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1 Introduction

Translation invariant operators bounded on L?(R™) are natural objects to study.
They can also be considered as convolution operators. The Hilbert transform, i.e. the
convolution with % in the principal-value sense, appears both in complex analysis,
taking limits onto boundaries, and in harmonic analysis in connection with the
convergence of Fourier series. Other examples of translation invariant operators
arise in the theory of differential equations. For instance, second order derivatives
of the solution to the Laplace equation, Au = f. For a survey of the use of these
kind of operators in analysis, sce [F2].

It can be shown that a bounded translation invariant operator T : L2(R") —
L?(R") is, what is called, a multiplier operator 7 = T}, i.e. on the Fourier trans-
form side the operator corresponds to multiplication with a bounded function, the
multiplier. So we have

f(Tm(f))()‘> = m(/\)f(f)@),

where F(f)(A) = Jg. €™ f(z) dz. In one dimension, the most fundamental mul-
tiplier operator is the Hilbert transform, H, which is defined by

Hf(z) = lim 1 Jle=y) dy.

0T Jjy>e Y

The corresponding multiplier is m(A) = i¢sgn A. This operator has the following
invariance properties

*The second author was supported by the JSPS.



e it is translation invariant
e it commutes with positive dilations and anti-commutes with negative ones.

Conversely, a continuous operator T : L(R) — L2(R) with these two properties
must, up to multiplication with a scalar, be the Hilbert transform. This observation
is regarded as a characterization of the Hilbert transform by mecans of invariance
under the affine transformation group GL(1,R) x R.

In higher dimensions the natural generalizations of the Hilbert transform are the
Riesz transforms defined by

R;f(z) = lim cn/ Y f(z —y)dy,

e—0 !y|26 |y|n+l'

where ¢, = I'( ”T”) /m"*+2)/2 The corresponding multipliers, m;, again have a simple
form \

Again there is a characterization

Theorem 1 ([S] sect. 3.1 Proposition 2). A family of multiplier operators
T =(Ty,...,T,) bounded on L*(R™) and commuting with positive dilations, satisfics
the identity l,-» o T o l, = m, 0 T, where , is the standard representation of O(n)
on R", if and only if miy(X) = CN\;/IAN| (1 < i < n). That is, up to a constant, the
famaly of operators is the family of Riesz transforms.

The natural representation of O(n) can be identified with the representation on
spherical harmonics of degree 1. Stein has also extended the Riesz transforms to
higher Riesz transforms by using spherical harmonics of higher degrees, see Stein [S]
section I11.3.4.

In the characterization of the Riesz transforms in Theorem 1, one can observe
that the conformal transformation group CO(n) x R® ~ (R* — O(n)) x R® appears,
and conversely this is (in some sense) a maximal group of (relative) invariance of the
Riesz transforms. In this paper, we consider two different, but natural, procedures

e One way is to start with a multiplier and then

— find a (maximal) group of relative invariance.

— After that, we solve the equation of invariance and ask for uniqueness in
the sense that the solution space should be finite dimensional.

If we get back the original operator, or a finite family containing it, one can
regard the multiplier as characterized by this invariance.
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e Another way is to begin with some nice group action and then to find all
functions that satisfy the invariance conditions. For this, take a subgroup of
affine transformations and give an equation of (relative) invariance by this
group such that the space of solutions is finite dimensional, or preferably 1-
dimensional. Then use this to find new multiplier operators.

We shall give a general formulation of “relative invariant operators” in Theo-
rem 2 which contains Stein’s characterization of the Riesz transforms in Theorem
1(in a different but essentially equivalent way) and relative invariant of prehomoge-
neous veclor spaces as special cases. Then we shall give some examples of invariant
multipliers when the groups are

R x SO(p, q) x RP*7 C Af(RP'9),

O(m) x GL(k,R) x R*™ c AfI(R*™).

We also examine LP-boundedness in some of the cases at the end of the paper.

2 General results

2.1 Affine action

In this section we will generalize the set-up from the introduction to he able to
consider other groups acting on R"™. Let H be a subgroup of GL(n, R) and take a
finite dimensional irreducible representation (7, V) of H. H acts on R", hence also,
by the contragredicnt action: A — (h*)7'A) on the character group R™. For every
open orbit O there exists an element A such that H/Hy, = O. We will assume
that there exists a finite set of open orbits, Oy, ..., Oy such that their union is
comull in R™. The orbits correspond to quotients O, & H/H; as above. Let Cyqq(O;)
denote the complex vector space consisting of bounded continuous functions on O;,
on which the group H acts by pullback of functions.

Theorem 2. Let By, (L*(R™), VQL?(R")) be the vector space of bounded, translation
invariant operators T : L2(R") — V ® L2(R") satisfying

L%R") —— V @ L}(R")

]

L*(R") —— V @ L}(R"),

7(g)®ly (1)

for all g € H. Then we have an isomorphism

N
By (L*(R™),V @ L}(R")) = EB Hompy (V7" Coaa(O;))

i=1



as vector spaces. Thus the left-hand-side will be one dimensional if there is only one
orbit and
dim Hompy (V*, Cpaa(O1)) = 1.

Corollary 1. IfdimV =1 then we always have
dim Hom g (V*, Caa(0;)) < dimHomy(V*,C(0;)) < 1.
Thus in that case the multiplier is unique, up to a scalar, on each orbit if it exists.

Example 1. Stein’s result is the case where H = Ry x O(n), N =1, O; = R"\ {0}
and 7 is the tensor product of the trivial representation with a spherical representa-
tion. The subgroup leaving the vector v = (1,0,...,0) fized is H, = O(n — 1) and
the quotient H/H, = R" is a reductive symmetric space.

Example 2. In the theory of prehomogeneous vector spaces, a non-trivial function
on O; contained in the image of Hompg(V*,C(O;)), where (7, V) 1s assumed to be
one-dimensional, 1is called a relative invariant, and the corresponding one dimen-
sional representation (7%, V™) defines a function on H by h — w*(h), which is called
a b-function. We shall give some examples in sections 3.1 and 3.2.

Example 3. If the quotient H/Hy, is a reductive symmetric space then the dimen-
ston of the space Homy (V,C(H/H,,)) is < 1. Hence, if all the orbits H/H, are re-

ductive symmetric spaces, then, by the previous theorem, we obtain dim By (L*(R"),V®

L?(R™)) < N.

The above three examples treat cases where either dimV = 1 or the orbits O;
are symmetric spaces. Later we will consider an example where O(k) x GL(m,R)
is acting on R™. In this example dim B (L*(R"),V ® L2(R")) < 1, even though
dim V can be > 1 and the orbit is not a symmetric space.

We end this section with the following remark for non-unitarizable representa-
tions (7, V).

Proposition 1. By(L*(R"),V ® L2(R")) = {0} if (7,V) is a non-unitarizable
representation of a reductive Lie group H.

For example this is the case if # = SL(n,R) and 7 is the natural representation
of HonV =R" (n>1).

3 Examples

3.1 GL(2,R) acting on R?

We will identify the set of symmetric matrices S = Symm(2) with R? by the map

(

w8

4
— (r,y,2).
e
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and lct GL(2) act on symmetric matrices by I, : X — ¢gXg'. The group GL(2) has
two natural families of one-dimensional irreducible unitary representations:

Tew : g+ sgn(det g)¢| det g|', 2)
where € € Z, and o € R. We define three open subsets in $* = R? by

O++ = {)\ = ()\hAg,)\;g) CALF A > 0, A1y — /\g > 0},
{)\ = ()\1,)\2,)\3) : )\1>\2 — Ag < 0},
@ = {)\:(/\1,/\2,)\3)1)\1+A2 <0,)\1)\2——)\§>0}.

G
T
I

(Thus O, , corresponds to matrices with trace and determinant > 0, O__ to ma-
trices with trace and determinant < 0 and O, _ to matrices with determinant < 0)
Each of them is a single orbit of GL(2), since matrices with the same signature
are conjugate, and their union Oy, U O;.. U O__ is open dense. For 3 € R and
6 € {++,4+—,——} we define a function supported on the orbit corresponding to
the sign delta

; Mg — A% X € Op),
mi(\) = {|0 L 3l (/\(¢ 05)5).

Theorem 3. Let T : L*(R?*) — L%(R?) be a bounded, translation invariant operator,
which satisfies

Toly=mco(g)lygoT (3)
for all g € GL(2). Then, if € = 0 the corresponding multiplier is of the form

m(A) = Cim%  (A) + Com§_(A) + CsmZ_(A),
for some C1,Cy,Cy € C, but if e =1 we get

m(\) = 0.

Proof. By using the bilinear map
(, ):Symm(2) x Symm(2) — R, (u,v) — Trace(uv),

We shall identify S* with Symm(2), and hence also with R®. The contragredient
representation of GL(2) on S* is given by

* — 1\t -1
EA=(9")Ag ",
for A € Symm(2). We note that

(Lgu, GX) = (u, A).
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For ¢ € {++,+—,——} and a € C we obtain
Toa(g)mg(A) = |detg| "mg(A)
| det(g'Ag)| %
= mg(g'Ag)

= mg(lg ),

for A € Os. We see that they generate Homgp,2)(C, Coaa(Os)). Hence the result for
€ = 0 follows from Corollary 1.
To show that there are no non-trivial multipliers for € = 1 we just note that

01
|1 o)“l

and that it leaves some clement of each orbit invariant. For O, we have

(o)1) 0)-65)

which implies that ~m(1,1,0) = m(1,1,0), i.e. m has to be equal to zero on O, ,.

T e )96 )-( )

which implies that —m(0,0, 1
Finally, we look at O__.

01 -1 0 01y (-1 0

10 0 -1 1 0/ \0 -1/’
which implies that —m(—1,-1,0) = m(—1,—1,0), i.e. m has to be cqual to zero on
o __. O

1(0,0,1), i.e. m has to be equal to zero on @, _.

3.2 GL(2) x GL(2) acting on R?

Let us consider R*, with GL(4) acting in the usual way. Consider the map GL(2) x

GL(2) — GL(4) given by
(o)) =0 )

The kernel is K = {(Al5, A 'I,)}, where A € R and I, is the 2 x 2-identity matrix.
The induced action of GL(2) x GL(2) on R* is the same as the natural action on
R? ® R?, which in turn is identified with R*. Another way of portraying R? is as
M(2).
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Theorem 4. Let T : L2(R*) — L2(R*) be a bounded, translation invariant operator,
which satisfies the relation

T ol g) = We,a(gl)ﬁe,a(g‘z) lgrgyoT.

for all g1, g2 € GL(2), where w4 is given by (2). Then the corresponding multiplier
function has the form

m(Ar, Az, A3, Ag) = Csgn(A Ay — AgAz) M Ay — Az)\a‘ia,
where C 1s a constant.

Proof. Observe first that the representation (g1, g2) — Tea(g1)7ea(g2) is also a rep-
resentation of GL(2) x GL(2)/K. Hence, we are in a situation where Theorem 2
applies. Transferring the relation to the Fourier transform side gives us the follow-
ing identity for the multiplier

f((g1,92)A) = sgn(det g1) sgn(det go)°| det g1 [**| det go|** f(X), (4)

whenever g1, g2 € GL(2) and A € R*. By Corollary 1 all we need to do is to verify
that the function m in the statement of Theorem satisfies this invariance relation.
Under the mapping R* — M(2) the vector (A1, A2, A3, A4) maps to the matrix

A= (D M)
A2 A
In this notation, an element (g;, go) acts by multiplication on both sides:

(91, Qz)A = nggf-

It is now obvious that the function m satisfies the identity (4). This completes the
proof. O

3.3 SO(p,q) x R, acting on RP*4
In light of local isomorphisms of Lic groups
SL(2,R) = SO(2,1),

SL(2,R) x SL(2,R) =~ SO(2,2),

the previous two examples may be explained in a more general setting as follows.
For p,q > 1, we let Gy := SOq(p, q), the identily component of the indefinite
orthogonal group

O(p,q) = {9 € GL(p+ ¢q,R) : Q(gz) = Q(z) for any = € RPT},
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where () is the quadratic form given by

2 2_ 2 2
Qz) i =ay+  +T, =Ty = — Ty

We shall consider a direct product group
G = Gl X R_’_,

the group acting conformally on the standard flat pseudo-Riemannian manifold R?¢
equipped with ds® = dz} + - + da? — dz}, | —--- — dz3,,. We define a family of
one dimensional unitary representations of G by

To : G — C*, (h,a) — a** (p+q>3),
Tog: G — ol ((cosht smht) ,a) — qioeith (p+q=2),

sinht cosht

for a, 8 € R.
We also define bounded functions by

QN if Q(\) >0

0 otherwise

Q+()\)m = {

O\ = QU™ if Q(A\) <0
N ' 0 otherwise
Q(i)()\>ia e if QA) >0and £X; >0
* ’ 0 otherwise.
o _ JIAI™ if £A>0,
7)o otherwise.

Theorem 5. Let p,q > 1. Let T : L*(RPTY) — L3(RP*9) be a bounded translation
invariant operator, which satisfies the relation

Ta(g)lgo T (p+q9=2)
Tol,=
Ta6(g)lg o T (p+q=2)
for all g € G. Then the corresponding multiplier function has the form:
m(A) (5)
aQ:+ (N H + Q. (A) 2 (p.g 2 3)
1. — 1. 1.
aQ? (N 3+ Q7 (V) 7 + Qo (M) e (p=1,q>2)
—Li(a+ ~Li(a-
Y e+ a0 -0 p=g=1)
e1=t,e0=%

for some constants ci, s, C3,Ce, o, € C. The case p > 2 and q = 1 is similar to the
second case.
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Remark 1. Here we have treated the connected group SOg(p, q). The cases SO(p, q)
and O(p, q) can be reduced to this one. However, the number of orbits are different.
In particular, for O(p,q) with p,q > 2 we have only one orbit and thus obtain a
solution unique up to multiplication with a scalar.

Proof. Consider the natural action of G = SOg(p,q) X R, on RP*Y. Then, the
following union of open G-orbits

0, u0- (p,q=>3)
oPuoPuo_ (p=1,q>2)
ououvouo) p=g=1)
is dense in RPT9, respectively, where we put
O = {) € RP*" . £Q(A) > 0},
OF = {Ae O, :+X >0} (p=1),
OF ={AcO xr,, >0} (¢g=1).

Owing to Corollary 1, Theorem 5 follows if we are able to show that the functions
m in equation (5) satisfics the relation

—a A > 2
m(g'n) = 4 TetgImd) (P+q=2)
T—a-8(g)m(A) (p+g=2)
for any g € G on each orbit. A simple computation shows that this is indeed the
case. g

4 O(m) x GL(k,R) acting on R™

This section provides an example of Theorem 2 where the invariance conditions
determine multiplier operators up to scalar, even in the setting that (m, V) is not
one dimensional and H-orbits are not symmetric.

Let n =mk (m > k), and H := G4 x Gz = O(m) x GL;(k,R). Then H acts on
R"™ ~ M(m, k; R) by

X —aXb!
for (a,b) € H. We define a subset of M(m, k; R) by
O ={X € M(m, k;R) : rank X = k}.

Then O is open densc in R" ~ M(m, k; R). Furthermore, if X € O, then XX is
positive definite, and in particular det(X*X) > 0.
For a subset I C {1,2,...,m} with |I| = k, we define a function
det(Xij)ier1<j<k
=, (6)
det(XtX)?2

where X;; is the (¢, j)’th minor. We shall regard m as a bounded function on R™.

m;:O—-R, X+



Theorem 6. The set of multipliers {mn;} defines a bounded translation invariant
operator

T : L*(R™) — A*(R™) ® L*(R")
which s characterized, up to a scalar, by the intertwining property (1). Here, we
regard the k-th exterior tensor AF(R™) as an H-module, by extending the natural
action of O(m) on A¥(R™) trivially to the second factor GL, (k,R).

Remark 2. If k = 1 then det(X'X)z is nothing but the norm |X| of a vector
X eR"andm;(X) = % forI = {i}. Thus, Theorem in the case k = 1 corresponds
to Stein’s Theorem characterizing the usual Riesz transforms.

Proof. We shall apply Theorem 2. It follows from the Gram-Schmidt orthogonaliza-
tion procedure that H acts transitively on O. Since O is open dense in R™, Theorem
6 is a consequence of the following lemma. 0

Lemma 1. For a representation © of O(m), we shall denote by 7 the extention of
7 to H by letting GL, (k,R) act trivially. For any irreducible (finite dimensional)
representation m of O(m),

HomH(%, Obdd(o)) S 1.
If m is the natural representation of O(m) on the exterior algebra AF(R™), then
HOIIIH(%, ded(O)) = 1.

and the image of T in Cpaqe(O) is spanned by the basis {my : || = k} as a complex
vector space.

Remark 3. In this case the dimension of the representation space is no longer
one dimensional so Corollary 1 does not apply. Also the orbit is not a reductive
symmetric space so it does not fit with example 3 either. Nevertheless, Theorem 6
asserts that one can characterize invariant multipliers up to scalar by the invariance
condition. The idea of the proof is to show that there is a reductive symmetric space
for which the dimension of the space of homomorphisms dominate the dimension of
the space of homomorphisms for our space.

Proof. We write C(O)%2 for the set of Gy-invariant continuous functions of @. Then,
C(0)%2 is a submodule of C(Q), and we have a natural bijection:

Homy (7, C(0)) ~ Homg, (7, C(O)%?).

Let us consider the right-hand side. To see O as a homogeneous space of H =

: I .
G1 X G5, we note that the isotropy subgroup L at <Ok> € O, is given by

L= {((8 2) ,b) :beSO(k),ceO(m—k)}

~ SO(k) x O(m — k).

18
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Then we shall identify © with the homogeneous space H/L.
Let . : G, — H, a ~ (a,l;) be the natural injection. Then, it is not difficult to
see that the pull-back ¢* induces an isomorphism of G;-modules:

C(H/L)%? ~ C(G1/t*({G1 x L) N L(1, xG2))).
In our setting, L(Iy xGz) = (SO(k) x O(m — k)) x GL, (k, R), and therefore
C(0)%2 = C(O(m)/(SO(k) x O(m — k))).
Thus we have shown
Homy (7, €(0)) =~ Homom)(m,C(0O(m)/(SO(k) x O(m — k)))).

Since O(m)/(SO(k) x O(m — k)) is a reductive symmetric space, the dimension of
the right-hand side is not greater than one. Hence,

dim HOIIIH(%,C;,,M(O)) S dim HOII]H(%,C(O)) S 1.

This shows the first statement. The second statement easily follows from the explicit
construction of the base mj. O

5 LP-boundedness

In this section we will consider the question of LP-boundedness for some of the
operators that have appeared in the examples. Standard multiplier theory tells us
that a multiplicr operator bounded on L?(R™) must also be bounded on L*(R™), sce
for example [H] Corollary 1.3. There is no general theory for the converse statement.
Hence, we are tempted to ask for which set of p’s the multiplier operators we have
seen remain bounded.

Theorem 7. The operators characterized by Theorem 3 in section 3.1 are bounded
only on L?(R?).

Proof. 1f the multiplier operator with multiplier m‘f in section 3.1 is bounded on
LP(R3) then also the operator corresponding to mgﬁ is bounded on the same space,
because it is obtained by taking the complex conjugate which prescrves L. Com-
posing the operators shows that the operator, given by the characteristic function
of the orbit as multiplier, must also be bounded on L?(R?). The case § = +— can
be reduced to the others (and the argument below) by taking the identity operator
minus the operator. For § = ++ or = —— it is easy to see that the orbit is a rotated
conc. Now, by taking the intersection with a suitable hyperplane we will see that p
has to be equal to 2. This follows from deLeeuw’s Theorem [T], Theorem 2.4, which
says that the restriction of an LP-multiplier to a hyperplane is also an LP-multiplier,
and Feflerman’s result that the characteristic function for the unit ball is a bounded
multiplier only for p = 2 if the dimension is at least 2, see [F1]. O



In the same way we find that

Theorem 8. The operators characterized by Theorem 4 in section 3.2 are bounded
only on L*(RY).

In this case the relevant operator, after a suitable change of variables, is the
one corresponding to the characteristic function of the set {X\;Af + A3 > A2 + A2}
Here we do not intersect with a hyperplane to get a contradiction, but a plane of
codimension 2.

It also follows in a similar manner that

Theorem 9. 1) The multiplier operator given by the function m defined by equation
(5) in Theorem 5 is bounded only on L2(RP*Y), if p+¢q > 3.
2) If p+ q = 2, the operator is bounded on L™(R2?), for all 1 < r < oo.

Proof. When p + ¢ > 3 the guiding operator is the one given by the characteristic
function of the set {A\; A7 +... 4+ A2 > A2 + ... A2, } where we might assume that
p > q. The first result then follows as before.

If p = ¢ = 1 we are considering the multiplier

(M

e1=%,e2=%

We want Lo show that the connected multiplier operator is bounded on L"(R?) for
all 1 < r < o0. To do this it is enough to consider the factors separately

ms(A) = (A + M),
m3 (A = (A — A

Clearly, they are all simple rotations of the multiplier

Al if A
7TL(A)={| 1} 1 1>O

0 otherwise.

But this multiplier is just the identity in one variable and a one-dimensional mul-
tiplier, well-known to be bounded on all L™ for 1 < r < o0, in the sccond variable,
see [S] page 96. Hence, the resulting operator is also bounded on L for 1 < r < oo,
which proves the second statement of the Theorem. O

It is not known to the authors for which p the operators characterized in The-
orem 6 are LP-bounded except for the special case k = 1. We note that if £ = 1
the transforms are nothing but the Riesz transforms, which are well-known to be
bounded on L? for 1 < p < oo, see [S],page 57 and Theorem 3, or [T], page 269.
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