.611			0.617 0.588 0.654 0.550 0.604 0.640 0.588 0.486 0.489											0.552 0.559 0.552 0.541 0.420 0.504 0.408 0.506 #### 0.000 #### 0		526 U.530 0.566 0.590 0.576
North Ryukyu	Yakushima	AF Takin	okawa Nunobiki-1		0.538	0.475 0.559 0.485 0.241 0.168 0.19		0.418 0.377 0.437 0.368 0.337 0.383 0.346 0.163 0.149											0.781 0.686 0.696 0.748 0.608 0.700 0.627 0.646 0.539 0.501 0.520 0		.002 0.003 0.070 0.129 0.112
			Nunobiki-2		0.525	0.455 0.548 0.484 0.230 0.167 0.11		0.409 0.371 0.434 0.358 0.319 0.366 0.321 0.150 0.135											0.796 0.698 0.707 0.755 0.613 0.703 0.629 0.655 0.536 0.501 0.519 0		.000 -0.001 0.065 0.114 0.096
		ls .		AFYK-2	0.529	0.434 0.557 0.461 0.218 0.157 0.16		0.398											0.793 0.688 0.700 0.753 0.619 0.708 0.631 0.655 0.542 0.507 0.526 0		.001 0.000 0.057 0.105 0.097
Honshu	Honshu		uno Wakayama		0.506	0.459 0.548 0.474 0.283 0.249 0.2		0.433		0.410 0.5									0.833 0.738 0.742 0.781 0.637 0.730 0.655 0.703 0.575 0.539 0.555 0		065 0.057 0.000 0.080 0.102
			tto Kagawa-1	AFHS-2	0.533	0.413 0.575 0.434 0.305 0.283 0.2		0.446 0.418 0.432 0.375 0.345 0.398 0.377 0.240 0.218											0.825 0.734 0.743 0.796 0.654 0.713 0.643 0.703 0.595 0.566 0.578 0		114 0.105 0.080 0.000 0.010
		You	hida Kagawa-2	AFHS-3	0.571	U.452 U.808 U.446 0.330 0.299 0.2	2/9 U.488	0.481 0.428 0.462 0.373 0.350 0.400 0.385 0.262 0.234	0.531	0.487 0.5	382 U.5U3 0.450 (U.394 U.518 0.622 0.25	2 0.262 0.304 0.252	0.245 0.230	0.491 0.541 0.240	0.247 0.616	0.594 0.563	0.719 0.720 0.793	0.796 0.717 0.727 0.782 0.629 0.711 0.624 0.676 0.586 0.554 0.563 0	5/6 U.112 O.	.096 0.097 0.102 0.010 0.000

Table S6. Results of AMOVA analysis.

Table S6. Results of AMOVA a	naıysıs.					
Geographic scales	Form	Source of variation	%var	Statistics	F values	P values
Among-islands within-regions	AF	Within-individuals	87.8	FIT	0.122	-
		Among-individuals	4.4	FIS	0.048	0.001
		Among-rivers in Middle Ryukyu	1.7	FSC	0.018	0.001
		Among-islands in Middle Ryukyu	6.2	<i>F</i> CT	0.062	0.001
		Within-individuals	91.8	FIT	0.082	-
		Among-individuals	2.8	FIS	0.03	0.016
		Among-rivers in South Ryukyu	1.7	FSC	0.018	0.001
		Among-islands in South Ryukyu	3.7	<i>F</i> CT	0.037	0.057
	FF	Within-individuals	34.9	FIT	0.651	-
		Among-individuals	3.2	FIS	0.083	0.001
		Among-rivers in Middle Ryukyu	30.9	FSC	0.448	0.001
	_	Among-islands in Middle Ryukyu	31	<i>F</i> CT	0.31	0.001
		Within-individuals	29.4	FIT	0.706	-
		Among-individuals	3.3	FIS	0.101	0.001
		Among-rivers in South Ryukyu	36.5	FSC	0.527	0.001
		Among-islands in South Ryukyu	30.8	<i>F</i> CT	0.308	0.1
Among-regions	AF	Within-individuals	68.1	FIT	0.319	-
		Among-individuals	4.1	FIS	0.057	0.001
		Among-islands	5.3	FSC	0.068	0.001
		Among-regions	22.5	<i>F</i> CT	0.225	0.002
	FF	Within-individuals	26.7	FIT	0.733	-
		Among-individuals	22.5	FIS	0.457	0.001
		Among-islands	34	FSC	0.409	0.001
		Among-regions	16.8	<i>F</i> CT	0.168	0.038

lable S7
Detail results of ABC analysis. For each ABC analysis, the following data are listed: prior distribution, posterior distribution, observed summary statistics, confusion matrix, mean model posterior probabilities and Bayes Factors.

Amami-Oshima

distrib	

Prior distribution (Model6)																									
parameter name	log10_a	log10_b	log10_d	log10_e	log10_n_AFAM-1	log10_n_FFAM-2	log10_n_FFAM-3	log10_n_FFAM-1	log10_t_FF	log10_t_root_t_	FFAM-1_FI	m	n	р	а	b	d	e	n_AFAM-1	n_FFAM-2	n_FFAM-3	n_FFAM-1	t_FF	t_root	t_FFAM-1_FFAM-3
distribution	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Min.	-3	-3	-3	-3	2	2	2	2	3	3	3	0.5	0.5	0	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Max.	-9	-9	-9	-9	5.3	4.7	4.7	4.7	6.2	6.2	6.2	2	2	1	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
Complex parameter	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA.	NA	NA	10^(log10_a)	10^(log10_b)	10^(log10_d)	10^(log10_e)	log10_n_AFAl	Nog10_n_FFA	Vog10_n_FFAI	log10_n_FFAI	0^(log10_t_FF	-)^(log10_t_root	(log10_t_FFAM-1_FFAM-3)
Posterior distribution (Model6)																									
parameter name	log10_a	log10_b	log10_d	log10_e	log10_n_AFAM-1	log10_n_FFAM-2	log10_n_FFAM-3	log10_n_FFAM-1	log10_t_FF	log10_t_root_t_	FFAM-1_FI	m	n	р	а	b	d	e	n_AFAM-1	n_FFAM-2	n_FFAM-3	n_FFAM-1	t_FF	t_root	t_FFAM-1_FFAM-3
parameter name Min.	log10_a -9.688245188	log10_b -9.261749857	log10_d -9.447602948	log10_e -10.43091199	log10_n_AFAM-1 2.148707771	log10_n_FFAM-2 2.051890226	log10_n_FFAM-3 2.020025768	log10_n_FFAM-1 2.210023534	log10_t_FF 2.932256647			m 0.4689047	n 0.4833346	-0.0080614	a 2.01E-10	b 6.00E-10	d 3.56E-10	e 4.43E-11	n_AFAM-1 143.36576	n_FFAM-2 117.17763	n_FFAM-3 102.44895	n_FFAM-1 167.82318	t_FF 864.92098	t_root 803.93566	t_FFAM-1_FFAM-3 860.3889627
parameter name Min. Weighted 2.5% Perc.											.9351179	m 0.4689047 0.5243041	n 0.4833346 0.5307589	p -0.0080614 0.1834049	a 2.01E-10 1.28E-09	6.00E-10 1.46E-09	d 3.56E-10 2.05E-09	e 4.43E-11 4.14E-09		n_FFAM-2 117.17763 359.11492			864.92098		
Min.	-9.688245188	-9.261749857	-9.447602948	-10.43091199	2.148707771	2.051890226	2.020025768	2.210023534	2.932256647	2.8493256 2. 3.6598599 3.	.9351179 .0116441	0.5243041							143.36576	n_FFAM-2 117.17763 359.11492 1353.314			864.92098	803.93566	860.3889627
Min. Weighted 2.5% Perc.	-9.688245188 -8.880829517	-9.261749857 -8.840722165	-9.447602948 -8.688545393	-10.43091199 -8.454426684	2.148707771 3.253432034	2.051890226 2.565699428	2.020025768 2.698025807	2.210023534 3.028594802	2.932256647 3.227351115	2.8493256 2. 3.6598599 3. 4.7243364 3.	.9351179 .0116441 .2674309	0.5243041	0.5307589	0.1834049	1.28E-09	1.46E-09	2.05E-09	4.14E-09	143.36576 1781.4591	117.17763 359.11492	102.44895 499.0369	167.82318 1071.8358	864.92098 1689.4299	803.93566 4617.6306	860.3889627 1028.082447
Min. Weighted 2.5% Perc. Weighted Median	-9.688245188 -8.880829517 -5.749200821	-9.261749857 -8.840722165 -6.034464377	-9.447602948 -8.688545393 -5.103343321	-10.43091199 -8.454426684 -5.131292527	2.148707771 3.253432034 4.162760391	2.051890226 2.565699428 3.141155135	2.020025768 2.698025807 3.397724724	2.210023534 3.028594802 3.71612343	2.932256647 3.227351115 3.715414707	2.8493256 2. 3.6598599 3. 4.7243364 3.	.9351179 .0116441 .2674309 3.31287	0.5243041 1.1091171 1.1549767	0.5307589 1.1665536	0.1834049 0.513816	1.28E-09 1.82E-06	1.46E-09 9.28E-07	2.05E-09 8.01E-06	4.14E-09 7.97E-06	143.36576 1781.4591 14366.955	117.17763 359.11492 1353.314	102.44895 499.0369 2484.0608	167.82318 1071.8358 5160.7724	864.92098 1689.4299 5198.8158	803.93566 4617.6306 53111.368	860.3889627 1028.082447 1850.996534
Min. Weighted 2.5% Perc. Weighted Median Weighted Mean	-9.688245188 -8.880829517 -5.749200821 -5.851660078	-9.261749857 -8.840722165 -6.034464377 -6.049782859	-9.447602948 -8.688545393 -5.103343321 -5.457287905	-10.43091199 -8.454426684 -5.131292527 -5.445428834	2.148707771 3.253432034 4.162760391 4.146442013	2.051890226 2.565699428 3.141155135 3.119337361	2.020025768 2.698025807 3.397724724 3.38485093	2.210023534 3.028594802 3.71612343 3.695395918	2.932256647 3.227351115 3.715414707 3.724955177	2.8493256 2. 3.6598599 3. 4.7243364 3. 4.8218666	.9351179 .0116441 .2674309 3.31287	0.5243041 1.1091171 1.1549767	0.5307589 1.1665536 1.194043	0.1834049 0.513816	1.28E-09 1.82E-06 8.45E-05	1.46E-09 9.28E-07 5.89E-05	2.05E-09 8.01E-06 0.0001353	4.14E-09 7.97E-06 5.28E-05	143.36576 1781.4591 14366.955 20915.059	117.17763 359.11492 1353.314	102.44895 499.0369 2484.0608	167.82318 1071.8358 5160.7724 6335.3111	864.92098 1689.4299 5198.8158 6647.4153	803.93566 4617.6306 53111.368 235572.24	860.3889627 1028.082447 1850.996534 2431.910009

Observed Summary Statistics Value											
Summary statistics	K_FFAM-1	K_FFAM-2	K_FFAM-3	K_AF	Ksd_FFAM-1	Ksd_FFAM-2	Ksd_FFAM-3	Ksd_AF	mean_K	sd_K	tot_K
Observed Value	4.6	2.3	2.5	7.5	5.11345	1.83819	1.93309	5.64288	4.225	2.41851	10.75
Summary statistics	H_FFAM-1	H_FFAM-2	H_FFAM-3	H_AF	Hsd_FFAM-1	Hsd_FFAM-2	Hsd_FFAM-3	Hsd_AF	mean_H	sd_H	tot_H
Observed Value	0.370812	0.234677	0.233783	0.50702	0.319123	0.289914	0.28524	0.33781	0.336573	0.130605	0.53725
Summary statistics	GW_FFAM-1	GW_FFAM-2	GW_FFAM-3	GW_AF	GWsd_FFAM-1	GWsd_FFAM-2	GWsd_FFAM-3	GWsd_AF	mean_GW	sd_GW	tot_GW
Observed Value	0.809459	0.389957	0.685698	0.727478	0.192735	0.140586	0.256188	0.225266	0.653148	0.182836	0.716245
Summary statistics	NGW_FFAM-1	NGW_FFAM-2	NGW_FFAM-3	NGW_AF	NGWsd_FFAM-1	NGWsd_FFAM-2	NGWsd_FFAM-3	NGWsd_AF	mean_NGW	sd_NGW	-
Observed Value	0.316684	0.186962	0.195131	0.513304	0.202424	0.117843	0.108306	0.201813	0.30302	0.152223	_
Summary statistics	R FFAM-1	R FFAM-2	R FFAM-3	R AF	Rsd FFAM-1	Rsd FFAM-2	Rsd FFAM-3	Rsd AF	mean R	sd R	tot R
Observed Value	6.6	8.8	5.81818	11.5263	7.37564	4.2374	6.64557	10.9766	8.18612	2.55973	14.5
				-							

Observed Value	0.0248456	0.425806	0.440072			
Summary statistics	FST FFAM-2 FFAM-1	FST FFAM-3 FFAM-1	FST FFAM-3 FFAM-2	FST AF FFAM-1	FST AF FFAM-2	FST AF FFAM-3
Observed Value	0.518432	0.165651	0.615835	0.397943	0.354383	0.473672
Summary statistics	PI_FFAM-2_FFAM-1	PI_FFAM-3_FFAM-1	PI_FFAM-3_FFAM-2	PI_AF_FFAM-1	PI_AF_FFAM-2	PI_AF_FFAM-3
Observed Value	12.5831	7.01757	12.1764	14.2669	11.9246	13.933
Summary statistics	MUSQ_FFAM-2_FFAM	MUSQ_FFAM-3_FFAM	MUSQ_FFAM-3_FFAM-	DMUSQ_AF_FFAM-	MUSQ_AF_FFAM-	OMUSQ_AF_FFAM
Observed Value	15.2019	5.91293	6.84931	28.9158	5.34731	16.0727

Confusion matrix based on 100 samples for	each model (neuralne	t, tolerance rate=0.01).						
model focal \ selected	1	2	3	4	5	6 (best model)	7	8
1 (Parallel origin, gene flow)	0.32	0.2	0	0.15	0.14	0.04	0.02	0.13
2 (Parallel origin, gene flow)	0.18	0.48	0.01	0.09	0.17	0.05	0	0.02
3 (Single origin, no gene flow)	0	0.01	0.81	0	0	0.03	0.04	0.11
4 (Single origin, gene flow)	0.17	0.16	0.07	0.26	0.18	0.05	0.07	0.04
5 (Parallel origin, gene flow)	0.18	0.27	0.03	0.14	0.18	0.12	0.02	0.06
6 (Single origin, restricted gene flow)	0.03	0.02	0.15	0.02	0.01	0.36	0.16	0.25
7 (Single origin, restricted gene flow)	0.03	0	0.27	0.01	0.01	0.2	0.29	0.19
8 (Parallel origin, no gene flow)	0.01	0	0.13	0	0	0.04	0.03	0.79

model focal \ selected	1	,	3	4	5	6 (best model)	7	8
1 (Parallel origin, gene flow)	0.2295	0.1968	0.0092	0.1814	0.2052	0.0518	0.0389	0.0872
2 (Parallel origin, gene flow)	0.1891	0.3154	0.0158	0.1673	0.2032	0.0316	0.0249	0.0208
3 (Single origin, no gene flow)	0.0135	0.0147	0.4751	0.0446	0.0174	0.1342	0.2075	0.0200
4 (Single origin, gene flow)	0.1786	0.1775	0.0463	0.2324	0.1934	0.0735	0.0681	0.0302
5 (Parallel origin, gene flow)	0.2015	0.2103	0.0181	0.1833	0.2146	0.0762	0.0524	0.0436
6 (Single origin, restricted gene flow)	0.0649	0.0503	0.1311	0.0849	0.0621	0.2387	0.2084	0.1596
7 (Single origin, restricted gene flow)	0.0571	0.0319	0.1672	0.0723	0.048	0.2252	0.2698	0.1284
	0.0632	0.0282	0.1034	0.0299	0.0379	0.1332	0.1141	0.49
Bayes Factor (neuralnet, tolerance rate=0.0		0.0282	0.1034	0.0299	0.0379	0.1332	0.1141	0.49
Bayes Factor (neuralnet, tolerance rate=0.0 numerator \ denominator				0.0299 4 0.3741			0.1141 7 0.0384	
Bayes Factor (neuralnet, tolerance rate=0.0 numerator \ denominator 1 (Parallel origin, gene flow)		2	3	4	5	6	7	8
Bayes Factor (neuralnet, tolerance rate=0.0 numerator \ denominator 1 (Parallel origin, gene flow) 2 (Parallel origin, gene flow)	1) 1	2	3 0.1342	4 0.3741	5 0.3947	6 0.0217	7 0.0384	8 0.0735
Bayes Factor (neuralnet, tolerance rate=0.0 numerator \ denominator 1 (Parallel origin, gene flow) 2 (Parallel origin, negene flow) 3 (Single origin, no gene flow)	1) 1 1 1.8611	2	3 0.1342 0.2498	4 0.3741 0.6962	5 0.3947 0.7345	6 0.0217 0.0404	7 0.0384 0.0716	8 0.0735 0.1368 0.1368
Bayes Factor (neuralnet, tolerance rate=0.0 numerator \(\text{denominator}\) 1 (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 3 (Single origin, no gene flow) 4 (Single origin, gene flow)	1 1 1 1.8611 1.8611	2 0.5373 1 1	3 0.1342 0.2498	4 0.3741 0.6962 0.6962	5 0.3947 0.7345 0.7345	6 0.0217 0.0404 0.0404	7 0.0384 0.0716 0.0716	8 0.0735 0.1368 0.1368 0.5476
Bayes Factor (neuralnet, tolerance rate=0.0 numerator \ denominator 1 (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 3 (Single origin, gene flow) 4 (Single origin, gene flow) 5 (Parallel origin, gene flow)	1) 1 1.8611 1.8611 7.4518	2 0.5373 1 1 4.004	3 0.1342 0.2498 0.2498 1	4 0.3741 0.6962 0.6962 2.7875	5 0.3947 0.7345 0.7345	6 0.0217 0.0404 0.0404 0.1619	7 0.0384 0.0716 0.0716 0.2865	8 0.0735 0.1368 0.1368 0.5476
8 (Parallel origin, no gene flow) Bayes Factor (neuralnet, tolerance rate=0.6 rumerator' denominator (Parallel origin, gene flow) (2 (Parallel origin, gene flow) (3 (Single origin, no gene flow) (4 (Single origin, gene flow) (5 (Single origin, restricted gene flow) (6 (Single origin, restricted gene flow) (7 (Single origin, restricted gene flow)	1 1 1.8611 1.8611 7.4518 2.5337	2 0.5373 1 1 4.004 1.3614	3 0.1342 0.2498 0.2498 1 0.34	4 0.3741 0.6962 0.6962 2.7875 0.9478	5 0.3947 0.7345 0.7345 2.9411 1	6 0.0217 0.0404 0.0404 0.1619	7 0.0384 0.0716 0.0716 0.2865 0.0974	8 0.0735 0.1368 0.1368 0.5476 0.1862

Table	87	(Continued)

Table S7 (Continued)																					
Tokunoshima																					
Prior distribution (Model1) parameter name	log10_n_AFTO	log10_n_FFTO-4	log10_n_FFTO-1	log10_n_FFTO-3	log10_t_FF	log10_t_root	log_a	log_b	log_c	log_d	log_e	log_f	m			h		4			_
distribution	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	NA.	NA.	NA.	NA NA	NA NA	NA.	_
Min	2	2	2	2	3	3	-9	-9	-9	-9	-9	-9	0.5	0	NA.	NA NA	NA.	NA NA	NA.	NA NA	
May	5.3	4.7	4.7	4.7	6.2	6.2	-3	-3	-3	-3	-3	-3	2		NA NA	NA NA	NA.	NA NA	NA NA	NA NA	
Complex parameter	NA NA	NA.	NA NA	NA.	NA NA	NA NA	NA	NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	10^(log10_a)	10*(log10_b)	10*(log10_c)	10*(log10_d)	10^(log10_e)	10^(log10_f)	404
Complex parameter	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA.	NA.	NA.	NA.	NA.	10^(log10_a)	10º(log10_b)	10°(log10_c)	10"(log10_d)	10^(log10_e)	10^(log10_t)	10"
Posterior distribution (Model1)																					
parameter name	log10_n_AFTO	log10 n FFTO-4	log10_n_FFTO-1	log10 n FFTO-3	log10 t FF	log10_t_root	log_a	log_b	log_c	log_d	log_e	log_f	m	D	a	ь	c	d	e		_
Min	2.806621339	2.116182292	2.201555834	2.419102158	2.806713725	2.74163814		-9.633612015	-9.478277609	-9.253909274	-9.402711499	-9.740325909	0.46811023	-0.011780559	3.26E+10	2.31E-10	4.44E+10	5.20E-10	4.18E-10	2.15E-10	_
Weighted 2.5% Perc.	3.429824279	2.91132051	2.854444308	3.088151593	2.991217137	3.280792587			-8.798390571	-8.859721234	-8.904164258	-8.539945709	0.525238496	0.218514744	1.20E-09		1.89E-09	1.36E-09	1.31E-09	2.44E-09	
Weighted Median	4.050193787	3.597146054	3.62245139	3.710513837	3.295586529	4.445679726		5 887720429	-5.333141151	-5.648746588	-5.564529899	4 6927291	1.031109976	0.526750674	1.07E-06	1.22E-06	4.51E-06	2.27E-06	2.82E-06	2.07E-05	
Weighted Mean:	4.047075388	3.584334357	3.605717457	3.701726334	3.374926875	4.558475855	-6.020794352	-5.954769468	-5.594912264	-5.763583526	-5.769524192	-5.244238516	1.102350622	0.516966062	5.96E-05	5.71E-05	9.72E-05	8.71E-05	8.13E-05	0.00011969	
Weighted Mode	4.105660297	3.63795658	3.634609247	3.715003498	3.16995544	3.904127149			-3.545999358	-3.603589397	-3.696967315	-4.137987155	0.609576716	0.538568403	4.84E-07		1.38E-06	1.00E-06	3.86E-06	-3.50E-06	
Weighted 97.5% Perc.	4.644603312	4.193653539	4.259667258	4.263031263	4.285119848	6.093931894	-3.275147713		-3.129532522	-3.240459918	-3.251738966	-3.149270183	1.932612241	0.7631989		0.000513347	0.000651373	0.000589436	0.000585083	0.00082005	
Max.	5.399078444	4.645826156	4.717599474	4.688592279	6.06931587	6.559059066	-2.973490895	-2.79830814	-2.720958118	-2.86926084	-2.517730551	-2.234854856	2.041769927	0.931583562	0.00096041	0.001544948	0.00183694	0.001409813	0.003709343	0.006998659	
Observed Summary Statistics Valu	ie	K FFTO-4		K AFTO		Ked FFTO-4															
Summary statistics	K_FFTO-3		K_FFTO-1		Ksd_FFTO-3		Ksd_FFTO-1	Ksd_AFTO	mean_K	sd_K	tot_K										
Observed Value	3.15	2.8	4.4	8.45	2.88873	2.70672	4.41767	7.08947	4.7	2.59262	9.85										
Summary statistics	H FFTO-3	H FFTO-4	H_FFTO-1	H_AFTO	Had FFTO-3	Had FFTO-4	Hsd_FFTO-1	Hsd_AFTO	mean H	ed U	tot_H										
Summary statistics Observed Value	H_FF10-3 0.262258	0.309161	0.324758	0.526077	0.264561	0.290201	0.305237	0.338558	mean_H 0.355564	sd_H 0.116737	0.474944										
ODJETTEG TIME	0.132230	0.003161	U.UE4/30	0.040077	U.AU4301	0.230201	0.000237	V-JU00000	0.033304	0.110/3/	0.474244										
Summary statistics	GW FFTO-3	GW FFTO-4	GW FFTO-1	GW_AFTO	GWsd_FFTO-3	GWsd_FFTO-4	GWsd_FFTO-1	GWsd_AFTO	mean_GW	sd_GW	tot_GW										
Observed Value	0.667612	0.685444	0.607993	0.756569	0.261519	0.29896	0.26461	0.163251	0.679404	0.0611817	0.739408										
Summary statistics	NGW_FFTO-3	NGW_FFTO-4	NGW_FFTO-1	NGW_AFTO	NGWsd_FFTO-3	NGWsd_FFTO-4	NGWsd_FFTO-1		mean_NGW	sd_NGW											
Observed Value	0.307032	0.27283	0.378335	0.643602	0.225687	0.206968	0.201916	0.225501	0.40045	0.167954											
Summary statistics	R_FFTO-3	R FFTO-4	R FFTO-1	R AFTO	Rad FFTO-3	Red FFTO-4	Rsd_FFTO-1	Rsd_AFTO	mean_R	sd_R	tot_R										
Observed Value	7.2	6.69231	8.27778	12.4444	10.0726	8.36047	8.25908	11,4029	8.65363	2.61224	12.7										
ODSEITEG VALUE		0.02231	0.27770	12-111	10.0720	0.00047	0.23300	11.4023	0.03000	LUILLY	14.7										
Summary statistics	FIS	FST	FIT	-																	
Observed Value	0.0431306	0.262106	0.293931																		
				='			_														
Summary statistics	FSt_FFTO-4_FFTO-3	FSt_FFTO-1_FFTO-3	FSt_FFTO-1_FFTO-4	FST_AFTO_FFTO-3	FST_AFTO_FFTO-4	FST_AFTO_FFTO-1															
Observed Value	0.233804	0.265177	0.233429	0.274302	0.257181	0.271697	_														
Summary statistics	PI_FFTO-4_FFTO-3	PI_FFTO-1_FFTO-3	PI_FFTO-1_FFTO-4	PI_AFTO_FFTO-3	PI_AFTO_FFTO-4	PI_AFTO_FFTO-1	-														
Observed Value	7.43464	7.96141	8.2402	11.185	11,3353	11.7025															
Observed value	1.45454	7.30141	D.2-YUE	11.100	11.0000	11.702.3	_														
Summary statistics		DMUSQ_FFTO-1_FFTO-3				DMUSQ_AFTO_FFTO-1	_														
Observed Value	0.909784	5.33136	4.68833	14.3849	12.1673	6.54198	_														
Confusion matrix based on 100 sar model focal \ selected		et, tolerance rate=0.01).	-		-	6	7	-													
	1(best model)	2	0.06	0.06	0.09	0.01	0.01	-													
1 (Single origin, gene flow)	0.4	0.37 0.66	0.06	0.06	0.09		0.01														
2 (Parallel origin, gene flow) 3 (Single origin, gene flow)	0.16 0.16	0.66	0.02	0.08	0.07	0.04	0.01														
4 (Parallel origin, gene flow)	0.16	0.28	0.23	0.26	0.01	0.04	0.02														
5 (Single origin, no gene flow)	0.06	0.04	0.17	0.46	0.76	0.012	0.02														
6 (Single origin, no gene flow)	0.06	0.04	0.01	0.01	0.76	0.51	0.011														
7 (Parallel origin, gene flow)	0.01	0	0	0.07	0.04	0.09	0.79														
Yellow mark indicates type2 error rate	0.			****	***			-													
Mean model posterior probabilities								-													
model focal \ selected	1(best model)	2	3	4		- 6	77	-													
1 (Single origin, gene flow)	0.3639	0.2337	0.1547	0.1066	0.0935	0.0305	0.0172														
2 (Parallel origin, gene flow)	0.2264	0.4204 0.1739	0.128 0.2697	0.1232 0.2375	0.0593	0.0171	0.0256 0.0457														
3 (Single origin, gene flow)	0.1908 0.0885	0.1739 0.1214	0.2697 0.2536	0.2375 0.3652	0.032	0.0503 0.0121	0.0457 0.1532														
4 (Parallel origin, gene flow) 5 (Single origin, no gene flow)	0.0885	0.1214	0.2536	0.0078	0.5539	0.2074	0.1532														
6 (Single origin, no gene flow)	0.1213	0.0387	0.0384	0.0078	0.5539	0.4784	0.0326														
7 (Parallel origin, no gene flow)	0.0303	0.0158	0.0576	0.0236	0.279	0.4784	0.1152														
· (0.0170	0.0123	0.0040	0.1100	0.007.7	0.1097	0.044	-													
Bayes Factor (neuralnet, tolerance	rate=0.01)																				
numerator \ denominator	1	2	3	4	5	6	7	-													
1 (Single origin, gene flow)	1.00	1083.09	1.47	88.30	1.54	1.76	1.7489														
2 (Parallel origin, gene flow)	0.00	1.00	0.00	0.08	0.00	0.00	0.0016														
3 (Single origin, gene flow)	0.68	737.14	1.00	60.10	1.05	1.20	1.1903														
	0.01	12.27	0.02	1.00	0.02	0.02	0.0198														
4 (Parallel origin, gene flow)																					
5 (Single origin, no gene flow)	0.65	702.12	0.95	57.24	1.00	1.14	1.1337														
		702.12 614.95 619.302	0.95 0.83 0.8401	57.24 50.13 50.489	1.00 0.88 0.882	1.14 1.00 1.0071	1.1337														

n_AFTO

NA

NA

NA

NA

10^(log10_n_AFTO)

n_AFTO 675.2262373 2724.214565 11152.73624 14171.88937 7317.39962 42881.5475 238742.0939 n_FFTO-1 157.1864122 714.1165077 4194.083041 5538.497957 2141.203149 18094.87646 51865.24316
 RFTO3
 LFF
 Lroot

 268.889996
 584.8182335
 642.5137943

 1190.30018
 586.8182335
 642.5137943

 1190.30018
 582.9139787
 2105.654271

 511.40013
 1977.51907
 2855.157289

 6285.452286
 6173.850249
 183508.0188

 3024.689184
 2452.9197
 13884.66192

 18383.70345
 2177.01472
 114386.1073

 48727.88337
 1304689.467
 2218707.559

n_FFTO-4 118.8410321 768.2931065 3921.533151 5067.643737 2571.839605 16185.8368 48017.34928 Table S7 (Continued)

Bayes Factor (neuralnet, tolerance rate=0.01)
numerator \ \text{denominator} \
1 \text{(singde origin, gene flow)} \
2 \text{(Parallel origin, gene flow)} \
3 \text{(Parallel origin, no gene flow)} \
4 \text{(Parallel origin, gene flow)} \
5 \text{(Single origin, no gene flow)} \
5 \text{(Single origin, no gene flow)} \

2 3 544.36 4300.22 1.00 7.30 0.13 1.00 0.51 4.04 310.34 2451.54 4 1065.07 1.96 0.25 1.00 607.19

Table S7 (Continued) Okinawajima																										
Prior distribution (Model1)																										
parameter name	log10_n_AFOK	log10_n_FFOK-3	log10_n_FFOK-2	log10_n_FFOK-1	log10_t_FF	log10_t_root	log10_a	log10_b	log10_c	log10_d	log10_e	log10_f	m	р		ь	c	d	e		n_AFOK	n_FFOK-3	n_FFOK-2	n_FFOK-1	t_FF	t_root
distribution Min.	uniform	uniform	uniform	uniform	uniform	uniform 3	uniform .3	uniform -3	uniform ,3	uniform .3	uniform .3	uniform	uniform	uniform	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Min. Max.	5.3	4.7	4.7	4.7	6.2	6.2	.9	-3	-3	-3	-3	-3	0.5		NA NA	NA NA	NA NA	NA NA	NA NA	NA NA						
Complex parameter	NA NA	NA NA	NA NA	NA	NA NA	NA NA	NA NA	NA NA	NA.	NA NA	NA NA	NA NA	NA NA	NA								104(log10 n FFOK-3)		10Mon10 n EEOK-1)		
Complex parameter	186	ian	186	186	165	ine	1975	1975	ies	inn	165	1905	in	165	10 (log10_a)	10 (log10_b)	ro (logro_c)	10 (log10_0)	10 (log10_e)	TO (log TO_1)	10 (log10_1C/4 OIQ	10 (10g10_1(_11010))	10 (00)10_1(_11 0102)	TO (log 10_11_1 T Ole-1)	10 (bg10_1_11)	TO (log to_L'toos)
Posterior distribution (Model1)																										
parameter name	log10_n_AFOK	log10_n_FFOK-3	log10_n_FFOK-2	log10_n_FFOK-1	log10_t_FF	log10_t_root	log10_a	log10_b	log10_c	log10_d	log10_e	log10_f	m	Р	a	ь	c	d	e	- 1	n_AFOK	n_FFOK-3	n_FFOK-2	n_FFOK-1	t_FF	t_root
Min.	2.470037117	2.106607131	2.003392575	2.095989707	2.683380616	2.652998433	-9.060979986	-9.781111918	-9.603851946	-13.40190103	-10.27498397	-9.987746822	0.426683355	0.002010761	8.69E-10	1.32E-10	2.69E-10	4.05E-14	5.18E-11	1.03E-10	286.155762	135.3008481	99.93796288	127.7847617	482.28055	381.9607394
Weighted 2.5% Perc. Weighted Median	3.186550594 3.934064082	2.661357783 3.360566165	2.300956732 3.025112952	2.529202748 3.27140576	2.915524281 3.291617878	3.221252646 4.493656379	-8.828417622 -5.486372376	-8.909141876 -5.771689018	-8.892325358 -5.85816251	-8.325405866 -5.101049492	-8.966637061 -5.485215013		0.515057032	0.298567721 0.56638306	1.49E-09 3.23E-06	1.22E-09 1.66E-06	1.29E-09 1.41E-06	4.73E-09 7.90E-06	1.06E-09 3.20E-06	1.26E-09 4.42E-06	1559.319773 8652.286334	466.5309642 2354.47759	197.5145846 1059.215297	331.6786578 1865.958051	826.6239371 1967.465405	1599.611816 30152.06798
Weighted Mean	3.934064082	3.360566165	3.025112952	3.249219428	3.291617878	4.493656379	-5.4863/23/6 -5.655413265	-5.7/1689U18 -5.89812345	-5.85816251 -5.925949505	-5.101049492 -5.414555547	-5.485215013 -5.812634772		1.1261/2133	0.558853108	0.000107896	1.66E-06 5.63E-05	6.51E-05	7.90E-06 5.06E-05	3.20E-06 4.56E-05	4.42E-06 7.59E-05	12876.71173	2354.47759	1059.215297	2338.990216	1967.465405 4592.557803	30152.06798 159496.0951
Weighted Mode	3.9210869	3.39067497	3.031550832	3.278921219	3.190582822	4.046258811	-3.565084669	-3.90443231	-3.834071824	4.371626383	4.237852751	-3.917545848	0.640429423	0.6127895	2.23E-06	1.41E-06	2.20E-06	8.22E-07	1.31E-06	2.08E-06	4683.487533	1454.737661	509.7203752	1104.935793	1739.571732	10249.11298
Weighted 97.5% Perc.	4.701418456	3.938166571	3.699935549	3.848942833	4.166162823	6.038663315	-3.087717092			-3.454177995	-3.440025963				0.000801836		0.000538957	0.000349559	0.000349811	0.000539677	50651.86405	8892.370115	5014.450747	7081.232675	14763.24385	1060457.27
May	5.208638033	4.444154965	4.419639911	4.405605859	5.975096954	6.363076	-2.80826801					-2.592757571								0.002525621	163617.7769	28358.71962	26854.03131	26488.15756	962325.273	2226872.47
Observed Summary Statistics Valu	je											=														
Summary statistics	K_FF0K-1	K_FF0K-2 2.2	K_FFOK-3	K_AFOK 7.9	Ksd_FF0K-1 1.47256	Ksd_FFOK-2 1.36111	Ksd_FFOK-3 2.08945	Ksd_AFOK 5.85707	mean_K 3.9625	sd_K 2.64492	tot_K															
Observed Value	2.8	2.2	2.95	7.9	1.47256	1.36111	2.08945	5.85/0/	3.9625	2.64492	9.7	-														
Summary statistics	H_FFOK-1	H BbOK-2	H_FFOK-3	H AFOK	Hsd_FFOK-1	Hsd_FFOK-2	Hsd_FFOK-3	Hsd_AFOK	mean_H	sd_H	tot H	-														
Observed Value	0.288875	0.120941	0.273701	0.549793	0.239761	0.197719	0.307525	0.295097	0.308328	0.177948	0.498571															
												=														
Summary statistics	GW_FF0K-1	GW_FFOK-2	GW_FFOK-3	GW_AFOK	GWsd_FFOK-1	GWsd_FFOK-2	GWsd_FFOK-3			sd_GW	tot_GW															
Observed Value	0.672185	0.612805	0.503191	0.686937	0.288557	0.379484	0.25459	0.243243	0.61878	0.0834543	0.660295	_														
Summary statistics	NGW FFOK-1	NGW FFOK-2	NGW FFOK-3	NGW AFOK	NGWsd FFDK-1	NGWsd FFOK-2	NOW-4 FEOU A	NGWsd AFOK	mean NGW	sd NGW	-															
Observed Value	0.244927	0.20997	0.254996	0.56015	0.198128	0.21371	0.235732	0.256007	0.317511	0.162907																
ODJETTEG TAIGE	0.27722.7	0.20331	0.234990	0.30013	0.130120	0.2.1071	0.200702	0.1.30007	0.017.011	0.102307	-															
Summary statistics	R_FFOK-1	R_FF0K-2	R_FFOK-3	R_AFOK	Rsd_FFOK-1	Rsd_FFOK-2	Rsd_FFOK-3	Rsd_AFOK	mean_R	sd_R	tot_R	_														
Observed Value	5.35294	6.92308	10	12.5263	5.25525	7.1933	8.66025	10.085	8.70058	3.19849	14.9	_														
		FST	FIT	_																						
Summary statistics Observed Value	FIS 0.0600406	0.379787	0.417025																							
Observed value		0.3/9/6/		_																						
Summary statistics	FSt FFOK/2 FFOK/1	ESI FEOKA FEOKA	FSt FFOK-3 FFOK-2	EST AFOK FEOK-1	EST AFOK FEOK-2	EST AFOK FEOKS	_																			
Summary statistics Observed Value	FSt_FFOK-2_FFOK-1 0.369919	FSt_FFOK-3_FFOK-1 0.466347	FSt_FFOK-3_FFOK-2 0.605607	FST_AFOK_FFOK-1 0.27425	FST_AFOK_FFOK-2 0.390591	FST_AFOK_FFOK-3 0.293323	-																			
Observed Value	0.369919	0.466347	0.605607	0.27425	0.390591	0.293323	=- =-																			
Observed Value Summary statistics	0.369919 PLFFOK-2_FFOK-1	0.466347 PI_FFOK-3_FFOK-1	0.605607 PI_FFOK-3_FFOK-2	0.27425 PLAFOK_FFOK-1	0.390591 PI_AFOK_FFOK-2	0.293323 PI_AFOK_FFOK-3	- <u>-</u>																			
Observed Value	0.369919	0.466347	0.605607	0.27425	0.390591	0.293323	- - - -																			
Observed Value Summary statistics Observed Value	0.369919 PI_FFOK-2_FFOK-1 6.37385	0.466347 PI_FFOK-3_FFOK-1 10.3268	0.605607 PI_FFOK-3_FFOK-2 9.92937	0.27425 PI_AFOK_FFOK-1 11.7598	0.390591 PLAFOK_FFOK-2 11.6712	0.293323 PLAFOK_FFOK-3 11.7937	- - - -																			
Observed Value Summary statistics Observed Value Summary statistics	0.369919 PL_FFOK-2_FFOK-1 6.37385 DMUSQ_FFOK-2_FFOK-1	0.466347 PI_FFOK-3_FFOK-1 10.3268 DMUSQ_FFOK-3_FFOK-1	0.605607 PLFFOK-3_FFOK-2 9.92937 DMUSQ_FFOK-3_FFOK-2	0.27425 PI_AFOK_FF0K-1 11.7598 DMUSQ_AFOK_FF0K-1	0.390591 PI_AFOK_FFOK-2 11.6712 DMUSQ_AFOK_FFOK-2	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	= = =																			
Observed Value Summary statistics Observed Value	0.369919 PI_FFOK-2_FFOK-1 6.37385	0.466347 PI_FFOK-3_FFOK-1 10.3268	0.605607 PI_FFOK-3_FFOK-2 9.92937	0.27425 PI_AFOK_FFOK-1 11.7598	0.390591 PLAFOK_FFOK-2 11.6712	0.293323 PLAFOK_FFOK-3 11.7937	- - - -																			
Observed Value Summary statistics Observed Value Summary statistics Observed Value	0.369919 PI_FFOK-2_FFOK-1 6.37385 DMUSQ_FFOK-2_FFOK-1 2.1967	0.466347 PI_FFOK-3_FFOK-1 10.3268 DMUSQ_FFOK-3_FFOK-1 9.99437	0.605607 PLFFOK-3_FFOK-2 9.92937 DMUSQ_FFOK-3_FFOK-2	0.27425 PI_AFOK_FF0K-1 11.7598 DMUSQ_AFOK_FF0K-1	0.390591 PI_AFOK_FFOK-2 11.6712 DMUSQ_AFOK_FFOK-2	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	= = = =																			
Observed Value Summary statistics Observed Value Summary statistics Observed Value Confusion matrix based on 100 sar	0.369919 PLFFOK-2_FFOK-1 6.37385 DMUSQ_FFOK-2_FFOK-1 2.1967 mples for each model (neuralin	0.466347 PI_FFOK-3_FFOK-1 10.3268 DMUSQ_FFOK-3_FFOK-1 9.99437	0.605607 PI_FFOK-3_FFOK-2 9.92937 DMUSQ_FFOK-3_FFOK-2 9.74943	0.27425 PI_AFOK_FF0K-1 11.7598 DMUSQ_AFOK_FF0K-1	0.390591 PI_AFOK_FFOK-2 11.6712 DMUSQ_AFOK_FFOK-2	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	- = = -																			
Observed Value Summary statistics Observed Value Summary statistics Observed Value Confusion matrix based on 100 sar model focal \selected	0.369919 PLFFOK-2_FFOK-1 6.37385 DMUSQ_FFOK-2_FFOK-1 2.1967 mples for each model (neuralin 1 (best model)	0.466347 PI_FFOK-3_FFOK-1 10.3268 DMUSQ_FFOK-3_FFOK-1 9.99437	0.605607 PI_FFOK-3_FFOK-2 9.92937 DMUSQ_FFOK-3_FFOK-2 9.74943	0.27425 PI_AFOK_FF0K-1 11.7598 DMUSQ_AFOK_FF0K-1	0.390591 PLAFOK_FFOK-2 11.6712 DMUSQ_AFOK_FFOK-2 10.1139	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	= = = -																			
Observed Value Summary statistics Observed Value Summary statistics Observed Value Confusion matrix based on 100 sar model focal Valected 1 (Single origin, gene flow)	0.369919 PLFFOK-2_FFOK-1 6.37385 DMUSQ_FFOK-2_FFOK-1 2.1967 mples for each model (neuralin	0.466347 PI_FFOK-3_FFOK-1 10.3268 DMUSQ_FFOK-3_FFOK-1 9.99437 set, tolerance rate=0.01).	0.605607 PI_FF0K-3_FF0K-2 9.92937 DMUSQ_FF0K-3_FF0K-2 9.74943 3 0.01	0.27425 PI_AFOK_FFOK-1 11.7598 DMUSQ_AFOK_FFOK-1 9.99219 4 0	0.390591 PI_AFOK_FFOK-2 11.6712 DMUSQ_AFOK_FFOK-2	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	- - -																			
Observed Value Bummary statistics Observed Value Bummary statistics Observed Value Confusion matrix based on 100 sar model Tocal's elected 1 (Single origin, gene flow) 2 (Parallel origin, gene flow)	0.369919 PLFFOK-2_FFOK-1 6.37385 DMUSQ_FFOK-2_FFOK-1 2.1967 mples for each model (neuralin 1 (best model)	0.466947 PLFF0K-3_FF0K-1 10.3286 DMUSQ_FF0K-3_FF0K-1 9.99437 2 0 0.73	0.605607 PI_FFOK-3_FFOK-2 9.92937 DMUSQ_FFOK-3_FFOK-2 9.74943 3 0.01 0.08	0.27425 PLAFOK_FFOK-1 11.7598 DMUSQ_AFOK_FFOK-1 9.99219 4 0 0.19	0.390591 PLAFOK_FFOK-2 11.6712 DMUSQ_AFOK_FFOK-2 10.1139	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	- - - -																			
Observed Value Burnnary statistics Cobserved Value Guernary statistics Observed Value Confusion matrix based on 100 sar model Tocal Vadected 2 (Parallel origin, agene flow) 3 (Parallel origin, agene flow) 3 (Parallel origin, agene flow)	0.369919 PLFFOK-2_FFOK-1 6.37385 DMUSQ_FFOK-2_FFOK-1 2.1967 mples for each model (neuralin 1 (best model)	0.465947 PLFFOK-3_FFOK-1 10.3268 DMUSQ_FFOK-3_FFOK-1 9.99437 set, tolerance rate=0.01), 2 0 0.73 0.03	0.605607 PI_FF0K-3_FF0K-2 9.92937 DMUSQ_FF0K-3_FF0K-2 9.74943 3 0.01	0.27425 PI_AFOK_FFOK-1 11.7598 DMUSQ_AFOK_FFOK-1 9.99219 4 0	0.390591 PLAFOK_FFOK-2 11.6712 DMUSQ_AFOK_FFOK-2 10.1139	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	- - - -																			
Observed Value Summary statistics Observed Value Summary statistics Observed Value Confusion matrix based on 100 sar model focal' selected 1 (Single origin, gene flow) 2 (Parallel origin, gene flow)	0.369919 PLFFOK-2_FFOK-1 6.37385 DMUSQ_FFOK-2_FFOK-1 2.1967 mples for each model (neuralin 1 (best model)	0.466947 PLFF0K-3_FF0K-1 10.3286 DMUSQ_FF0K-3_FF0K-1 9.99437 2 0 0.73	0.605607 PI_FFOK-3_FFOK-2 PJ_SPOK-3_FFOK-2 PJ_SPOK-3_FFOK-2 9.74943 3 0.01 0.08 0.86	0.27425 PI_AFOK_FFOK-1 11.7598 DMUSQ_AFOK_FFOK-1 9.99219 4 0 0.19 0.11	0.390591 PLAFOK_FFOK-2 11.6712 DMUSQ_AFOK_FFOK-2 10.1139	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	- <u>-</u> -																			
Observed Value Summary statistics Observed Value Summary statistics Observed Value Conclusion matrix based on 100 sar model focal *selected 1 (Single origin, gene flow) 2 (Parallel origin, gene flow) 3 (Parallel origin, no gene flow) 4 (Parallel origin, no gene flow) 4 (Parallel origin, no gene flow)	0.369919 PI_FFCK-2_FFCK-1	0.465947 PLFFOK-3_FFOK-1 10.3268 DMUSQ_FFOK-3_FFOK-1 9.99437 set, tolerance rate=0.01), 2 0 0.73 0.03	0.605607 PI_FFOK-3_FFOK-2 PJ_SPOK-3_FFOK-2 PJ_SPOK-3_FFOK-2 9.74943 3 0.01 0.08 0.86	0.27425 PI_AFOK_FFOK-1 11.7598 DMUSQ_AFOK_FFOK-1 9.99219 4 0 0.19 0.11	0.390591 PLAFOK FFOX-2 11.672 DMUSQ_AFOK_FFOX-2 10.1139 5 0.14 0 0 0	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	= = = -																			
Observed Value Summary statistics Observed Value Summary statistics Observed Value Conscious matrix based on 100 sar model focal 'selected 1 (Single origin, gene flow) 2 (Persible origin, gene flow) 4 (Parallel origin, gene flow) 5 (Single origin, gene flow) 5 (Single origin, gene flow) 5 (Single origin, gene flow)	0.369919 PI_FFCK-2_FFCK-1	0.465947 PLFFOK-3_FFOK-1 10.3268 DMUSQ_FFOK-3_FFOK-1 9.99437 set, tolerance rate=0.01), 2 0 0.73 0.03	0.605607 PI_FFOK-3_FFOK-2 PJ_SPOK-3_FFOK-2 PJ_SPOK-3_FFOK-2 9.74943 3 0.01 0.08 0.86	0.27425 PI_AFOK_FFOK-1 11.7598 DMUSQ_AFOK_FFOK-1 9.99219 4 0 0.19 0.11	0.390591 PLAFOK FFOX-2 11.672 DMUSQ_AFOK_FFOX-2 10.1139 5 0.14 0 0 0	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	=																			
Observed Value Summary statistics Observed Value Summary statistics Observed Value Conclusion matrix based on 190 are model focal selected 1 (Single origin, gene flow) 2 (Parallel origin, gene flow) 4 (Parallel origin, gene flow) 5 (Single origin, gene flow) 7 (Single origin, gene flow) 9 (Single origin, gene flow) 9 (Single origin, gene flow) 1 (Single origin, gene flow) 1 (Single origin, gene flow) 1 (Single origin, gene flow)	0.389919 PI_FFOK-2_FFOK-1 6.37285 DMUSQ_FFOK-2_FFOK-1 2_1967 T best model (neuraln 1 best model) 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.486947 PI, FFOK-3, FFOK-1 10.3268 DMUSQ, FFOK-3, FFOK-1 9.90437 set, tolerance rate=0.01). 2 0.73 0.03 0.28 0.00	0.605607 PI_FFOK-3_FFOK-2 PJ_SPOK-3_FFOK-2 PJ_SPOK-3_FFOK-2 9.74943 3 0.01 0.08 0.86	0.27425 PI_AFOK_FFOK-1 11.7598 DMUSQ_AFOK_FFOK-1 9.99219 4 0 0.19 0.11	0.390591 PLAFOK FFOX-2 11.672 DMUSQ_AFOK_FFOX-2 10.1139 5 0.14 0 0 0	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	- - - -																			
Observed Value Summary statistics Observed Value Observed Value Continues of Value Continues of Value Continues of Value 1 (Single origin, open flor) 1 (Single origin, open flor) 2 (Parallel origin, open flor) 4 (Parallel origin, open flor) 4 (Parallel origin, open flor) 5 (Parallel origin, open flor) 6 (Parallel origin, open flor) 7 (Parallel origin, open flor) 8 (Parallel origin, open flor) 9 (Parallel origin, open flor)	0.389919 PI_FFDK-2_FFDK-1 6.37385 DMUSQ_FFDK-2_FFDK-1 2_1967 mples for each model (neuralm 1 (peat model) 0.85 0 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.486947 PI, FFOK-3, FFOK-1 10.3268 DMUSQ, FFOK-3, FFOK-1 9.90437 set, tolerance rate=0.01). 2 0.73 0.03 0.28 0.00	0.605607 PI_FFOK-3_FFOK-2 PJ_SPOK-3_FFOK-2 PJ_SPOK-3_FFOK-2 9.74943 3 0.01 0.08 0.86	0,27495 PLAFOK_FFOK-1 1117998 DMUSO_AFOK_FFOK-1 9,99219 4 0 0.19 0.11 0.55 0	0.390991 PI_AFOK_FFOK-2 11.6712 DMUSQ_AFOK_FFOK-2 10.1139 5 0.14 0 0 0 0.96	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	=																			
Observed Value Summary statistics Observed Value Summary statistics Observed Value Confusion matrix based on 100 are model faced Valedeted India Valedeted Ind	0,389919 PI,FFDK-2,FFDK-1 6,37385 DMUSQ,FFDK-2,FFDK-1 2,1967 mples for each model (neuralin 1 (best model) 0,00 0,00 0,00 0,00 (per model) 1 (best model) 1	0.486947 PI_FFOK-3_FFOK-1 10.3268 DMUSQ_FFOK-3_FFOK-1 9.99437 set, tolerance rate-0.01). 2 0.73 0.73 0.03 0.28 0	0.005607 PI_FDK3_FPOK2_92207 DMUSQ_FFOK3_FPOK2_9.74943 3 0.01 0.08 0.88 0.17 0	0,27455 PI_AFOK_FFOK-1 117598 DMUSQ_AFOK_FFOK-1 9,99219 4 0 019 0.11 0.55 0	0.390991 PI_AFOK_FFOK-2 11.6712 DMUSQ_AFOK_FFOK-2 10.1139 5 0.14 0 0 0 0.996	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	= = = =																			
Observed Valve Summery statistics Observed Valve Deserved Valve De	0.389919 PI_FFDK-2_FFDK-1 6.37385 DMUSQ_FFDK-2_FFDK-1 2_1967 mples for each model (neuralm 1 (peat model) 0.85 0 0.00 0.00 0.00 0.00 0.00 0.00 0.	0.486947 PI, FFOK-3, FFOK-1 10.3268 DMUSQ, FFOK-3, FFOK-1 9.90437 set, tolerance rate=0.01). 2 0.73 0.03 0.28 0.00	0.000007 PLFOK3_FFOK3_FFOK2 9.74943 3 0.01 0.08 0.86 0.17 0 3 0.000000	0,27495 PLAFOK_FFOK-1 1117998 DMUSO_AFOK_FFOK-1 9,99219 4 0 0.19 0.11 0.55 0	0.390991 PI_AFOK_FFOK-2 11.6712 DMUSQ_AFOK_FFOK-2 10.1139 5 0.14 0 0 0 0.96	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	=																			
Cheanned Value Summary statistics Cheanned Value Cheanned Value Combasion marks based on 100 aar Combasion marks based on 100 aar Combasion marks based on 100 aar 2 Parallel origin, geen flood 3 Parallel origin, geen flood 5 Elizate origin, geen flood 5 Elizate origin, geen flood 5 Elizate origin, geen flood 1 Elizate origin, geen flood	0.339919 PLFFOR 2. FFOX-1 8.37385 DMUSQ. FFOX-2. FFOX-1 2.1667 Upon 2. FFOX-1 2.1667 Upon 3.0560 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.46947 PLFDK-1, FFDK-1 10.2009 DMUSQ.FFDK-1 10.2009 DMUSQ.FFDK-1 50 DMUSQ.FFDK-1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.005007 PLFF0K.2 9.92937 DMUSQ.FF0K.3 FF0K.2 9.7945 9.7945 3.001 0.008 0.89 0.17 0.008030 0.008030	0,27465 PLAFOK, FFOK1 117588 DMUSD, AFOK, FFOK1 4 0 0 0 019 011 0.55 0 4 4 0.0001 0.0001 0.0007 0.0007 0.0007	0.395991 PLAFOK FFOK2 118712 DMUSQ AFOK FFOK2 DMUSQ AFOK FFOK2 0.1139 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	= = = =																			
Observed Valve Summary statistics Observed Valve Generacy Valve Generacy Valve Generacy Valve Generacy Valve Generacy Valve Generacy Valve 1 filings origin, gene flow) 2 filings origin, gene flow) 4 filings origin, gene flow) 4 filings origin, gene flow) 5 filings origin, gene flow) 5 filings origin, gene flow) 6 filings origin, gene flow) 7 filings origin, gene flow) 7 filings origin, gene flow) 7 filings origin, gene flow) 9 filings origin, gene flow)	0.389919 PLFFOR 1, PEFOR 1, 8.27285 DMUSO_FFOR 1, 9.27285 DMUSO_FFOR 2, 1997 2, 1997 mples for each model (neural node) 1, (seet model) 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	0.46947 PLFFOR.3 FFOR-1 10.3208 DMUSB_FFOR-3 FFOR-1 9.99457 2 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0	0.05597 PLFOLA_FFOK2 9 50297 DMUSC_FFOK3_FFOK2 9 17645 9 17645 9 17645 9 17645 9 17645 9 17645 9 17645 9 1765 9 17	0.27465 PLAFOK FFOK-1 11.7668 DMUSDA AFOK FFOK-1 9.99219 4 0 0.19 0.19 0.19 0.40 0.0004 4 0.0004 0.00057 0.18073 0.481	0.39591 PLACK FFOK2 11.6712 DMMS0, AFOK FFOK2 10.1139 \$ 1 0 0 0 0 0.96 \$ 1 0.1793 0.0031 0.0032 0.0037	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	= = = = =																			
Observed Value Summary statistics Observed Value Summary statistics Observed Value Combinion materia based on 190 as model Yord I selected 2 Provide origin, gene floor) 2 Provide origin, gene floor) 3 Provide origin, gene floor) 5 Fillings origin, gene floor) 1 Sillings origin, gene floor) 2 Provide origin, gene floor)	0.339919 PLFFOR 2. FFOX-1 8.37385 DMUSQ. FFOX-2. FFOX-1 2.1667 Upon 2. FFOX-1 2.1667 Upon 3.0560 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.46947 PLFDK-1, FFDK-1 10.2009 DMUSQ.FFDK-1 10.2009 DMUSQ.FFDK-1 50 DMUSQ.FFDK-1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.005007 PLFF0K.2 9.92937 DMUSQ.FF0K.3 FF0K.2 9.7945 9.7945 3.001 0.008 0.89 0.17 0.008030 0.008030	0,27465 PLAFOK, FFOK1 117588 DMUSD, AFOK, FFOK1 4 0 0 0 019 011 0.55 0 4 4 0.0001 0.0001	0.395991 PLAFOK FFOK2 118712 DMUSQ AFOK FFOK2 DMUSQ AFOK FFOK2 0.1139 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	0.293323 PLAFOK_FFOK-3 11.7937 DMUSQ_AFOK_FFOK-3	=																			

Kumejima Prior distribution (Model 6)												
parameter name	log10_n_AFKM	log10_n_FFKM-2	log10_n_FFKM-1	log10_t_FF	log10_t_root	log10_a	log10_b	log10_c	log10_d	m	P	
distribution Min.	uniform 2	uniform 2	uniform 2	uniform 3	uniform 3	uniform -9	uniform -9	uniform -9	uniform -9	uniform 0.5	uniform 0	
Max.	5.3	4.7	4.7	6.2	6.2	-3	-3	-3	-3	2	1	
Complex parameter	NA NA	NA NA	NA NA	NA	NA	NA	NA.	NA	NA	NA	NA.	10
Posterior distribution (Model 6) parameter name	log10_n_AFKM	log10_n_FFKM-2	log10_n_FFKM-1	log10_t_FF	log10_t_root	log a	log_c	m	р	a	c	
Min.	2.416127171	2.004640794	2.195688172	2.571801336	2.506533198	-11.03135065	-11.94135622	0.350029579	0.119638824	9.19E-12	1.66E-12	- :
Weighted 2.5% Perc.	3.349392787	2.214602831	2.667328393	2.807337785	3.115649547	-8.863888873	-9.459927484	0.51226449	0.34271048	1.35E-09	3.76E-10	:
Weighted Median	3.9063289	2.812843055	3.191056472	3.222978094	4.226772144	-5.412483207	-6.082777496	1.207500815	0.573843802	3.82E-06	8.86E-07	8
Weighted Mean Weighted Mode	3.906568278 3.843857634	2.795631761 2.843821278	3.170139926 3.209075825	3.245222085 3.167078368	4.347789913 3.918224242	-5.74975406 -4.657233417	-6.488813004 -5.454441533	1.208351047 0.711134174	0.568498288 0.571936334	3.59E-05 3.88E-06	4.18E-06 7.67E-08	
Weighted 97.5% Perc.	4.442243706	3.314469105	3.565015759	3.798425659	5.809010545	-4.657233417	-4.589844626	1.927135582	0.764119195	0.000251621	2.74E-05	
Max.	5.217529632	4.101331001	3.972027084	4.490901997	6.377450717	-2.248523711	-3.633882552	2.06084598	0.886429859	0.005984198	0.000239331	-
Observed Summary Statistics Value Summary statistics	K_FFKM-1	K_FFKM-2	K_AFKM	Ksd_FFKM-1	Ksd_FFKM-2	Ksd_AFKM	mean_K	sd_K	tot_K			
Observed Value	2.65	1.5	6.85	1.53125	0.688247	5.35355	3.66667	2.81617	8.25			
Summary statistics	H_FFKM-1	H_FFKM-2	H_AFKM	Hsd_FFKM-1	Hsd_FFKM-2	Hsd_AFKM	mean_H	sd_H	tot_H			
Observed Value	0.273834	0.0765779	0.537819	0.219506	0.148743	0.29866	0.296077	0.231424	0.569533			
Summary statistics Observed Value	GW_FFKM-1 0.564947	GW_FFKM-2 0.522009	GW_AFKM 0.671573	GWsd_FFKM-1 0.26537	GWsd_FFKM-2 0.328004	GWsd_AFKM 0.225123	mean_GW 0.586176	sd_GW 0.0770089	tot_GW 0.664282			
Summary statistics	NGW_FFKM-1	NGW_FFKM-2	NGW_AFKM	NGWsd_FFKM-1	NGWsd_FFKM-2	NGWsd_AFKM	mean_NGW	sd_NGW				
Observed Value	0.29725	0.175673	0.543082	0.247376	0.135949	0.280676	0.338668	0.187174				
Summary statistics	R_FFKM-1	R_FFKM-2	R_AFKM	Rsd_FFKM-1	Rsd_FFKM-2	Rsd_AFKM	mean_R	sd_R	tot_R			
Observed Value	5.77778	5.25	13.6471	5.07074	3.99106	12.879	8.22495	4.7031	13.95			
Summary statistics Observed Value	FIS 0.0915018	FST 0.478775	FIT 0.526468									
Summary statistics Observed Value	FSt_FFKM-2_FFKM-1 0.541478	FST_AFKM_FFKM-1 0.415315	FST_AFKM_FFKM-2 0.514248									
Summary statistics Observed Value	PI_FFKM-2_FFKM-1 7.49005	PI_AFKM_FFKM-1 14.3749	PI_AFKM_FFKM-2 14.2251									
Summary statistics Observed Value	DMUSQ_FFKM-2_FFKM-1	DMUSQ_AFKM_FFKM-1										
	17.6762	21.6765	DMUSQ_AFKM_FFKM-2 31.2206									
		21.6765	31.2206									
		21.6765	31.2206	4	5	6 (best model)	7	8				
Confusion matrix based on 100 samples model focal \ selected 1 (Parallel origin, gene flow)	s for each model (neuralnet, tole 1 26	21.6765 erance rate=0.01). 2 30	31.2206 3 13	4 3	5 4	6 (best model)	7 5	15				
model focal \ selected 1 (Parallel origin, gene flow) 2 (Parallel origin, gene flow)	s for each model (neuralnet, tole 1 26 10	21.6765 erance rate=0.01). 2 30 50	31.2206 3 13 21	3	4	4 5	5	15 8				
model focal \ selected 1 (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 3 (Parallel origin, gene flow)	s for each model (neuralnet, tole 1 26 10 8	21.6765 erance rate=0.01). 2 30 50 15	31.2206 3 13 21 30	3 1 0	4 1 3	4 5 9	5 4 9	15 8 26				
model focal \ selected 1 (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 3 (Parallel origin, gene flow) 4 (Single origin, no gene flow)	s for each model (neuralnet, tole 1 26 10 8 2	21.6765 erance rate=0.01). 2 30 50 15 2	31 2206 3 13 21 30 0	3 1 0 75	4 1 3 0	4 5 9 9	5 4 9	15 8 26 3				
model focal \ selected 1 (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 3 (Parallel origin, gene flow) 4 (Single origin, no gene flow) 5 (Parallel origin, gene flow)	s for each model (neuralnet, tole 1 26 10 8	21.6765 erance rate=0.01). 2 30 50 15 2 24	31.2206 3 13 21 30 0	3 1 0 75	4 1 3 0	4 5 9 9 12	5 4 9 9	15 8 26 3 6				
model focal \ selected 1 (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 3 (Parallel origin, gene flow) 4 (Single origin, no gene flow) 5 (Parallel origin, gene flow) 6 (Single origin, restricted gene flow)	s for each model (neuralnet, tole 1 26 10 8 2 1	21.6765 erance rate=0.01). 2 30 50 15 2	31 2206 3 13 21 30 0	3 1 0 75	4 1 3 0	4 5 9 9	5 4 9	15 8 26 3				
model focal \ \text{selected} (I \text{Parallel origin, gene flow)} 2 (Parallel origin, gene flow) 3 (Parallel origin, gene flow) 4 (Single origin, no gene flow) 5 (Parallel origin, gene flow) 6 (Single origin, restricted gene flow) 7 (Single origin, restricted gene flow) 8 (Parallel origin, no gene flow)	s for each model (neuralnet, tole 1 26 10 8 2 1 1 7	21.6765 vrance rate=0.01). 2 30 50 15 2 24 19	31.2206 3 13 21 30 0 12 0	3 1 0 75 13 23	4 1 3 0 19 6	4 5 9 9 12 31	5 4 9 9 13 8	15 8 26 3 6				
model focal \ selected Parallel origin, gene flow) 2 (Parallel origin, gene flow) 3 (Parallel origin, gene flow) 4 (Single origin, no gene flow) 5 (Parallel origin, gene flow) 5 (Parallel origin, gene flow) 7 (Single origin, restricted gene flow) 8 (Parallel origin, no gene flow) 9 (Parallel origin, no gene flow) Yellow mark indicates type2 error rate.	s for each model (neuralnet, tole 1 26 10 8 2 1 7 3 1	21.6765 erance rate=0.01). 2 30 50 15 2 24 19 4	31.2206 3 13 21 30 0 12 0 7	3 1 0 75 13 23 28	4 1 3 0 19 6 3	4 5 9 9 12 31	9 9 13 8 34	15 8 26 3 6 6				
model focal \ selected (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 4 (Single origin, no gene flow) 4 (Single origin, no gene flow) 5 (Parallel origin, gene flow) 6 (Single origin, restricted gene flow) 6 (Single origin, restricted gene flow) 9 (Parallel origin, no gene flow) Yellow mark indicates type2 error rate. Mean model posterior probabilities (neu model flocal \ \) selected	s for each model (neuralnet, tole 1 28 10 8 2 1 7 3 1 1 srainet, tolerance rate=0.01)	21.6765 2 30 50 15 2 24 19 19 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	31,2206 3 13 21 30 0 12 0 7 7	3 1 0 75 13 23 28 4	4 1 3 0 19 6 3 0	4 5 9 9 12 31 1 0	5 4 9 9 13 8 34 3	15 8 26 3 6 6 20 84				
model focal\ selected (Flerallel origin, gene flow) 2 (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 3 (Parallel origin, gene flow) 5 (Parallel origin, gene flow) 5 (Parallel origin, gene flow) 6 (Single origin, restricted gene flow) 7 (Single origin, restricted gene flow) 8 (Parallel origin, no gene flow) Yellow mark indicates type2 error rate model flocal\ selected 1 (Parallel origin, gene flow)	s for each model (neuralnet, tole 1	21.6765 2	31 2206 3 13 21 30 0 12 0 7 7 7	3 1 0 75 13 23 28 4	4 1 3 0 19 6 3 0	4 5 9 9 12 31 1 0	5 4 9 9 13 8 34 3 7 0.0679	15 8 26 3 6 6 20 84 8				
model focal\ selected (Parallei origin, gene flow) 2 (Parallei origin, gene flow) 2 (Parallei origin, gene flow) 4 (Single origin, no gene flow) 4 (Single origin, no gene flow) 5 (Parallei origin, gene flow) 6 (Single origin, restricted gene flow) 7 (Single origin, restricted gene flow) 8 (Parallei origin, no gene flow) 10 (Parallei origin, no gene flow) 10 (Parallei origin, gene flow) 11 (Parallei origin, gene flow) 1 (Parallei origin, gene flow)	s for each model (neuralnet, tole 1 26 10 8 9 1 1 7 3 1 1 27 10 10 10 10 10 10 10 10 10 10 10 10 10	21.6765 2 30 50 15 2 24 4 1 1 1 2 2 6 0 2216 0 22934	31,2206 3 13 21 30 0 12 7 7 3 0.1552 0.1885	3 1 0 75 13 23 28 4 4 0.028	4 1 3 0 19 6 3 0	4 5 9 9 12 31 1 0 6 (best model) 0.0798 0.0958	5 4 9 9 13 8 34 3 7 0.0679 0.0539	15 8 26 3 6 6 6 20 84				
model flocal\ selected (Flerallel origin, gene flow) 2 (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 3 (Parallel origin, gene flow) 5 (Parallel origin, gene flow) 5 (Parallel origin, gene flow) 5 (Parallel origin, estricted gene flow) 7 (Single origin, restricted gene flow) 7 (Single origin, restricted gene flow) 8 (Parallel origin, no gene flow) 7 (Single origin, no gene flow) 7 (Single origin, poene flow) 1 (Parallel origin, gene flow) 2 (Parallel origin, gene flow)	s for each model (neuralnet, tole 1	21.6765 2	31 2206 3 13 21 20 0 0 12 0 0 7 7 7 7 3 0 1552 0 1855 0 2137	3 1 0 75 13 23 28 4	4 1 3 0 19 6 3 0 5 0.1058 0.1169 0.1105	4 5 9 9 12 31 1 0	5 4 9 9 13 8 34 3 7 0.0679	15 8 26 3 6 6 20 84 8				
model focal \ selected (Parallei origin, gene flow) 2 (Parallei origin, gene flow) 2 (Parallei origin, gene flow) 4 (Single origin, no gene flow) 4 (Single origin, no gene flow) 5 (Farallei origin, gene flow) 6 (Single origin, restricted gene flow) 6 (Single origin, restricted gene flow) 8 (Parallei origin, no gene flow) 8 (Parallei origin, no gene flow) 1 (Parallei origin, gene flow) 1 (Parallei origin, gene flow) 3 (Parallei origin, gene flow) 3 (Parallei origin, gene flow) 4 (Single origin, no gene flow)	s for each model (neuralnet, told 1 26 10 10 10 10 10 10 10 10 10 10 10 10 10	21.6765 2 30 50 15 2 24 4 1 1 1 2 2 6 0 2216 0 22934	31,2206 3 13 21 30 0 12 7 7 3 0.1552 0.1885	3 1 0 75 13 23 28 4 4 0.028 0.0183	4 1 3 0 19 6 3 0	4 5 9 9 12 31 1 0 6 (best model) 0.0798 0.0958 0.0707	5 4 9 9 13 8 34 3 7 0.0679 0.0539 0.0939	15 8 26 3 6 6 5 20 844 8 0.1016 0.1857				
model focal \ selected (Parallei origin, gene flow) 2 (Parallei origin, gene flow) 2 (Parallei origin, gene flow) 4 (Single origin, no gene flow) 4 (Single origin, no gene flow) 4 (Single origin, restricted gene flow) 7 (Single origin, restricted gene flow) 8 (Parallei origin, restricted gene flow) 9 (Parallei origin, no gene flow) 1 (Parallei origin, gene flow) 1 (Parallei origin, gene flow) 4 (Single origin, no gene flow) 4 (Single origin, no gene flow) 4 (Single origin, no gene flow)	o for each model (neuralnet, tole 1	21.6765 21.6765 30 30 15 2 24 4 4 1 2 0.2216 0.2216 0.2232 0.0332	31 2206 3 13 21 30 0 12 0 7 7 7 3 0.1552 0.1555 0.2137 0.0153	3 1 0 75 13 23 28 4 4 0.028 0.0183 0.0121 0.4492	4 1 1 3 0 19 6 3 0 0 5 0.1058 0.1169 0.1105	4 5 9 9 12 31 1 0 6 (best model) 0.0798 0.0958 0.0707 0.1906	5 4 9 9 13 8 34 3 3 7 0.0679 0.0539 0.0939 0.1533	15 8 26 3 6 6 20 84 84 8 0.1016 0.0561 0.1857 0.0361				
model focal \ selected (Parallel origin, gene flow) 2 Parallel origin, gene flow) 2 Parallel origin, gene flow) 4 Single origin, no gene flow) 4 Single origin, no gene flow) 5 Parallel origin, pene flow) 5 Parallel origin, pene flow) 7 Single origin, restricted gene flow) 8 Parallel origin, no gene flow) 9 Parallel origin, no gene flow) 1 Parallel origin, gene flow) 2 Parallel origin, gene flow) 4 Single origin, pene flow) 4 Single origin, no gene flow) 5 Parallel origin, gene flow) 6 Single origin, restricted gene flow) 6 Single origin, restricted gene flow)	s for each model (neuralnet, tole 1 26 1 26 1 8 2 1 1 7 3 3 1 1 ralnet, tolerance rate=0.01) 1 0.24 0.1801 0.1805 0.1108 0.00965 0.0754	21.6765 2 30 50 50 50 50 50 50 50 50 50 50 50 50 50	312206 3 13 21 20 0 0 7 7 7 3 0.1552 0.1855 0.1855 0.1955 0.1272 0.0632 0.06921	3 1 0 75 13 23 28 4 0.028 0.0183 0.0121 0.4492 0.0917 0.1674 0.1677	4 1 3 0 19 6 3 0 1169 0.1169 0.1105 0.1105 0.2154 0.1608	4 5 9 9 9 12 31 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 4 9 9 13 8 34 3 7 0.0679 0.0539 0.0939 0.1129 0.0909 0.2644	8 0.1016 0.0561 0.0561 0.0561 0.0561 0.0561 0.0557 0.0367 0.0357				
model focal\ selected (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 4 (Single origin, no gene flow) 4 (Single origin, no gene flow) 5 (Parallel origin, pene flow) 5 (Parallel origin, pene flow) 7 (Single origin, restricted gene flow) 8 (Parallel origin, no gene flow) 9 (Parallel origin, no gene flow) 7 (Brangle origin, gene flow) 2 (Parallel origin, gene flow) 4 (Single origin, gene flow) 4 (Single origin, pene flow) 5 (Parallel origin, pene flow) 6 (Single origin, restricted gene flow) 6 (Single origin, restricted gene flow)	s for each model (neuralnet, tole 1 26 10 8 2 2 1 7 3 3 1 1 rrainet, tolerance rate=0.01) 0.10 0.100 0.100 0.1004 0.0308 0.1108 0.0995	21.6765 2 2 3 5 5 5 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	31 2206 3 13 21 30 0 12 0 7 7 3 0.1855 0.1855 0.0197 0.0172 0.0632	3 1 0 75 13 23 28 4 0.028 0.0183 0.0121 0.4492 0.0917 0.1674	4 1 3 0 19 6 3 0 0 5 0.1058 0.1169 0.1105 0.2154 0.1608	4 5 9 9 12 31 1 0 0 6 (best model) 0.0798 0.0958 0.0707 0.1906 0.1435 0.2594	5 4 9 9 13 8 34 3 7 0.0679 0.0539 0.1533 0.1129 0.0909	8 0.1016 0.0561 0.0357				
model focal \ \text{selected} (Parallel origin, gene flow) 2 Parallel origin, gene flow) 2 Parallel origin, gene flow) 4 Carlege origin, no gene flow) 4 Carlege origin, no gene flow) 5 Carlege origin, no gene flow) 7 Carlege origin, restricted gene flow) 8 Parallel origin, restricted gene flow) 8 Parallel origin, no gene flow) 9 Parallel origin, gene flow) 1 Parallel origin, gene flow) 4 Carlege origin, gene flow) 4 Carlege origin, gene flow) 5 Parallel origin, gene flow) 6 Carlege origin, no gene flow) 6 Carlege origin, no gene flow) 7 Carlege origin, gene flow) 9 Carlege origin, gene flow) 9 Carlege origin, restricted gene flow)	1 for each model (neuralnet, tole 10 10 10 10 10 10 11 17 7 3 1 11 024 0.024 0.0308 0.1108 0.0995 0.0754	21.6765 2 30 50 50 50 50 50 50 50 50 50 50 50 50 50	312206 3 13 21 20 0 0 7 7 7 3 0.1552 0.1855 0.1855 0.1955 0.1272 0.0632 0.06921	3 1 0 75 13 23 28 4 0.028 0.0183 0.0121 0.4492 0.0917 0.1674 0.1677	4 1 3 0 19 6 3 0 1169 0.1169 0.1105 0.1105 0.2154 0.1608	4 5 9 9 9 12 31 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 4 9 9 13 8 34 3 7 0.0679 0.0539 0.0939 0.1129 0.0909 0.2644	8 0.1016 0.0561 0.0561 0.0561 0.0561 0.0561 0.0557 0.0367 0.0357				
model focal \ selected (Farallei origin, gene flow) 2 (Parallei origin, gene flow) 2 (Parallei origin, gene flow) 3 (Parallei origin, gene flow) 4 (Single origin, no gene flow) 4 (Single origin, no gene flow) 7 (Single origin, restricted gene flow) 8 (Parallei origin, restricted gene flow) 8 (Parallei origin, restricted gene flow) 9 (Parallei origin, no gene flow) 1 (Parallei origin, gene flow) 2 (Parallei origin, gene flow) 4 (Single origin, no gene flow) 4 (Single origin, no gene flow) 6 (Single origin, restricted gene flow) 8 (Parallei origin, gene flow) 9 (Single origin, restricted gene flow) 8 (Parallei origin, gene flow) 8 (Parallei origin, pene flow) 9 (Branlei origin, pene flow) 9 (Branlei origin, pene flow)	1 for each model (neuralnet, tole 1	21.6765 21.6765 20 30 50 15 2 24 19 4 1 2 0.2216 0.2334 0.153 0.0032 0.1474 0.1232 0.00509 0.0555	31 2206 3 13 21 30 0 12 0 0 7 7 7 7 3 0 1552 0 1855 0 2137 0 0153 0 1272 0 0653 0 0021 0 1594	3 1 0 75 13 23 28 4 4 0.028 0.0183 0.0121 0.44492 0.0917 0.1674 0.1674 0.1674	5 0.1058 0.1105 0.1105 0.1015	4 5 9 9 12 31 1 0 6 (best model) 0.0798 0.0958 0.0707 0.1906 0.435 0.0935 0.0935	5 4 9 9 9 13 8 3 3 3 7 0.0679 0.0659 0.0939 0.1533 0.1129 0.0909 0.2644 0.093	8 0.1016 0.0551 0.0357 0.1369 0.4765				
model focal \ \text{selected} (Parallel origin, gene flow) 2 Parallel origin, gene flow) 2 Parallel origin, gene flow) 3 Parallel origin, gene flow) 5 Parallel origin, gene flow) 5 Parallel origin, gene flow) 5 Parallel origin, gene flow) 7 Singles origin, restricted gene flow) 8 Parallel origin, gene flow) 7 Singles origin, restricted gene flow) 8 Parallel origin, gene flow) 7 Singles origin, restricted gene flow) 2 Parallel origin, gene flow) 3 Parallel origin, gene flow) 4 Singles origin, restricted gene flow) 7 Singles origin, restricted gene flow) 7 Singles origin, restricted gene flow) 8 Parallel origin, gene flow) 8 Parallel origin, gene flow) 8 Parallel origin, gene flow)	1 for each model (neuralnet, tole 1 26 10 8 9 11 7 3 1 1 7 3 1 1 1 1 1 1 1 1 1 1 1 1	21.6765 21.6765 30 30 50 15 2 24 4 1 1 2 0.6216 0.6216 0.6234 0.153 0.0232 0.1474 0.1232 0.0600 0.0553	312206 3 13 21 30 0 12 0 7 7 3 0.1852 0.1855 0.1855 0.1855 0.1852 0.0153 0.1272 0.0632 0.0921 0.1594	3 1 0 75 13 23 28 4 4 0.029 0.0183 0.0181 0.0462 0.01674 0.1677 0.0444 4 0.0002	5 0.1059 0.1059 0.1059 0.1169 0.1165 0.1165 0.1165 0.1165 0.1165 0.1165 0.1015 0.1015 0.1015	4 5 9 9 9 12 31 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 4 4 9 9 9 9 13 8 8 34 34 3 3 9 10 10539 10 10539 10 1123 10 1123 10 1123 10 1053 100	15 8 26 3 6 6 9 20 84 8 0.1016 0.0561 0.0511 0.0357 0.0361 0.0557 0.1369 0.4765				
model focal \ \text{selected} (Parallel origin, gene flow) (Parallel origin, gene flow) (Parallel origin, gene flow) (Single origin, no gene flow) (Single origin, no gene flow) (Single origin, restricted gene flow) (Parallel origin, restricted gene flow) (Parallel origin, restricted gene flow) (Parallel origin, no gene flow) (Parallel origin, gene flow) (Parallel origin, gene flow) (Parallel origin, gene flow) (Single origin, restricted gene flow) (Single origin, restricted gene flow) (Single origin, no gene flow) (Single origin, restricted gene flow) (Single origin, restricted gene flow) (Ramilel origin, pene flow) (Bayes Factor (neuralnet, tolerance ratenumerator \ \text{denominator} (Parallel origin, gene flow)	s for each model (neuralnet, tole 1 26 28 8 2 1 7 3 3 1 1 0.24 0.1801 0.1605 0.0108 0.00905 0.0754 0.1009	21.6765 21.6765 30 30 50 51 2 24 19 4 1 2 0.2216 0.2324 0.153 0.0232 0.1474 0.1232 0.0669 0.0553	31 2206 3 13 21 30 0 12 0 0 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	3 1 0 75 13 23 28 4 4 4 0.028 0.0183 0.0121 0.4492 0.0917 0.1674 0.1674 0.0002 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 0.1058 0.1105 0.1105 0.1105 0.1105 0.1105 0.1105 0.1105 0.1015 0.2154 0.1008 0.1008 0.1008	4 5 9 9 9 12 31 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 4 4 9 9 9 13 8 8 34 3 3 77 0.0679 0.0539 0.0639 0.0639 0.0639 0.0639 0.0639 0.7 1129 0.0600 0.2644 0.093 0 0.0600 0.2644 0.093 0 0.0600 0.2644 0.093 0 0.0600 0.2644 0.093 0 0.0600 0.2644 0.093 0 0.0600 0.2644 0.093 0 0.0600 0.2644 0.093 0 0.0600 0.2644 0.093 0 0.0600 0.2644 0.093 0 0.06000 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.06000 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.060000 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.0600 0.06000	8 8 0.4765				
model focal\ selected [Parallel origin, gene flow) 2 (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 2 (Parallel origin, gene flow) (Parallel origin, gene flow) 5 (Parallel origin, gene flow) 5 (Parallel origin, gene flow) 5 (Parallel origin, gene flow) 7 (Single origin, restricted gene flow) 8 (Parallel origin, no gene flow) Yellow mark indicates type2 error rate. Mean model potaler probabilities (neu model flocal\ selected 1 (Parallel origin, gene flow) 4 (Single origin, no gene flow) 4 (Single origin, no gene flow) 7 (Single origin, no gene flow) 8 (Parallel origin, gene flow) 8 (Parallel origin, gene flow) 8 (Parallel origin, restricted gene flow) 8 (Parallel origin, gene flow) 9 (Parallel origin, gene flow) 1 (Parallel origin, gene flow) 1 (Parallel origin, gene flow)	1 for each model (neuralnet, tole 1 26 10 8 2 1 7 3 1 1 7 3 1 1 1 10 10 10 10 10 10 10 10 10 10 10	21.6765 21.6765 22 24 19 4 1 2 0.2216 0.2324 0.153 0.152 0.234 0.152 0.234 0.152 0.255 0.152 0.255 0.152 0.152 0.152 0.152 0.152 0.152 0.153	31 2206 3 13 21 30 0 12 0 7 7 7 3 0.1552 0.1855 0.2133 0.0123 0.0021 0.1594 5 1.1755 0.7432	3 1 0 75 13 13 23 24 4 0.022 2 0.015 10 10 10 10 10 10 10 10 10 10 10 10 10	5 0.1058 0.1169 0.00429 0.0003 0.0001	4 5 9 9 9 12 231 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 4 4 9 9 9 113 8 34 34 3 3 3 3 3 1 1 129 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 8 2552 0.9918				
model focal \ selected (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 4 (Single origin, no gene flow) 4 (Single origin, no gene flow) 4 (Single origin, no gene flow) 5 (Single origin, no gene flow) 7 (Single origin, restricted gene flow) 8 (Parallel origin, no gene flow) 9 (Parallel origin, gene flow) 1 (Parallel origin, gene flow) 4 (Single origin, no gene flow) 4 (Single origin, no gene flow) 5 (Parallel origin, gene flow) 6 (Single origin, restricted gene flow) 8 (Parallel origin, gene flow) 9 (Single origin, restricted gene flow) 8 (Parallel origin, gene flow) 1 (Parallel origin, gene flow) 1 (Parallel origin, gene flow) 8 (Parallel origin, gene flow) 1 (Parallel origin, gene flow) 9 (Parallel origin, gene flow) 1 (Parallel origin, gene flow) 9 (Parallel origin, gene flow)	s for each model (neuralnet, tole 1 26 10 10 10 10 11 7 3 1 17 0.24 0.1801 0.1804 0.0008	21.6765 21.6765 23.50 50 15 24 44 1 1 20 0.2216 0.2234 0.153 0.0232 0.1474 0.1230 0.0232 0.1472 0.1230 0.0553	31 2206 3 13 21 30 0 12 10 7 7 7 3 0.1552 0.1655 0.2137 0.0153 0.1272 0.0653 0.1594 3 6.1755 6.1753 1 27682 3 1 2	3 1 1 0 75 13 13 23 28 4 4 4 4 0.028 0.0183 0.0121 0.4492 0.0491 7 0.1674 0.0002 0 0 0 1 1	4 1 3 0 19 6 6 3 0 .11058 0.11058 0.1105 0.1105 0.1105 0.1105 0.1015 0.2154 0.1000 0.0429	4 5 5 9 9 9 12 31 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 4 4 9 9 9 9 13 8 8 34 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 8 0.1016 0.0561 0.1857 0.0361 0.0511 0.0557 0.0361 0.0557 0.3961 0.5272 0.3918 0.5271 14528 6928 0.5271				
model flocal\ selected [Parallel origin, gene flow) 2 (Parallel origin, gene flow) 2 (Parallel origin, gene flow) 3 (Parallel origin, gene flow) 5 (Parallel origin, gene flow) 5 (Parallel origin, gene flow) 5 (Parallel origin, gene flow) 7 (Single origin, restricted gene flow) 8 (Parallel origin, gene flow) 7 (Single origin, restricted gene flow) 8 (Parallel origin, gene flow) 9 (Parallel origin, gene flow) 1 (Parallel origin, gene flow) 4 (Single origin, no gene flow) 6 (Single origin, no gene flow) 8 (Parallel origin, gene flow) 9 (Single origin, restricted gene flow) 8 (Parallel origin, gene flow) 9 (Parallel origin, gene flow) 1 (Parallel origin, gene flow) 4 (Single origin, gene flow)	1 for each model (neuralnet, tole 1 26 10 8 2 1 7 3 1 1 7 3 1 1 1 10 10 10 10 10 10 10 10 10 10 10	21.6765 21.6765 22 24 19 4 1 2 0.2216 0.2934 0.155 0.0232 0.155 0.0232 0.155 0.0232 1.3455 37085,7045,7045 22383,6803	31 2206 3 13 21 30 0 12 0 0 7 7 7 3 0.1552 0.1855 0.2137 0.0152 0.1855 0.2137 0.0152 0.1855 0.2137 0.0152 0.1855 0.2137 0.1552 0.1855 0.2137 0.1552 0.1855 0.2137 0.1552 0.1855 0.2137 0.1552 0.1855 0.2137 0.1552 0.1552 0.1552 0.1552 0.1552 0.1552 0.1552 0.1552 0.1552 0.1552 0.1552 0.1552 0.1552 0.1552 0.1552 0.1552 0.1552 0.1553	3 1 1 0 75 75 13 3 23 26 4 4 4 0.022 0.0123 0.0123 0.0123 0.0123 0.0123 0.0124 0.0127 0.01677	5 0.1058 0.1169 0.105 0.0023 0.0001 1.5558	4 5 9 9 9 12 231 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5 4 9 9 9 113 8 34 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 8 1.552 0.3918 0.5271 14528.6926 1.3252 0.3918 0.5271 14528.6926 1.338.2581				
model focal \ \text{selected} (I \text{Parallel origin, gene flow)} 2 (Parallel origin, gene flow) 3 (Parallel origin, gene flow) 4 (Single origin, no gene flow) 5 (Parallel origin, gene flow) 6 (Single origin, restricted gene flow) 7 (Single origin, restricted gene flow) 8 (Parallel origin, no gene flow)	1 for each model (neuralnet, tole 1	21.6765 21.6765 23.50 50 15 24 44 1 1 20 0.2216 0.2234 0.153 0.0232 0.1474 0.1230 0.0232 0.1472 0.1230 0.0553	31 2206 3 13 21 30 0 12 10 7 7 7 3 0.1552 0.1655 0.2137 0.0153 0.1272 0.0653 0.1594 3 6.1755 6.1753 1 27682 3 1 2	3 1 1 0 75 13 13 23 28 4 4 4 4 0.028 0.0183 0.0121 0.4492 0.0491 7 0.1674 0.0002 0 0 0 1 1	4 1 3 0 19 6 6 3 0 .11058 0.11058 0.1105 0.1105 0.1105 0.1105 0.1015 0.2154 0.1000 0.0429	4 5 9 9 9 9 12 1 1 1 1 1 1 1 1 1 1 1 1 1 1	5 4 4 9 9 9 9 13 8 8 34 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	8 8 0.1016 0.0561 0.1857 0.0361 0.0511 0.0557 0.0361 0.0557 0.3961 0.5272 0.3918 0.5271 14528 6928 0.5271				

n_AFKM NA NA NA

320.6380399 1306.729313 16957.61468 92120.93428 5801.871497 649944.7837

2419445.977

NA NA NA

160577.8217

c n_AFKM
1.66E-12 256.9803544
3.76E-10 2210.427301
8.86E-07 8050.748861
4.18E-06 9966.727385
7.67E-08 5824.187544
2.74E-05 27658.72477

NA NA NA

NA NA NA

 n.FKM-2
 n.FKM-1
 t.FF

 101 0271525
 155.7156975
 356.0000794

 163 425525
 155.7156975
 356.0000794

 163 425521
 468.8124526
 616.3542291

 646 0069959
 1561.363319
 1619.003405

 765.334502
 1690.409703
 2064.426182

 505.2645714
 1472.2223727
 1031.97428

 205.2645744
 1472.223727
 1031.97428

 205.2645744
 3687.98735
 6016.462052

 21546.73442
 3468.450179
 23648.419197

 23648.01959
 3687.98735
 6016.462052

MA NA NA

n_FFKM-2 NA NA NA

104(log10_a) 104(log10_b) 104(log10_c) 104(log10_b) 104(log10_b) 104(log10_n_AFKM) 104(log10_n_FFKM-2) 104(log10_n_FFKM-1) 104(log10_n_TFF) 104(log10_n_TFFM-2)

n_FFKM-1 NA NA NA

NA NA NA

NA NA NA NA

Table S7 (Continued) Iriomotejima Prior distribution (Model 6) parameter name

log10_n_AFIR

log10_n_FFIR-8

log10_n_FFIR-1

distribution	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	uniform	
Min.	2	2	2	2	3	3	-9	-9	-9	-9	0.5	0	
Max	5.3	4.7	4.7	4.7	6.2	6.2	-3	-3	-3	-3	2	1	
Complex parameter	NA.	NA.	NA.	NA.	NA NA	NA NA	NA NA	NA.	NA.	NA.	NA.	NA.	
Complex parameter	NA.	TANK.	no.	nn.	100	100	101	190	185	197			_
posterior distribution (Model													
parameter name	log10_n_AFIR	log10_n_FFIR-8	log10_n_FFIR-1	log10_n_FFIR-6	log10_t_FF	log10_t_root	log10_b	log10_c	log10_e	log10_f	m	P	
Min.	1.915487029	2.21968195	2.15476663	2.441619089	2.747147682	2.473732259	-11.21508222	-9.626500114	-9.801559582	-9.465448368	0.29780842	0.002710558	
Weighted 2.5% Perc.	2.782904526	2.953914706	2.720987649	3.087323057	2.924291202	3.111579607	-9.584977969	-8.615824726	-9.115491716	-8.704787727	0.446573465	0.288991886	
Weighted Median	3.715629567	3.659029266	3.232449278	3.772326725	3.297647403	4.258229583	-6.102813347	-5.730094717	-5.695216583	-5.559136046	1.028367829	0.546874289	
Weighted Mean	3.686588187	3.654443527	3.221828394	3.76793801	3.335202315	4.372551088	-6.454943357	-5.819280903	-5.966328467	-5.699428759	1.075953693	0.539573701	
Weighted Mode	3.775550466	3.661780701	3.242285543	3.757131713	3.256977797	3.894817905	-5.040524556	-3.890349528	-4.25135968	-3.722119858	0.671001832	0.57290055	
Weighted 97.5% Perc.	4.45841304	4.322372895	3.632882996	4.404183987	3.94036625	5.850348299	-4.231739617	-3.323883092	-3.585472019	-3.197150551	1.858439401	0.752515902	
Max.	5.160344328	4.628358594	4.012198264	5.137285861	4.829166001	6.493866008	-3.291207014	-2.849310272	-2.591596757	-2.511623696	2.094541059	0.860199351	0
													_
Observed Summary Statistics													
Summary statistics	K_FFIR-1	K_FFIR-6	K_FFIR-8	K_AFIR	Ksd_FFIR-1	Ksd_FFIR-6	Ksd_FFIR-8	Ksd_AFIR	mean_K	sd_K	tot_K		
Observed Value	2.35	3.75	3.75	5.85	1.81442	2.4034	4.35135	4.51051	3.925	1.44309	8.85	_	
Summary statistics	H_FFIR-1	H_FFIR-6	FFIR-8	H_AFIR	Hsd_FFIR-1	Hsd_FFIR-6	Hsd_FFIR-8	Hsd_AFIR	mean_H	sd_H	tot_H	-	
Observed Value	0.201064	0.388779	0.30482	0.477427	0.223632	0.288172	0.302482	0.262433	0.343023	0.117997	0.542345	_	
Summary statistics	GW_FFIR-1	GW_FFIR-6	GW_FFIR-8	GW_AFIR	GWsd_FFIR-1	GWsd_FFIR-6	GWsd_FFIR-8	GWsd_AFIR	mean_GW	sd_GW	tot_GW	-	
Observed Value	0.713468	0.720055	0.542658	0.689927	0.273476	0.26706	0.263749	0.224724	0.666527	0.0835859	0.658672	_	
Summary statistics	NGW_FFIR-1	NGW_FFIR-6	NGW_FFIR-8	NGW_AFIR	NGWsd_FFIR-1	NGWsd_FFIR-6	NGWsd_FFIR-8	NGWsd_AFIR	mean_NGW	sd_NGW	_		
Observed Value	0.216348	0.328606	0.265182	0.506789	0.132975	0.183321	0.148052	0.280571	0.329231	0.126981	_		
Summary statistics	R_FFIR-1	R_FFIR-6	R_FFIR-8	R_AFIR	Rsd_FFIR-1	Rsd_FFIR-6	Rsd_FFIR-8	Rsd_AFIR	mean_R	sd_R	tot_R	-	
Observed Value	5.92857	6.22222	16.7692	8.63158	10.4695	5.54718	27.7853	6.29118	9.3879	5.06769	17.45	-	
Summary statistics	FIS	FST	FIT	-									
Observed Value	0.0589495	0.399616	0.435008	_									
Summary statistics	FST_FFIR-6_FFIR-1	FST_FFIR-8_FFIR-1	FST_FFIR-8_FFIR-6	FST_AFIR_FFIR-1	FST_AFIRIR_FFIR-6	FST_AFIR_FFIR-8	-						
Observed Value	0.304243	0.455915	0.294781	0.48297	0.35409	0.39128	_						
Summary statistics	PI_FFIR-6_FFIR-1	PI_FFIR-8_FFIR-1	PI_FFIR-8_FFIR-6	PI_AFIR_FFIR-1	PI_AFIRIR_FFIR-6	PI_AFIR_FFIR-8	=						
Observed Value	8.36632	9.52423	9.57088	14.1875	13.5054	12.9078	-						
Summary statistics	DMUSQ_FFIR-6_FFIR-1	DMUSQ_FFIR-8_FFIR-1	DMUSQ_FFIR-8_FFIR-6	DMUSQ_AFIR_FFIR-1	DMUSQ_AFIRIR_FFIR-6	DMUSQ_AFIR_FFIR-8	-						
Observed Value	7.36113	11.5983	3.47136	25.9701	14.0454	20.1645	_						

log10_n_FFIR-6

log10_t_FF

log10_t_root

log10_b

log10_c

log10_e

log10_f

5.72E-12 2.57E-10 7.55E-07 7.99E-06 4.38E-07 5.61E-05 0.000477437

e 1.47E-10 7.62E-10 1.96E-06 3.53E-05 2.21E-06 0.00025481 0.00244674

f 3.15E-10 1.91E-09 2.70E-08 8.11E-05 -5.80E-08 0.000609329 0.003012237

c 2.07E-10 2.54E-09 1.98E-06 6.28E-05 8.69E-07 0.000496538 0.001502305

n_AFIR 84.25277643 620.2293597 5346.47333 7832.198196 2846.357543 29675.48484 147579.5789

n_FFIR-8 159.0992715 881.255958 4408.27543 5961.144974 2402.654168 20143.94118 40978.71266

n_FFIR-1 131.1922672 518.6265397 1688.731104 1883.967953 1470.19855 4299.770343 10703.12864

n_FFIR-6 276.0443047 1181.967206 5837.187609 7715.033089 3671.504606 24963.88018 132535.9065

565.6402479 857.4029643 2023.113308 2769.863067 1310.110453 8869.999928 72536.52188

t_root 314.429806 1274.29255 17819.842 96475.62062 8970.047402 701214.2751 2969775.821

Confusion matrix based on 100 sample	es for each model (neur	inet, tolerance rate=0.01).				
model focal \ selected	1	2	3	4	5	6(best model)
1 (Single origin, no gene flow)	0.9	0.03	0.01	0	0	0.06
2 (Parallel origin, no gene flow)	0.02	0.88	0	0.07	0.02	0.01
(Single origin, gene flow)	0.16	0.03	0.29	0.1	0.22	0.2
4 (Parallel origin, gene flow)	0	0.25	0.03	0.48	0.19	0.05
5 (Parallel origin, gene flow)	0.04	0.09	0.09	0.16	0.47	0.15
e (Cloude existe some flow)	0.14	0.11	0.1	0.07	0.1	0.48

2 0.0294 0.6313 0.0432 0.2157 0.0825 0.0732 3 0.0985 0.0299 0.3061 0.1167 0.205 0.2285 4 0.0044 0.1906 0.1296 0.3654 0.197 0.0924 6 (best model)

Bayes Factor (neuralnet, tolerance ra	te=0.01)					
numerator \ denominator		z	3	234566 4108		- 6
1 (Single origin, no gene flow)	1	94024.0848	1.7085		2458.9742	0.7571
2 (Parallel origin, no gene flow)	0	1	0	2.4947	0.0262	0
3 (Single origin, gene flow)	0.5853	55033.272	1	137294.1532	1439.2631	0.4432
4 (Parallel origin, gene flow)	0	0.4008	0	1	0.0105	0
5 (Parallel origin, gene flow)	0.0004	38.2371	0.0007	95.392	1	0.0003
6 (Single origin, gene flow)	1.3208	124183.7803	2.2565	309807.2552	3247.7286	1

Table S7 (Continued) Tokunoshima_Okinoerabujima Prior distribution (Model2) log10_a log10_b log10_c log10_d log10_n_AF log10_n_okino log10_n_toku log10_t_FF log10_t_root parameter name distribution uniform uniform uniform uniform Min. -9 -3 -9 -3 -9 -3 -9 -3 2 5.3 3 6.2 Complex parameter Posterior distribution (Model2) log10_b -11.11341166 -9.023659958 log10 n okino log10 n toku log10 t FF parameter name log10_a log10_c -11.45255462 -8.941294563 log10_d -11.16476095 -8.899285843 log10_n_AF log10 t root -10.14958659 -9.202913073 2.776673139 3.443063722 2.061336903 2.558173848 2.360266768 3.069487412 2.074409034 2.585305711 2.401879147 3.074086215 Weighted 2.5% Perc. Weighted Median Weighted Mean -5.961562108 -6.116380114 -5 348512608 -5 909820868 -5 452163411 4 050707087 3 27214837 3 710535377 3 241885296 4 424051541 -6.09210827 -5.950859573 -5.784742914 -4.3469019 3.1567225 Weighted Mode -4.50111073 -5.511585451 4.003350363 3.328487865 3.714023312 3.890017278 -3.500079707 -2.542248289 Weighted 97.5% Perc. -3.449034485 -3.847886318 -3.449370538 4.67254187 3.822723853 4.251151813 4.79650326 5.847947266 -2.359737163 -2.920104543 5.102251631 4.405683442 4.668525192 5.832934866 6.368778078 **Observed Summary Statistics Value** tot_K 9.4 K_okino K_AF 8.45 Ksd_okino Ksd_toku mean_K 5.06667 sd_K 3.10416 Observed Value 2.35 1.53125 4.41767 7.08947 Summary statistics H_okino H toku H_AF Hsd_toku Hsd_AF sd H tot_H Hsd okino mean H Observed Value 0.226868 0.324758 0.526077 0.268593 0.305237 0.359234 0.4863 Summary statistics GW okino GW toku GW AF GWsd okino GWsd toku GWsd AF mean GW sd GW tot GW Observed Value 0.607993 0.756569 0.0926739 0.722554 Summary statistics NGW_okind NGW_toku NGW_AF Observed Value 0.246524 0.382195 0.649745 0.197962 0.202091 0.224729 0.426155 0.205173 Summary statistics Observed Value 6.38462 8.27778 12,4444 7.98476 8.25908 11.4029 9.03561 3.10018 12.45 Summary statistics FIS FST FIT Observed Value FST AF toku Summary statistics FST toku okino FST AF okino 0.343439 Observed Value Observed Value 8.33941 10.9974 11.7025 DMUSQ_AF_toku Summary statistics DMUSQ_toku_okino DMUSQ_AF_okino Observed Value 1.69281 3.63525 6.54198 Confusion matrix based on 100 samples for each model (neuralnet, tolerance rate=0.01). model focal \ selected 2 (best model) 1 (Single origin, no gene flow) 0.85 0.05 0.01 0.23 0.16 0.17 0.15 2 (Single origin, gene flow) 0.29 3 (Parallel origin, gene flow) 0.02 0.24 0.3 4 (Parallel origin, gene flow) 0.22 0.23 5 (Parallel origin, gene flow) 0.04 0.58 Mean model posterior probabilities (neuralnet, tolerance rate=0.01) model focal \ selected

1 (Single origin, no gene flox
2 (Single origin, gene flow) 2 (best model) 0.7214 0.2064 0.0531 0.184 0.022 0.1356 0.0197 0.3135 0.1605 0.1454 0.1616 3 (Parallel origin, gene flow) 0.0195 0.3236 0.2543 0.2572 4 (Parallel origin, gene flow) 0.08 0.2381 0.2938 0.2265 5 (Parallel origin, gene flow) 0.0314 0.3537 Bayes Factor (neuralnet, tolera numerator \ denominator

17.36

81.23

1.00 8.62

0.66

1.00

0.01

1 (Single origin, no gene flow)

2 (Single origin, gene flow)

3 (Parallel origin, gene flow) 4 (Parallel origin, gene flow)

5 (Parallel origin, gene flow)

1.00 4.68

0.06 0.50

0.04

26.19 122.57

1.51 13.01

1.00

2.01

0.12

0.08

uniform

0.5

0.404548429

0.514615452

1 146281297

0.666153834

2.070120686

1.924979731

0.003573449

0.242243218

0.532173827

0.579110955

0.757162432

0.920796071

NA NA

7.15E-11 6.31E-10

1 10F-06

-2.36E-06

0.000315004

NA

10^(log10_b

6.89E-12 9.55E-10

4 49F-06

4.56E-05

-2.27E-06

0.000348579

0.004411571

NA NA

3.48E-12 1.13E-09

1.22E-06 1.75E-05

-8.21E-07

0.000140908

0.001196782

NA NA

6.82E-12 1.21E-09

3.45E-06 3.99E-05

2.27E-06

0.000347709

0.002424363

NA

10^(log10_n_AF)

n AF

591.8862858 2738.742395

11172 29011

14562.28311

7453.902105

46575.89176

124846.5407

NA

n okino

114.8724309 360.0914213

1869 353565

2244.978483

1283.334464

6619.335656

24946.85325

NA

10^(log10_n_toku

n toku

227.2451764 1161.64389

5143.961394

6264.689698

3690.010605

17901.79924

47142.42174

t_root

NA NA

10^(log10_t_root)

t root

250.5689687 1196.245616

26421 55556

113792.1471

8150.788215

701379.1444

2326504.085

NA

10^(log10_t_FF)

t FF

118.0719184 382.5846214

1746 746089

661.3093564

62485.42911

675162.9522

Table S7 (Continued) Middle Ryukyu																																				
Prior distribution (Model 9) parameter name	log10_n_AF	log10_n_FF_amami	log10_n_FF_kume ii	log10 n FF okinawa	log10_n_FF_toku	log10_t_AF_kume I	log10_t_AF_okinawa	log10_t_AF_taku	MAgim_t_migAM	log10_t_root	log10_s log1) b log10	c log10_d	logt0_e	log10_f	log10_g	log10_h	P		b	ε	d		,		h	n_AF	n_FF_amami	n_FF_kume	n_FF_okinawa	n_FF_toku	t_AF_kume	(AF_okinawa	t_AF_toku	t_migAM	t_reet
distribution Min.	unitorm 2	uniform 2	uniform 2	uniform 2	uniform 2	uniform 3	unitorm 2	uniform 3	uniform 3	unitom 2	unitom unit			unitorn -2	unitorm -3	unitorm -0	uniform -3	uniform 0	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA	NA NA
Max. Complex parameter	S-3 NA	4.7 NA	4.7 NA	4.7 NA	4.7 NA	6.2 NA	6.2 NA	6.2 NA	6.2 NA	6.2 NA	-9 -1 NA N	-0 NA	-o NA	-9 NA	-0 NA	-g NA	-g NA	1 NA	NA 10*fog10 a)	NA 10Ylog10 bi	NA 10'10010 cl 10	NA 01/00/10 di 10	NA 10/10010 el	NA 1010o10 0 10	NA 101(pg10 s) 10	NA Nagoti Ni 10%s	NA 0010 n AF) 101	NA logs) n FF amami) 1	NA 01(log 10 n FF kume)	NA 1010pt0 n FF okinawa)	NA 10/Nos10 n FF tokul	NA 1010oo10 1 AF kumel 1	NA 01(og10 1 AF okinawa)	NA 101/sog10 1 AF tokul 11	NA 1/0010 t migAM 1010	NA log(0 t root)
Posterior distribution (Model 9) parameter name	log10_n_AF	log10_n_FF_amani	log10_n_FF_kume I	log10_n_FF_akinawa	log10_n_FF_toku	log10_t_AF_kume i	log10_t_AF_okinawa	log10_t_AF_toku	log10_t_migAM	leg10_t_root	log_s log				log_f	log_g	log_h	р	_			d		-			n_AF	n_FF_amani	n_FF_kume	n_FF_okinawa	n_FF_taku	t_AF_kume	t_AF_okinawa	t_AF_toku	Magian	t_reet
Min. Weighted 2.5% Perc.	2.515932389 3.645682495	1.929029296 2.705697791	2.014834638 2.221728838	1.984707728 2.145762034	2:00707657 2:602727452	3.145233619 3.775487707	2.004846234 2.441788565	2.877973342 3.037054959	3.190853327	4.210516157	9.110623291 -9.153 9.727498544 -9.950	100677 -8.9298	7429 -9.0923914	7 -9.164531523	-0.640905354	-8:927847126	-8.164330911	0.205117447	7.06E-10 1.74E-09	7.45E-10 1.38E-09		1.125-10 8.725-10	3.29E-11 7.07E-10	4.67E-10 2.18E-09	1.145-09	6.695-09	319.2687035 4298.196681	85.38582423 515.8147827	101.9785528 166.4240344	99.30479396 143.512365	101.0141641 401.5825167	1370.922201 5922.811402	1024.017513 2812.404443	761.4456485 1095.905582	1553.030556	2727.957864 16230.85957
Weighted Median Weighted Mean	4.505060745 4.505815799	3.651123659	3.225344224 3.220042025	3.220492419 3.199351956	3.659027368	4.632633114 4.70426877	4.068293985 4.133202545		3.675360952	5.456470587	5.111002905 -5.608 -5.47760657 -5.758	118518 -6.0162	22065 -5.4571613	2 4.219097953	-5.527029157	-6.021962732	-4.654099973	0.503655554	0.000103456	8.84E-05	1.00E-06 6.84E-05	1.43E-05 7.33E-05	1.40E-06 1.16E-05	5.08E-06 9.78E-05	6.496-05 0.	000499404 5	33141.01212 50608.49071	4939.798964 6679.324432	1679.68186 3453.774205	1695.584983 9477.764907	4828.902364 8327.352923	42765.08105 128692.2115	11969.04426 28160.30129	1972.224064 2634.549528	6161.179225	363980.5972 579235.9126
Weighted Mode Weighted 97.5% Perc.	4.533936785 5.281118445	4.351156003	3.411052097 4.240545999	3.439022543 4.235369082	3.66595809 4.52792648	4.39750794 5.914152025	3.981764829 5.238443916	3.905770258	4.294795956	6.309150913	3.906302305 -3.665 3.081830521 -3.155	H3012 -3.2449	5021 -0.2959414	9 -4.101654671	-0.1196000055	-3.239931664	-2.497924441	0.760574815	0.000776532	0.000587988	0.000605491 0	0.000425499	3.38E-07 7.97E-05	-0.19E-06 0.000742942 0	0.000552076 0.	000083636	14684.0877 187436.5835	2007 829095 22215 47585	630.1194652 17431.89075	561.8360038 17571.87469	1809.479321 34497.18329	21704.32791 835303.8483	6110.714289 175253.7513	1460.381887 8069.871065	19994.59361	92936.94965 2033293.063
Max.	5.616444114	4.610816782	4.809682943	4.674744573	4.691854056	6.65194099	6.134771365	4.66805346	5.728000089	6.607650074	2.802831525 -2.983	79258 -2.9480	19901 -2.7608958	8 -3.04031623	-2.187044083	-2:987419393	-1.639176956	0.895097821	0.001413372	0.001005896	0.001130982 0	0.001904595 0	0.000981153	0.006290042 0	0.000951987 0.	025961717 4	405626.2736	38623.44926	69690.65173	47923.667	50225.70298	4553299.515	1358549.616	46881.51871	539500.8465	4505734.959
Observed Summary Statistics V Summary statistics	alue							Ked 3	Kert 4	Wast 5	mean K ad	v 100																								
Observed Value	R_1 2.65	2.0	¥4	46	12.05	1.53125	1.47256	4.41767	5.11345	9.94974	53 387		<u>:</u>																							
Summary statistics Observed Value	H_1 0.273834	H_2 0.266875	H_3 0.324758	N_4 0.370812	H_S 0.571991	Hed_1 0.219506	Hed_2 0.229761	Hed_3 0.305237	Hed_4 0.319123	Hed_5 0.299479	mean_H ad 0.366054 0.121	H tot)	4 06																							
Summary statletics Observed Value	GW_1 0.564947	GW_2 0.672185	GW_3 0.607999	GW_4 0.00959	GW_S 0.717653	GWed_1 0.36537	GWed_2 0.298557	GWed_3 0.26461	GWed_4 0.192735	GWed_5 0.222763	mean_GW ad_ 0.674447 0.095	W 5st_G																								
Summary statistics Observed Value	NGW_1 0.156939	NGW_2 0.156497	NGW_3 0.214441	NGW_4 0.221479	NGW_S 0.548467	NGWed_1 0.0908308	NGWed_2 0.0752958	NGWed_3 0.113899	NGWad_4 0.171366	NGWad_5 0.222273	nean_NGW ad_N 0.259564 0.164	GW 298																								
Summary statistics Observed Value	R_1 5.77778	R_2 5.00294	R:3 8,27778	R.4	R,5 15.75	Red_1 5.07074	Red_2 525525	Red_3 8.25908	Red_4 7.27564	Red_5 12.0057	mean_R ad 8.3517 4.29	R tot.)	-																							
Summary statistics Observed Value	FIS 0.0923461	FST 0.372194	PIT 0.430797																																	
Suremany statistics Observed Value	FST_2_1 0.597144	FST_2_1	PST_3_2	FST_4_1	FST_4_2	FST_4_3	FST_5_1	FST_5_2	FST_5_9 0.364667	PST_5_4 0.094008																										
Summary statistics Observed Value	PL 2_1 12.7416	PL2.1	PL3.2	PLA.1	PL4.2	P. 4.3	PLS_1	PL5.2	PLS.3 12.1935	PI_5_4 12.0038																										
Summary statistics	DMUSQ_2_1		DMUSQ_2_2 17.8408	DMUSQ_4_1 16.6124	DMUSQ_4_2 26,9179	DMUSQ 4,3 19,2818	DMUSQ_5_1 24,8019		DMUSQ_S_3																											
Observed Value				10.9124	20200	12,2418	20.00	22.000	2,000	22.5190																										
Confusion matrix based on 100 model focal \ selected	samples for each mo	odel (neuralnet, tolerano 2	s rate=0.01). 2	- 4			7		9 (Seet Model)	10																										
1 (Parallel origin, gene flow) 2 (Parallel origin, gene flow)	0.29	0.45	0.04	0.04	0.14	0.22	0.9	0.2	0.35	0.18																										
3 (Single origin, gene flow) 4 (Parallel origin, gene flow)	0.5	0	0.38	0.22	0.07	0.1	0.14		0	0.4																										
5 (Parallel origin, gene flow) 6 (Parallel origin, gene flow)	0.12	0	0.09	0.05	0.49	0.15	0.04	8	0	0.12																										
7 (Single origin, gene flow) 8 (Parallel origin, no gene flow)	0.08	0.06	0.06	0.04	0.01	0.6	0.73	0.89	0.05	0.2																										
9 (Parallel origin, gene flow) 10 (Parallel origin, gene flow)	0.1	0.41 0	0.08	0.06	0.00	0.15	0 0.04	0.15	0.44	0.54																										
Yellow mark indicates type2 error Mean model posterior probabili		ance rate of O1)																																		
model focal \ selected 1 (Parallel origin, gene flow)	0.2271	0.0122	0.0949	0.0964	S 0.1400	9.1795	0.0097	0.000	9 (Best Model)	10 0.1591																										
2 (Parallel origin, gene flow) 3 (Single origin, gene flow)	0.0094	0.3988	0.0048	0.0052	0.0003	0.0109	0.0039	0.1845 0.0032	0.365 0.0058	0.0091																										
4 (Parallel origin, gene flow)	0.0832	0.0056	0.2084	0.2071 0.2651 0.1058	0.0982 0.0911 0.3358	0.0859		0.0039	0.0061	0.1017																										
5 (Parallel origin, gene flow) 6 (Parallel origin, gene flow)	0.1821	0.0112	0.0755		0.1264	0.2583	0.0449	0.0073	0.015	0.164																										
7 (Single origin, gene flow) 8 (Parallel origin, no gene flow)	0.0042	0.0049	0.1294	0.1183	0.0427	0.0609 0.0068 0.011	0.5029	0.0073	0.005 0.125 0.434	0.0465																										
9 (Parallel origin, gene flow) 10 (Parallel origin, gene flow)	0.0092	0.3863	0.0044	0.0052	0.000	0.011	0.0049	0.1274	0.434	0.0095																										
Bayes Factor (neursinet, tolerar numerator \ denominator 1 (Parallel origin, gene flow)	ce rate (0.01)																																			
1 (Parallel origin, gene flow)	1.00	0.01	0.13	2.62 455.14	0.44 76.91	2.74 476.29	0.12	0.02	0.01	1.66																										
2 (Parallel origin, gene flow) 2 (Single origin, gene flow)	173.88 7.91	1.00	22.00 1.00	20.69	3.50	21.66	22.36 1.02	0.20	0.04	13.10																										
4 (Parallel origin, gene flow) 5 (Parallel origin, gene flow)	0.38 2.26	0.00	0.05	1.00 5.92	0.17 1.00	1.05	0.05	0.01	0.00	0.63 3.75																										
6 (Paratiel origin, gene flow) 7 (Single origin, gene flow)	036 778	0.00	0.05	0.96	0.16	1.00	0.05	0.01	0.00	12.88																										
8 (Parallel origin, no gene flow) 9 (Parallel origin, neene flow)	40.19	0.23	5.09	105.19	17.79	110.10	5.17 24.37	1.00	0.21	66.50 213.97																										
10 (Parallel origin, gene flow)	040	0.00	0.08	1.58	0.27	1.65	0.00	0.02	0.00	1.00																										

Table S7 (Continued) South Ryukyu Prior distribution (Model 5) log10_d log10_a log10_b log10_c parameter name distribution Min. Max. -9 53 6.2 Complex parameter Posterior distribution (Model5) log10_n_AF 2.611704817 3.247355058 log10_a log10_b -10.10277534 log10_c -10.0071307 log10_d -10.50807508 log10_n_ishigaki log10_n_iriomote log10_t_FF log10_t_root parameter name 1.993488455 2.612327062 2.135259187 2.908432549 Weighted 2.5% Perc. Weighted Median -9.134330709 -8.683549288 -8.826107389 -8.053864892 3.250282209 -5.349287518 -5.262004739 -5.017281743 -4.771362921 3.893367898 3.626680308 3.818292744 Weighted Mean Weighted Mode -5.846756557 -5.584088808 -5.528189056 -5 072548038 3.890743197 3.251866104 3 602818945 3.895147357 -4.118923658 -3.387626355 -4.025084745 -2.87117254 3.292880034 3.778079715 3.694422564 4.191778683 3.780748221 5.140157887 Weighted 97.5% Perc. -3.622195581 -3.200261519 4.518010446 -2.730132231 -2.0709959 -2.359728293 -1.925656583 5.236961662 4.499816253 6.247419837 Observed Summary Statistics Value Summary statistics K_iriomote K_AF 7.3 K_ishigaki 3.1 Ksd_iriomote Ksd_ishigaki 1.33377 Ksd_AF 4.78044 mean_K 4.71667 sd_K 2.26072 Observed Value 3.75 2.4034 Observed Value 0.388779 0.299456 0.50118 0.288172 0.241195 0.260336 0.396472 0.101081 Summary statistics GW_iriomote GW_ishigaki 0.660067 GW AF GWsd iriomote GWsd ishigaki GWsd AF mean_GW sd GW Observed Value Summary statistics NGW_iriomote NGW_ishigak NGW_AF NGWsd_iriomote NGWsd_ishigaki sd_NGW NGWsd_AF mean_NGW 0.324162 0.267627 0.539343 0.216599 0.168378 0.223509 0.377044 0.143369 Summary statistics R_AF mean_R 7.77789 Observed Value 6.22222 5.05882 12.0526 5.54718 2.92555 7.13733 3.74746 Summary statistics Observed Value FIS FST FIT FST_ishigaki_iriomote FST AF iriomote FST AF ishigaki Summary statistics 0.501156 0.324191 0.331076 Summary statistics Observed Value 13.4829 13.3516 12.4218 Summary statistics DMUSQ_ishigaki_iriomote DMUSQ_AF_iriomote DMUSQ_AF_ishigaki Observed Value Confusion matrix based on 100 samples for each model (neuralnet, tolerance rate=0.01). model focal \ selected
1 (Single origin, no gene flow)
2 (Parallel origin, no gene flow) 5 (best model) 0.04 0.03 0.84 0.01 3 (Parallel origin, no gene flow) 4 (Parallel origin, gene flow) 0.03 0.02 0.33 0.62 5 (Single origin, Gene flow, best model) Yellow mark indicates type2 error rate. Mean model posterior probabilities (neuralnet, tolerance rate=0.01) model focal \ selected
1 (Single origin, no gene flow)
2 (Parallel origin, no gene flow)
3 (Parallel origin, no gene flow)
4 (Parallel origin, gene flow)
5 (Single origin, Gene flow, best model) 2 0.088258646 5 (best model) 0.461226746 0.043990076 0.000303527 0.088016008 0.552662745 0.234758024 0.000154347 0.068301858 0.060454802 0.552662745 0.274156831 0.00125748 0.499342396 0.015673549 0.08149881 0.384182543 0.477026376 0.178577648 0.098446936 0.090713468 0.010823468 Bayes Factor (neuralnet, tolerance rate=0.01) numerator\denominator
1 (Single origin, no gene flow)
2 (Parallel origin, no gene flow)
3 (Parallel origin, no gene flow)
4 (Parallel origin, gene flow) 5 0.0733 2.7125 6.1901 0.0714 0.1936 0.4418 0.0052 0.3687 0.0052 0.027 0.0118

0.4382

2.2633

5 (Single origin, Gene flow, best model

n_AF NA NA NA

10^(log10_n_AF)

n_AF 431.1793174

1763.714134

7846.83798

10349.16041

5052.568074 33213.58103

NA NA NA

10^(log10_c)

1.49E-09

9.72E-06

6.14E-05

3.26E-06 0.000406212

0.004333239

NA NA

10^(log10_b)

9.30E-09

1.69E-05

0.000168655

7.90E-06 0.001303584

0.011842609

NA NA

10^(log10_a)

7.21E-10 4.53E-06

3.65F-05

2.87E-06

0.000248307

0.001899799

10^(log10_b)

2.02E-09

5.50E-06

7.64F-05

0.000639776

0.00860596

3 6.2

3.605341131

4 011200857

6.321292904

6.858308816

tot_K 8.8

tot_H

0.569886

tot GW

13.35

0.5

m 0.43645659 0.541477846

1.238407052

1 244904324

1.959613182

2.054196232

0.0003027

0.29644687

0.528120686

0.521514117

0.532950304 0.713528915

0.824551573

n_ishigaki NA

NA NA

10^(log10_ishigaki)

n_ishigaki 99.24520694

413.9688356

1857.881138

2219 046264

5983.949561

31366.23533

t_FF

t_FF 630.2111403

1750.357478

6589.026835

20220 76185

140239.5293

1823148.674

10^(log10_t_FF) 10^(log10_t_root)

n_iriomote NA

NA NA

10^(log10_iriomote)

n_iriomote 138.3037164

819.0888356

4234.648749

5216.152089

2791.688958 15377.31758

44667.67009

t_root

t_root 618.7346758 4025.782063

76234.0719

316656 6385

2094257.497

7157235.775

	\$7 I		

Table S7 (Continued) Ryukyu																					
ukyu served Summary Statistic	-e Velore																				
mary statistics	K_iriomote	K_kume	K_okinawa	K_toku	K_amami	K_AF_north	K_AF_south	Ked_irlomote	Ksd_kume	Kad_okinawa	Ked_toku	Kad_amami	Kad_AF_north	Kad_AF_south	mean_K	ad_K	tot_K	- '			
erved Value	3.9	2.7	3.1	4.45	4.5	7.4	12.3	2.35975	1.59275	1.44732	4.43046	5.21738	4.75052	9.93717	5.52143	3.35657	16.75	-			
mmary statistics	H_iriomote	H_kume	H_okinawa	H_toku	H_amami	H_AF_north	H_AF_south	Had_irlomote	Had_kume	Had_okinawa	Had_toku	Had_amami	Had_AF_north	Had_AF_south	mean_H	ad_H	tot_H	_			
served Value	0.400709	0.276203	0.305	0.326737	0.382825	0.506299	0.574718	0.286351	0.223413	0.231406	0.306826	0.312612	0.259003	0.297136	0.39607	0.10934	0.683888	_			
mmary statistics	GW_iriomote	GW_kume	GW_okinawa	GW_toku	GW_amami	GW_AF_north	GW_AF_south	GWad_irlomote	GWad_kume	GWsd_okinawa	GWad_toku	GWad_amami	GWad_AF_north	GWad_AF_south	mean_GW	ad_GW	tot_GW	_			
oserved Value	0.596521	0.548082	0.478161	0.579161	0.601921	0.576826	0.570073	0.361611	0.289505	0.395811	0.298955	0.366161	0.300105	0.351067	0.554392	0.0419276	0.356417	=			
ummary statistics	NGW_irlomote	NGW_kume	NGW_okinawa	NGW_toku	NGW_amami	NGW_AF_north	NGW_AF_south	NGWad_iriomote	NGWad_kume	NGWad_okinawa	NGWsd_toku	NGWad_amami	NGWad_AF_north	NGWsd_AF_south	mean_NGW	ad_NGW	=				
baerved Value	0.107054	0.0470869	0.0684315	0.101614	0.0743156	0.159436	0.274582	0.149158	0.038491	0.0728588	0.135335	0.0764772	0.167159	0.311092	0.118974	0.0775722	=				
ummary statistics	R_iriomote	R_kume	R_okinawa	R_toku	R_amami	R_AF_north	R_AF_south	Red_irlomote	Rad_kume	Rad_okinawa	Rad_toku	Rad_amami	Red_AF_north	Red AF south	mean R	ad_R	tot_R	_			
Observed Value	20.6667	14.4444	31.3333	16.8889	35.625	24	43	33.3766	38.3869	39.7995	37.3881	58.2888	39.4855	54.0643	26.5655	10.4629	90.65	=			
summary statistics	ris	FST	PIT	-																	
Observed Value	0.102062	0.384027	0.445895	_																	
summary statistics	FST_kume_irlomote	FST_okinawa_iriomote	FST_oldnawa_kume	FST_toku_iriomote	FST_toku_kume	FST_toku_okinawa	FST_amami_irlomote	FST_amami_kume	FST_amami_okinawa	FST_amami_toku	FST_AF_north_iriomote	FST_AF_north_kume	FST_AF_north_okinawa	FST_AF_north_toku	FST_AF_north_amami	FST_AF_south_irlomote	FST_AF_south_kume	FST_AF_south_okinawa	FST_AF_south_toku	FST_AF_south_amami	FST_AF_south_AF_north
Observed Value	0.575327	0.579388	0.586098	0.557793	0.595885	0.49019	0.526715	0.581072	0.500887	0.515678	0.319456	0.465398	0.459514	0.438372	0.408935	0.352726	0.356829	0.248316	0.242821	0.291395	0.283472
summary statistics	PI_kume_iriomote	Pt_okinawa_iriomote	Pl_okinawa_kume	Pl_toku_iriomote	Pl_toku_kume	Pt_toku_okinawa	Pl_amami_iriomote	Pl_amami_kume	Pl_amami_okinawa	Pt_amami_toku	PI_AF_north_irlomote	Pl_AF_north_kume	PI_AF_north_okinawa	PI_AF_north_toku	Pl_AF_north_amami	PI_AF_south_iriomote	Pl_AF_south_kume	PI_AF_south_okinawa	PI_AF_south_toku	Pl_AF_south_amami	PI_AF_south_AF_north
Observed Value	15.7151	16.6719	14.0204	15.1648	15.0533	12.4401	16.5391	15.6529	13.7809	14.5124	13.6424	15.6878	15.979	15.3615	15.5275	15.7377	14.2531	12.3003	12.2968	14.0354	15.1204
summary statistics	DMUSQ kume iriomote	DMUSQ okinawa iriomote	DMUSQ okinawa kume	DMUSQ toku irlomote	DMUSQ toku kume	DMUSQ toku okinawa	DMUSQ amami iriomote	DMUSQ amami kume	DMUSQ amemi okinawa	DMUSQ amami toku	DMUSQ AF north irlamate	DMUSQ AF north kume	DMUSQ AF north okinawa	DMUSQ Aff north toku	DMUSQ AF north amami	DMUSQ_AF_south_iriomote	DMUSQ AF south kume	DMUSQ AF aguth okinawa	DMUSQ AF south toku	DMUSQ AF south amemi	DMUSQ AF south AF nor
Observed Value	18.2243	18.3329	12.6695	21.4015	24.8697	19.8034	23.8487	17.6696	13.054	23.5592	19.1938	15.0099	6.85663	16.6374	14.1494	15.0493	16.5047	11.5923	8,92655	13.5854	13.3101
Confusion matrix based on 1	100 samples for each model (neu	urainet, tolerance rate=0.01).									_										
model focal \ selected	0.13	0.08	0.06	0.11	0.03	0.09	0.09	0.32	0.04	0.05	_										
2	0.03	0.29	0.09	0.21	0.05	0.05	0.03	0.16	0.03	0.06											
3	0.1	0.18	0.1	0.19	0.05	0.07	0.08	0.1	0.07	0.06											
5	0.05	0.05	0.05	0.02	0.07	0.28	0.14	0.02	0.1	0.22											
6	0.02	0.06	0.03	0.04	0.09	0.29	0.1	0.03	0.21	0.13											
á	0.05		0.01	0.01	0	0	0	0.88	0.01	0.04											
9	0.03	0.03	0.04	0.04	0.05	0.07	0.08	0.06	0.27	0.33											
		0.06	0.02	0.05	0.05	0.06	0.18	0.05	0.21	0.32	-										
Mean model posterior proba model focal \ selected	bilities (neuralnet, tolerance rate	e=0.01) 2	3	4	5	6	7	8	9	10	_										
1	0.1448	0.1123 0.1672	0.1085 0.1465	0.1295	0.0753	0.0732	0.0591	0.1847	0.054	0.0485 0.0537	_										
2	0.1304	0.1672	0.1465	0.1412	0.0717	0.082	0.0608	0.0837	0.0627	0.0537											
4	0.1339	0.1096	0.1162	0.1346	0.0783	0.0786	0.0828	0.1198	0.075	0.0713											
5	0.0696	0.0877	0.0861	0.0735	0.1337	0.1431	0.1377	0.0137	0.1248	0.13											
7	0.0587	0.0634	0.0765	0.0741	0.1275	0.1049	0.1227	0.0196	0.1171	0.1767											
	0.1742	0.059	0.0605	0.1101	0.0126	0.0126	0.0134	0.5112	0.0223	0.0242											
10	0.0552	0.0707	0.0783 0.0731	0.0659	0.1134	0.1088	0.1238	0.0351	0.1678	0.1809											
											_										
Bayes Factor (neuralnet, tole	erance rater(0.01)																				
numerator \ denominator		2	3	4	5	6	7	8	9	10	=										
1 2	1 1.7029	0.5872	0.6843	0.9137	0.6929	0.5795	0.6997	33.3996 56.8751	0.8009	0.8456											
ŝ	1.4614	0.8582	1	1.3354	1.0127	0.847	1.0225	48.8113	1.1705	1.2372											
4	1.0944	0.6427 0.8475	0.7489	1.3186	0.7584	0.6343 0.8363	0.7657	36.553 48.1996	0.8765	0.9265											
5	1.7255	1.0123	1.1807	1.5767	1.1957	1	1.0097	57.6313	1.382	1.2217											
7	1.4293	0.8393	0.978	1.306	0.9904	0.8283	1	47.7376	1.1447	1.21											
	0.0299	0.0176	0.0205	0.0274	0.0207	0.0174	0.0209	41.7024	0.024	0.0253											
	1.2400	w./332	0.4544	1409	0.8002	w.7220	v.8730	41.7024		1.007											

Table S8 Geographic data of respective islands.

Island Name	Freshwater form distribution	Latitude	Longitude	Area (km²)	Area log10	Catchment area (km 2)	Catchment area log10	Length (m)	Length log	No. Steep Slopes
Okinawajima Is.	1	26°35′	128°2′	1206.93	3.082	53.30	1.727	17218	4.236	152
Amami-Oshima Is.	1	28°16′	129°20′	712.5	2.853	48.58	1.686	18478	4.267	548
Iriomotejima Is.	1	24°20′	123°50′	289.6	2.462	64.37	1.809	21736	4.337	435
Tokunoshima Is.	1	27°45′	128°57′	247.9	2.394	34.00	1.531	15754	4.197	304
Ishigakijima Is.	1	24°24′	124°11′	222.2	2.347	32.75	1.515	14750	4.169	101
Okinoerabujima Is.	1	27°22′	128°35′	93.7	1.972	10.84	1.035	8813	3.945	15
Kakeromajima Is.	0	28°7′	129°14′	77.3	1.888	2.99	0.475	3601	3.556	26
Kumejima Is.	1	26°22′	126°46′	59.5	1.775	6.99	0.844	5925	3.773	35
Kikaijima Is.	0	28°18′	129°57′	57.0	1.755	4.81	0.683	4957	3.695	5
lheyajima Is.	0	27°3′	127°58′	20.7	1.315	4.93	0.693	4428	3.646	2
Tokashikijima Is.	0	26°11′	127°21′	15.3	1.185	3.33	0.522	4029	3.605	19
Izenajima Is.	0	26°56′	127°56′	14.1	1.150	3.05	0.484	3918	3.593	3
Ukejima Is.	0	28°1′	129°15′	13.3	1.125	2.38	0.377	2275	3.357	21
Yorojima Is.	0	28°2′	129°9′	9.4	0.971	2.27	0.356	3257	3.513	12
Yagajijima Is.	0	26°40′	128°0′	7.8	0.893	1.16	0.063	2072	3.316	0
Miyagijima Is.	0	26°22′	128°0′	5.5	0.744	0.90	-0.048	1867	3.271	2
Akajima Is.	0	26°12′	127°17′	3.8	0.580	0.46	-0.333	1364	3.135	4
Hamahigajima Is.	0	26°19′	127°57′30″	2.1	0.320	0.36	-0.441	1297	3.113	0

Table S9 The results of statistical test and AIC model selection of logistic regression analysis for respective combinations of islands where speciation observed.	

Combinations of isla	nds	Originate in re	spective region	ons		Share the ori	gin in respecti	ve regions													
	Island name	Dataset 1	Dataset 2	Dataset 3	Dataset 4	Dataset 5	Dataset 6	Dataset 7	Dataset 8	Dataset 9	Dataset 10	Dataset 11	Dataset 12	Dataset 13	Dataset 14	Dataset 15	Dataset 16	Dataset 17	Dataset 18	Dataset 19	Dataset 20
	Okinawajima Is.		1 1	1	1		1 1	1	1	1	1	1	1	1	1	1	1		0) (0
	Amami-Oshima Is.		1 1	1	1		1 1	1	1	1 1	1	1	1	0	0) (0		1	1	1
	Tokunoshima Is.		1 1	0	0		1 1	0	() () 0	1	0	1	1		0		1	1 /	0
	Kumejima Is.		1 1	1	1) (0	() 1	1	1	1	1	1	1 1	1		1	1	1
	Okinoerabujima Is.	() 0) 1	1) () 1	1) 0	0	1	0	0) 1	1		0)	1
	Iriomotejima Is.		1 0	1	0		1 0	1	() 1	. 0	0	0	1	0) 1	0		1) ·	1
	Ishigakijima Is.	() 1	0	1) 1	0	1) 1	0	0	0	1) 1		0	1 /	0
	Kakeromajima Is.	(0	0	0) (0	() () 0	0	0	0	C) (0		0)	0
	Kikaijima Is.	(0	0	0) (0	() () 0	0	0	0	0) (0		0	o .	0
	Tokashikijima Is.	(0	0	0) (0	() () 0	0	0	0	0) (0		0	o .	0
	Iheyajima Is.	(0	0	0) (0	() () 0	0	0	0	0) (0		0	o .	0
	Izenajima Is.	(0	0	0) (0	() () 0	0	0	0	0) (0		0	o .	0
	Ukejima Is.	(0	0	0) (0	() () 0	0	0	0	0) (0		0	o .	0
	Yorojima Is.	(0	0	0) (0	0) () 0	0	0	0	0) (0		0	o .	0
	Yagajijima Is.	(0	0	0) (0	() () 0	0	0	0	0) (0		0	o .	0
	Miyagijima Is.	(0	0	0) (0	() () 0	0	0	0	0) (0		0	o .	0
	Akajima Is.	(0	0	0) (0	() () 0	0	0	0	0) (0		0	o .	0
	Hamahigajima Is.	() 0	0	0) (0	() () 0	0	0	0	C) (0		0	<u>)</u>	0
Maximum likelihood	ratio t Explanatory variables	Dataset 1	Dataset 2	Dataset 3	Dataset 4	Dataset 5	Dataset 6	Dataset 7	Dataset 8	Dataset 9	Dataset 10	Dataset 11	Dataset 12	Dataset 13	Dataset 14	Dataset 15	Dataset 16	Dataset 17	Dataset 18	Dataset 19	Dataset 20
P values	Area	0.0016		0.0054	0.0061	0.000			0.0064		0.0093	0.0073	0.0253	0.024	0.0317	0.0534		0.0342			
	Catchment Area	0.0026		0.008	0.0187	0.0003		0.0046	0.0113			0.0242	0.0637	0.0191	0.0322			0.0214			
	River Length	0.0038			0.0172	0.0006		0.0057	0.0115		0.0294	0.0239	0.0596	0.0212	0.0307	0.0502		0.0191			
	No. Waterfall	0.0013		0.0449	0.3277	2.00E-04			0.2627		0.2163	0.0628	0.3241	0.1269	0.587		0.8131	0.0055			
Model Selection	Explanatory variables	Dataset 1	Dataset 2	Dataset 3	Dataset 4	Dataset 5	Dataset 6	Dataset 7	Dataset 8	Dataset 9	Dataset 10	Dataset 11	Dataset 12	Dataset 13	Dataset 14	Dataset 15	Dataset 16	Dataset 17			
AIC scores	Island Area only	19.478		13.922	15.965	8.950		9.145	12.471	13.366	13.939	14.678	14.382	16.682	16.532			18.729			
	Residuals of Catchment Area only	22.943		24.389	24.723	11.39	22.913	22.251	22.589		22.548	21.551	21.362	20.472	23.069			22.407			
	Island Area + Residuals of Catchment Area	21.405		15.868	17.96		3 6	6	14.454	15.092		16.417	16.015	17.809	17.646	18.991	20.131	20.701			
	Island Area * Residuals of Catchment Area	22.78	16.82	16.004	19.9		3 8	8	16.357	15.368	17.847	17.585	16.982	18.61	19.578	20.991	22.084	22.69	9 17.905	5 20.579	9 21.0
	Island Area only	19.478	13.005	13.922	15.965	8.95	3 4	9.145	12.471	13,366	13.939	14.678	14.382	16.682	16.532	17.063	18.315	18.729	9 17.553	3 18.016	6 19.1
	Residual of River Length only	23.067	25.018	24.386	24.88	11.646			22.76		22.34	21.326	21.368	21.006	23.058			22.567			
	Island Area + Residual of River Length		14.918	15.832	17.932	11.040	22.000	. 22.214	14.351	15.276		16.272	15.99		17.902			20.727			
		21.107		15.632					15.937					18.098 18.757							
	Island Area * Residual of River Length	22.611	16.908	15.996	19.764		, ,	, 8	15.937	14.921	17.852	17.32	17.138	18./5/	19.893	21.019	22.051	22.615	5 17.652	2 20.199	9 20.8
	Island Area only	19.478	13.005	13.922	15.965	8.95	3 4	9.145	12.471	13.366	13.939	14.678	14.382	16.682	16.532	17.063	18.315	18.729	9 17.553	3 18.016	6 19.1
	Residuals of No. Waterfall only	20.894	24.196	20.881	22.692	9.13	3 22.551	19.758	21.339	16.818	21.989	18.335	20.969	18.718	20.977	15.981	18,731	9.806	6 23.03	3 22,305	5 22.9
	Residuals of No. Waterfall only Island Area + Residuals of No. of Waterfall	20.894 21.288			22.692 17.963	9.13		19.758 6	21.339 14.442		21.989 15.538	18.335 15.159	20.969 16.38	18.718 17.679	20.977 18.52			9.806			