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MONOMIAL RELIZATION OF CRYSTAL BASES FOR SPECIAL LINEAR
LIE ALGEBRAS

JEONG-AH KIM* AND DONG-UY SHIN'

ABSTRACT. In this article, we give a new realization of crystal bases for finite dimensional
irreducible modules over special linear Lie algebras in terms of the monomials introduced
by Nakajima. We also discuss the connection between this monomial realization and the
tableau realization.

INTRODUCTION

The theory of erystal basis for integrable modules over quantum groups developed by Kashi-
wara [6, 7] has played a important role in representation theory or mathematical physics.
Roughly speaking, crystal bases are bases at ¢ = 0 and have a structure of colored oriented
graphs, called the crystal graphs. Crystal graphs have many nice combinatorial properties
reflecting the internal structure of integrable modules. Moreover, crystal bases have a re-
markably nice behavior with respect to taking the tensor product. Therefore, it is important
to give the explicit crystal structure of representations.

In [13], Littelmann gave a description of crystal bases for all symmetrizable Kac-Moody
algebras using the path model theory {14, 15]. In [9], Kashiwara and Nakashima gave an
explicit realization of crystal bases for finite dimensional irreducible modules using Young
tableaux in gl, and their variants in the classical Lie algebras. In [3, 4], Kang, Kashiwara,
Misra, Miwa, Nakashima and Nakayashiki developed the theory of perfect crystals for general
quantum affine algebras and gave a realization of crystal graphs for irreducible highest weight
modules over classical quantum affine algebras with arbitrary higher levels in terms of paths.
Moreover, the crystal bases for basic representations for quantum affine algebras are charac-
terized as the sets of reduced proper Young walls [2] and the crystal bases for the classical Lic
algebras were realized as the set of reduced proper Young walls satisfying some conditions
which appears as a connected component of the crystal basis of the basic representation over
affine Lie algebras when we remove all O-arrows [5].

In [10], Kashiwara and Saito gave a geometric realization of the crystal graph B(oco) of
Uy (p) as the set of irreducible components of a lagrangian subvariety £ of the quiver variety
9 and in [19], Saito extended their idea to the crystal base B(\) of irreducible highest weight
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modules of U,(g). In [17], while studying the structure of quiver varieties, H. Nakajima dis-
covered that one can define a crystal structure on the set of irreducible components of a
lagrangian subvariety 3 of the quiver variety 901. These irreducible components are identified
with certain monomials, and the action of Kashiwara operators can be interpreted as mul-
tiplication by monomials. Moreover, in [8] and [18], M. Kashiwara and H. Nakajima gave a
crystal structure on the set M of monomials and they showed that the connected compo-
nent M(\) of M containing a highest weight vector M with a dominant integral weight A
is isomorphic to the irreducible highest weight crystal B(A). Therefore, a natural question
arises: for each dominant integral weight A, can we give an explicit characterization of the
monomials in M(A)?

In this paper, for any dominant integral weight A, we give an explicit description of the
crystal M () for special linear Lie algebras. In addition, we discuss the connection between
the monomial realization and tableau realization of crystal bases given by Kashiwara and
Nakashima. More precisely, let T'(\) denote the crystal consisting of semistandard tableaux
of shape A\. Then we show that there exists a canonical crystal isomorphism between M(X)
and T'(\), which has a very natural interpretation in the language of insertion scheme.

This article is based on a joint work with Seok-Jin Kang at Korea Institute for Advanced
Study. An enlarged version of this article with complete proofs will appear in J. Algebra.

Acknowledgments. We would like to express our sincere gratitude to Professor Susumu
Ariki and RIMS at Kyoto University for their invitation, hospitality and support during the
workshop “Expansion of Lie Theory and New Advances”.

1. NAKAJAMA’S MONOMIALS

Let I be a finite index set and let A = (a45); jer be a generalized Cartan matriz. We denote
by U,(g) the quantum group associated with the Cartan datum (4, PV, P,II,II), where b is
the Cartan subalgebra, PV is the dual weight lattice, P = {\ € §*|A\(PY) C Z} is the weight
lattice, ITY = {h;|1i € I} is the set of simple coroots, and I1 = {«;|i € I} is the set of simple
roots. We also denote by A; € h* (i € I) the fundamental weights. See [1] for further details.

For a U,(g)-module M in the category O;ns, there exists a unique crystal base (L, B), which
has nice combinatorial properties reflecting the internal structure of M. See for example
(1, 6, 7]. In this section, we recall the crystal structure on the set of monomials discovered
by H. Nakajima [18]. Our exposition follows that of M. Kashiwara [8].

Let M be the set of monomials in the variables Y;(n) for ¢ € I and n € Z. Here, a typical
elements M of M has the form M = Y;,(n1)* ---Yj, (n,)%, where iy € I,ng,a; € Z for
k=1,---,r. Since Y;(n)’s are commuting variables, we may assume that n; <ng <.-- < n,.
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For a monomial M =Y;, (n1)* ---Y; (n,), we define

wt(M) = arhi, = a1hy, + -+ arhy,,
k=1

¢4M):mmd{Z;MJISSST}UmHa

ip=i

(1.1)

T

(M) = max ({ — Z ar | 1<s<r—1}U{0}).

k=s41
=i

It is easy to verify that ¢;(M) > 0,&;(M) > 0, and (h;, wtM) = ¢;(M) — e;(M).
First, we define

8
ny = smallest n, such that ¢,(M) = }: Ak,
k=1

i =1

(1.2) -
ne = largest n, such that ,(M) = — Z aj.

k=s+1
ip=i

In addition, choose a set C = (c;j)ix; of integers such that c;; + ¢j; = 1, and define

Ai(n) = Yi(n)Yi(n + 1) [T Y5 (n + ).
j#i

Now, the Kashiwara operators &;, f; (i € T) on M are defined as follows:

13) (M) = 0 ) %f wi(M) =0, &(M) = 0 ?f (M) =0,
A,—(nf) 1.7\4 if (pi(M) > 0, Ai(ne)M if 8i(]\/f) >0

Then the maps wt : M — P, ¢;,6; : M — Z U {—o0}, &, fi : M — MU {0} define a
Uq(g)-crystal structure on M [8, 18].
Moreover, we have

Proposition 1.1. [8] Let M be a monomial with weight A such that &M =0 for alli € I,
and let M(X) be the connected component of M containing M. Then there exists a crystal
isomorphism from M(X) to B(X) sending M to vy.
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2. CHARACTERIZATION OF M(A)

In this section, we give an explicit characterization of the crystal M(\) for special linear
Lie algebras. Let I = {1,--- ,n} and let

2 -1 0 0

-1 2 0 0

A = (aij)ijer = R
0 0 .. 2 -1

0 o --- -1 2

be the generalized Cartan matrix of type A,. We define by U, (g) = Uy(sl,41) the correspond-
ing quantum group. For simplicity, we take the set C' = (¢;j)ix; to be ¢;; = 0if i > 7, 1 if
i < j, and set Yp(m)*! = Yp41(m)*! =1 for all m € Z. Then for i € I and m € Z, we have
(2.1) Ai(m) = Yi(m)Yi(m + 1)Y;_i(m + 1) 7 Y (m) ™

To characterize M()), we first focus on the case when A = Aj. Let My = Yi(m) for m € Z.
By (1.2), we see that é;My = 0 for all ¢ € I and the connected component containing My is

isomorphic to B(Ay) over Uy(g). For simplicity, we will take My = Yi(0), even if that does
not make much difference.

Proposition 2.1. Fork=1,--- ,n, let My = Yx(0) be a highest wéz’ght vector of weight Ay.
Then the connected component M(Ag) of M containing My is characterized as

M(Ak) = { H Yaj(mj_l)_lej(mj) ! (ii) k= mo > MMy > <+ > Mp_1 > My = 0,
j=1

(i)O_<_a1<b1<a2<---<ar<b,~<n+1, }
(ii)a; +mj_1 =bj+my forallj=1,--- ;7 < k.

Remark 2.2. If we take My = Yi(NN), then we have only to modify the condition for m;’s as
follows:

k+N=mg>my>- > mMp_1 >m,=N.

For i € I and m € Z, we introduce new variables
(2.2) X;(m) = Yi_1(m + 1)71Y;(m).

Using this notation, every monomial M = H§=1 Yo, (mj_l)'lej (mj) € M(Ag) may be
written as ,
M= H Xaj+1(mj-1 — 1) Xo42(mj—1 — 2) -+ - Xp,(my).
=1
For example, we have My = Y, (0) = X3 (k — 1) Xa(k — 2) - - - Xi(0).
Now, it is straightforward to verify that we have another characterization of the crystal
M(Ag).

Corollary 2.3. Fork=1,--- ,n, we have
M(Ak) = {Xil(k'* I)Xiz(k—Q)-uXik(OH 1<ii<ig< - < < n—}—l}.
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Remark 2.4. If we take My = Y;(IV), then we need to replace X;(m) by X;(m + N). That is,
MAL) ={Xs(N+k-1)X;,(N+k—-2)-- Xy, N1 <41 <ig<--- <ip <n+1}.

We now consider the general case.

Definition 2.5. Set M = [, Ya,(m¢)~ 1Y, (n:) with a; + my = by + ny.
(a) For each k = 0,--- ,n—1, we define M (k)™ to be the product of Y,,(m;) 1Y}, (n¢)’s in
M with n; = k; that is,
M(k)+ = H cht(mt)—'lybt(nt) = Hnt (W)_lnt(k)'
tine=k t

(b) For each k = 1,--- ,n, we define M(k)™ to be the product of Y, (m;)~1Y3, (n4)’s in M
with m; = k; that is,

M(k)_ = H Yat (mt)_lnt(nt) = HY(M (k‘)_llfbt(nt)'
t

t:me=k
Now, for M (k)" =[], Ya,(m:) 'Y, (k), we denote by At (M (k)) the sequence (b;,, b;,, - - - , b;.)
whose terms are arranged in such a way that n+1 > b;, > b;, > --- > b; . Similarly, for

M (k)™ =TI, Ya,(k)"'Y¥s,(ns), we denote by A~ (M (k)) the sequence (aj,,aj,, - ,a;,) whose
terms are arranged in such a way that n +1>a;, > aj, > --- > a;,.
Definition 2.6. Let (A, -, A;) and (u1,--- , us) be the sequences such that
AiZzdipn (1<i<r=1), py2pp1 (1<j<s—1).
We define (A1, -+, Ap) < (1, -+, ) if
r<sand \; <pg;foralli=1,---r.
Theorem 2.7. Let A = a1Ay + -+ + apA, be a dominant integral weight and let My =

Y1(0)% - - - Yo (0)%~ be a highest weight vector of weight A in M. The connected component
M(X) in M containing My is characterized as the set of monomials of the form

Hmt(mt)—lnt(nt)

with a; + my = by + ny satisfying the following conditions:
() AY(M(k)) < A\~ (M(k)) fork=1,--- ,n—1.
(ll) If )\+(M(k)) = (bi17b’i2a e abir) and )‘_(A{(k)) - (a‘jlaaj'p oo 1aja)’ then s —r = ag.-

Remark 2.8. The crystal M(A) is obtained by multiplying ax-many monomials in M(Ay)
(k=1,---,n). That is,

MA)={M =My Mg M- Mpa, | My € M(Ag) for 1 <k <n, 1<1<ag).

Example 2.9. Let A be a dominant integral weight Ay + 2As + A3 of A4 and let M =
Y1(0)Y1(1)Y1(2)71Y2(1)"1Y3(0)3. Then M can be expressed as

M = Y,(3)71Y5(0)¥1(2) 1 Y3(0)Yo(2) Y1 (1)Y2(1) "1 Y3(0)Yo(1) " Y1 (0).
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Therefore, we have
M(0)* = Y5(3) 7 Y3(0)Y1(2) ' ¥3(0)Ya(1) "1 ¥3(0)Yo(1) ' ¥1(0),
M1)T =v(2)"'v1(1), M@t =M@t =

and

M(1)” = Y2(1)7'Y3(0)Yo(1) " ¥1(0),
M(2)” = Y1(2) ' Ya(0)Yo(2) "Y1 (1),
M(3)” = Yo(3)~'¥3(0),
M) =1
It is easy to see that M satisfies the conditions of Theorem 2.7. Therefore, M € M()).
Definition 2.10. Set M =[], Xu, (n;).

(i) For each k = 1,--- ,n — 1, we define M (k) by the monomial obtained by multiplying
all Xp,(n;) with n; = k in M, that is,

Mk)y =[] Xo,(ns) =[] Xe, (%)
Jm;=k J
(ii) For M (k) = []; Xp;(k), we define by A(M(k)) the sequence (bj,,b;,,--- ,b;,) whose
terms are arranged in such a way that n+12>b;, > b;, > --- > b;,.

Corollary 2.11. Let A = a1A1+- - -+anA,,. Then M()) is expressed as the set of monomials

v= T xom

B
such that
(i) for each j =0,1,--- ,n—1,
n+1
Zmij =041+ + an,
i=1

(ii) for each j=1,--- ,n—1, A(M(5)) < M(M(F - 1)).

Now, consider the condition (ii) in Corollary 2.11. For M =[] 1gigntt Xi(j)™4, there are
m, j -many i entries in the sequence A(M ()). Therefore, the condmon )\(M (7)) < AM(M(j-1))
implies that

Min=0, mij =0 for2<i<n+1,n-i+2<j5<n,

(2.3) nil nil
kaj_ ka]1 f()rz—l ,n—{—l’j:l’...’n
k=it1

Therefore, Corollary 2.11 is expressed as follows:
Corollary 2.12. Let A = a1A1+---+anA,. Then M()\) is expressed as the set of monomials
w= I xom

1<i<ntl
0<5<n—1
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such that
(i) ml,.n:O, mijIO for2<i<n+1,n—-i+2<j<n,

n+1

(i) Zrmj =ajy1+--+an foreachj=01,---,n-1,
=1
n+1 n+1

(iii) ka,j < Z mgj1 fori=1,--- n+1,5=1,.-- n.
k=i k=i+1

Example 2.13. Let A be a dominant integral weight A; + 2A; + A3 of A4 and let M be a
monomial ¥;(0)Y1(1)Y1(2)71Y2(1)"1Y3(0)? given in Example 2.9. Then M can be expressed
as

X1(2)X2(1)2X1(1) X3(0)° X1 (0)
and so it is easy to see that M satisfies the conditions of Corollary 2.12. Therefore, M €
M(A).

3. THE CONNECTION WITH YOUNG TABLEAUX

In this section, we give the correspondence between monomial realization and tableau
realization of crystal base for the classical Lie algebra g = A,. To prove the results in this
section, we will adopt the expression of monomials given in Corollary 2.11.

Before we give the correspondence between monomial realization and tableau realization,
we introduce certain tableaux with given shape which is different from Young diagram given
by Kashiwara and Nakashima.

Definition 3.1. (i) We define a reverse Young diagram to be a collection of boxes in right-
justified rows with a weakly decreasing number of boxes in each row from bottom to top.
(i1) We define a (reverse) tableau by a reverse Young diagram filled with positive integers.
(iii) A (reverse) tableau S is called a (reverse) semistandard tableau if the entries in S are
weakly increasing from left right in each row and strictly increasing from top to bottom in
each column.

Note that a reverse Young diagram is just a diagram obtained by reflecting Young diagram
to the origin. For a dominant integral weight A, let S(A) (resp. T())) be the set of all (reverse)
semistandard tableaux (resp. semistandard tableaux) of shape A with entries on {1,2,--- ,n},
which is realized as crystal basis of finite dimensional irreducible modules [9, 12]. For the
fundamental weight A (k=1,---,n), we have T(Ag) = S(Ag).

Let A = a1A1 + --- + ap A, be a dominant integral weight and let M be a monomial in
M(X). Then M is expressed as

M= [ xGm.

1<i<n+1
0<j<n—1
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We associate a semistandard tableau Sy, with m;;-many ¢ entries in (j + 1)-st row (from
bottom to top) for i = 1,--- ,n+1, j = 0,1,--- ,n — 1. Indeed, by the condition (ii) of
Corollary 2.12, the tableau Sjs is of shape A\. Moreover, the condition (i) and (iii) imply that
Sps is semistandard.

Conversely, let S be a tableau of S()) with m; j-many ¢ entries in the j-th row (from

bottom to top) fori=1,--- ,;n+1and 7=1,--- ,n. We associate a monomial
v [T %G-1m.
1<i<n+1
igisn

Then since S is semistandard, it is easy to see that My satisfies the condition (i)-(iii) of
Corollary 2.12. Moreover, we have

Theorem 3.2. Let A = ajA; + - - + anAp be a dominant integral weight. Then there is a
crystal isomorphism ¢ : M(A) — S(N).

Example 3.3. Let A be a dominant integral weight A; + 2As + A3 of Az and let M be a
monomial Y] (3)71Y5(0)2Y3(1)™}, then it is expressed as

M = X2(2) - (X3(1)X1(1)?) - (X4(0)* X2(0)").

Then we have the semistandard tableau

Sy = 1{1
[2f2]4

€ S(A1 +2Ao + Ag).

[ 2]
3
4

We have the following proposition between S(A) and T'(A).
Proposition 3.4. [11, 12] For a dominant integral weight A = a1A; + - - - + apA,, there is
a crystal isomorphism ¢ : S(X) — T(X) for Uy(An)-module given by
‘p(S) = Sn,l — Sn,Z — = Ona, T Sn—l,l e Sl,al,
where S; ; € S(A;) is the column of S of length i (1 <i<n, 1 <j < a;) from right to left.
Corollary 3.5. Let A = a1A1 + - + anAn be a dominant integral weight. There is a crystal
isomorphism ¢ : M(A) — T(A).

Example 3.6. Let M be a monomial Y7(3)7'Y5(0)?Y3(1)"! of A3 given in Example 3.3.
Then we have

P(M) = S31 « Sz1 « S22« S1.1
]

2
.
=3 e |2
n'
[1]=14]
2
L4

1]2

213
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Conversely, let T' be a tableau of T(A; + 2A3 + A3)

1[1]2]4]
T ={2}21|3 .
4]

By applying the reverse bumping rule to the entries from bottom to top and from right to

left, we have the following sequence
(2,3,4,1,4,1,2,2).

Therefore, we have

and since

P71(S31) = X2(2)X3(1)X4(0), ¥~ (S21) = X1(1)X4(0),
P~1(Sa,2) = X1(1)X2(0), %1 (S1,1) = X2(0),
we have
¢ HT) = 7 (S5,)9 7 (S2,1)9 7 (S22)0 7 (S1.1)
= Y1(3)7Y2(0)?Y3(1) "t
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