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Abstract

This paper deals with contact-force control of a one-link flexible arm whose tip is constrained to a rigid
environment. To realize the contact-force control, a boundary controller is proposed based on a dynamic
model represented by an infinite dimensional model. In particular, the proposed controller does not need
the physical parameters in its implementation, and this results in the non-collocated boundary controller.
The closed-loop system is analyzed in an appropriate Hilbert space, and it is shown that the exponential
stability of the closed-loop system is obtained by setting the feedback gains to locate the eigenvalues of the
closed-loop system on the complex left half-plane. In addition, in an attempt to realize the better control
performance, another controller which is a modified version of our controller is proposed. Finally, the
stability, robustness to the uncertainty in physical parameters, and disturbance response of the closed-loop
system are investigated by numerical simulations.

Keywords: Flexible arm, contact-force control, non-collocated boundary control

1. Introduction

A flexible arm is used in various fields because of its low energy consumption and a small moment of
inertia. For example, the use of a robotic arm with the small moment of inertia is desired in the medical
field from the safety points of view [1], and the use of lightweight arms for reducing the energy consumption
is expected in the industrial field [2]. Further, in the field of bio- and nano-technologies, the flexible arm5

is used for holding a small object [3], and the flexible lever is utilized for measuring the surface shape of a
microscopic object [4]. At these points, the flexible arm has many advantages over the rigid arm. However,
the flexible arm raises undesirable vibration due to the low rigidity of the arm, and this leads to the positional
accuracy problem. The equation of motion of the flexible arm is a partial differential equation (PDE), and
many types of research have focused on vibration control of the flexible arm modeled by PDE [5–14].10

To allow a flexible arm to perform complicated tasks such as gripping an object and constructing a large
space structure, it is necessary to control the contact-force between the arm and the object as well as the
vibration/position control of the flexible arm. Therefore, some researches have discussed the contact-force
control of a flexible arm to carry out such tasks [15–23].

Epponger and Seering suggested that the link flexibility leads to instability of the system under the15

contact-force control in [17], and this assumption was verified in [18] through the stability analysis of a
flexible arm modeled by finite dimensional approximated model. Since then, several controllers have been
proposed for the contact-force control problem of flexible arms based on the finite-dimensional model [19, 20].
However, the finite dimensional model might lead to spillover instability because the model neglects the
infinite modes. In addition, the dimensions of the controller increase with increasing numbers of the modes20
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which are considered in the controller design model, and thus the controller tends to be complicated. From
these points of view, some researches have discussed the contact-force control problem of the flexible arm
using an infinite dimensional setting. For example, F. Ching et al. and F. Matsuno et al. used an infinite
dimensional model and they proposed controllers that asymptotically stabilize the closed-loop system [21, 22].
Further, T. Endo et al. proposed a controller for the contact-force control of the flexible arm, and they25

proved the exponential stability of the closed-loop system [23]. However, these controllers use the physical
parameters such as length and flexural rigidity of flexible arm in the implementation of the controller, and
thus these controllers could not realize the desired contact-force when there is uncertainty/deviation in the
physical parameters.

To solve this problem, we propose a controller that does not need the physical parameters in its imple-30

mentation. Although some previous studies have considered robust control based on infinite-dimensional
models [24, 25], the proposed controllers have required the observer [24] or the full state feedback [25]. On
the other hand, our proposed controllers do not need the physical parameters in the implementation of
the controller, and thus our controllers are robust against the physical parameter uncertainty without the
need for observers or full state feedback. Besides, there seems to be no work dealing with robust control35

in the force control problem of flexible arms based on the infinite-dimensional settings as in this paper. In
particular, we construct the controller by the sensor feedback of the force sensor installed at the arm-tip and
the damping term, and this results in the non-collocated boundary controller because of the non-collocation
of contact-force sensing and motor actuation. Some works proposed collocated boundary controller for the
vibration control of the flexible structures based on the infinite-dimensional model [25–27]. On the other40

hand, some previous researches proposed non-collocated boundary controller for the position or vibration
control of a flexible structure based on an infinite dimensional setting [28–33], and L.-Y. Liu et al. proposed
a non-collocated controller for the contact-force control of a flexible arm [34]. However, to the best of our
knowledge, there has no non-collocated boundary controller, which exponentially stabilizes the system for
the contact-force control of flexible arm based on the infinite dimensional settings. It is better to construct45

an exponentially stabilizing controller with regard to its control performance.
In this research, we discuss the contact-force control of a one-link flexible arm based on the infinite di-

mensional model. To realize the controller that does not need the physical parameters in the implementation
of the controller, we propose the non-collocated boundary controller consisting of the sensor feedback of the
force sensor and the damping term. Thus, even if there is uncertainty/derivation in the physical parameters,50

we can output the target force, unlike the previous research [23]. Then, we analyze the eigenvalue of the
closed-loop system, and we show that the exponential stability of the closed-loop system can be obtained
by designing appropriate feedback gains. Further, we obtain the range of feedback gains that makes the
system exponentially stable. It is well known for the non-collocated controller that the large feedback gain
makes the closed-loop system unstable, and we need to set feedback gains appropriately. In addition, in an55

attempt to realize the better control performance, we propose another controller which is a modified version
of our controller. Finally, we investigate the stability, the robustness to uncertainty in physical parameters,
and disturbance response of the closed-loop system by numerical simulations. The preliminary version of
this paper has been published [35]. This extended version contains a new controller which is a modified
version of our controller. This modified controller is proposed for getting better control performance than60

our controller, and the exponential stability of the closed-loop system is analyzed by the eigenvalues of the
closed-loop system. In addition, this paper contains new simulation results containing the analysis of root
locus of the closed-loop system and the disturbance responses.

The contributions of this paper are summarized as follows. First of all, we can point out of the following
two points as the features of this paper: (i) The contact-force is controlled by flexible arm based on the65

infinite-dimensional model, and (ii) the exponential stability of the closed-loop system is proved theoretically.
These features have also been achieved in previous studies [23]. However, in addition to these features, this
paper has the following feature: (iii) the proposed controllers can output the target force even if there is
uncertainty/derivation in the physical parameters, that is the controllers are robust against the uncertainty
in physical parameters. The feature (iii) has not been realized in [23]. The research with the features (i)–(iii)70

is a novel study. Besides, to realize the feature (iii), we construct the non-collocated boundary controller.
The rest of the paper is organized as follows. The controlled system is presented in Section 2. Section 3
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proposes a boundary controller and proves the exponential stability. The modified controller is proposed
in Section 4. The numerical simulation results are presented in Section 5. Finally, Section 6 contains our
conclusions.75

2. Controlled System

2.1. System description

Figure 1: A flexible arm making contact with a rigid environment.

A controlled system is shown in Fig. 1. In this figure, O − XY is an absolute coordinate system, and
O − xy is a local coordinate system that rotates with the control motor. The flexible arm is clamped to
the control motor, and the tip of the arm is constrained to a surface of a rigid environment. Thus, the80

flexible arm is rotated in the direction of the arrow in Fig. 1 by the control motor, with the tip fixed to the
environment in the Y -axis direction as shown in Fig. 1. Here, note that the tip of the flexible arm is not fixed
in the X-axis direction. Let θ(t) and τ(t) be the rotation angle and the torque of the motor, respectively.
Let w(x, t) be the transverse displacement of the flexible arm at the position x and the time t, and w(x, t)
is positive in the y-axis positive direction. The flexible arm, with linear density ρ, flexural rigidity EI, and85

length L, satisfies the Euler-Bernoulli beam hypothesis, and w(x, t) and θ(t) are assumed to be small.
The tip mass is contacted with the surface of the rigid environment, and thus the following geometric

constraint is obtained:

ψ(t) := w(L, t) + Lθ(t) = 0. (1)

To obtain the equations of motion of the controlled system, we derive the kinetic energy K(t), the potential
energy P (t), and the virtual work δW (t). Let f(t) be a Lagrange multiplier associated with the constraint

(1). Then, Hamilton’s principle and the Lagrange multiplier gives
∫ t2
t1
δ(K(t)−P (t)+W (t)−f(t)ψ(t))dt = 0,

where δ is a variation, and t1 and t2 are time. By simple calculations, the following equations of motion are
obtained as shown in [23]:

ρ [wtt(x, t) + xu(t)] + EIwxxxx(x, t) = 0, (x, t) ∈ (0, L)× R,
w(0, t) = wx(0, t) = wxx(L, t) = 0,

EIwxxx(L, t) = f(t),

(2)

where Lagrange multiplier f(t) is the contact-force at the tip to the surface of the environment. The contact-
force f(t) is the force that the flexible arm applies to the environment. The subscripts x and t denote the
partial derivative with respect to the position x and the time t, respectively. The first equation in (2)
describes the bending vibration of the flexible arm and others represent the boundary conditions. Here, we90

consider the acceleration of the control motor as the control input as shown in [5, 20], that is θ̈(t) = u(t).
The assumptions used in the controlled system are summarized as follows.
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Assumption 1. We assumed that w(x, t) and θ(t) are small, and the flexible arm satisfies the Euler-
Bernoulli beam hypothesis. In addition, the control input u(t) to the system is the acceleration of the motor,
θ̈(t) = u(t).95

In this paper, the flexible arm consists of a beam. The beam is assumed to be made of metal and has
high rigidity, and thus we assumed that w(x, t) is small. When such beam is used, we can consider that
the transverse displacement w(x, t) is small with respect to the length of the beam. Since w(x, t) is small,
the rotational angle of the motor θ(t) can be considered to be small due to the geometrical condition (1).
On the other hand, we assumed that the control input u(t) to the system is the acceleration of the motor,100

θ̈(t) = u(t). This can be realized by using the speed reference-type servo amplifier of the motor. For the
implementation of the controller using the speed reference-type servo amplifier of the motor, see [5, 20] for
more details.

2.2. Error system

Let wd(x) be the value of w(x, t) at the equilibrium point satisfying f(t) = fd. Then, wd(x) is derived
as

wd(x) =
fd

6EI
x2(x− 3L), (3)

where fd is the desired contact-force and is a constant. Here, we introduce the following new variables:{
fe(t) = f(t)− fd,

we(x, t) = w(x, t)− wd(x).
(4)

Further, we introduce the following variable transformations to eliminate xu(t) in the first equation of (2):

L− x = x, we(x, t) =

∫ x

0

∫ s

0

y(L− s1, t)ds1ds. (5)

By applying (1), (4), and (5), the equations of motion (2) can be rewritten as follows:
ρytt(x, t) + EIyxxxx(x, t) = 0, (x, t) ∈ (0, L)× R,
y(0, t) = yxx(0, t) = yxx(L, t) = 0,

EIyxxx(L, t) = ρu(t),

(6)

and the following algebraic relation:

EIyx(0, t) = −fe(t). (7)

3. Contact-Force Control105

3.1. Controller design

The control objective of the contact-force control is to propose a controller satisfying

f(t)→ fd. (8)

Further, in this paper, we propose a controller satisfying the following conditions 1) and 2).

1) The controller is robust against uncertainty in physical parameters.

2) The closed-loop system under the proposed controller can be exponentially stable.
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To meet these requirements, we propose the following boundary controller:

u(t) = −kp
ρ

[
f(t)− fd

]
+
kd
ρ
EIwxxt(0, t), (9)

where feedback gains kp and kd are any positive constants. Here, note that the control objective does not
include the control of the X-axis tip position of the flexible arm. Thus, our proposed controllers (9) and (48),
described later, do not have the position control term. Now, we introduce constants k′p and k′d satisfying

k′p = −kpρ and k′d = EI
ρ kd. Since kp and kd are any positive constants, and thus k′p and k′d are any positive

constants too. Then, the boundary controller (9) is rewritten as follows:

u(t) = k′p
[
f(t)− fd

]
+ k′dwxxt(0, t). (10)

The controller consists of two terms. The first term is the feedback of the tip force to achieve the control
objective (8). The second term is the time derivative of strain at the root of the flexible arm to satisfy
the condition 2). In addition, we can measure the tip force by the force sensor. The strain at the root of
the beam can be measured by the strain gauge. Therefore, we do not need to use physical parameters in
the implementation of the controller. Even if there is a deviation in the physical parameters such as the
length and flexural rigidity of the arm, we can achieve the control objective (8), and the controller satisfies
the condition 1). On the other hand, the force sensor is attached on the tip of the beam, and the motor
is mounted on the root of the beam. This results in the non-collocated boundary controller because of the
non-collocation of sensing and actuation. Thus, the closed-loop system in this research is non-collocated.
Here, note that we assume that the speed reference-type servo amplifier of the motor is used to implement
the controller as shown in [5, 20]. Thus, the speed reference voltage for the amplifier of the motor Vref (t) is
given by

Vref (t) = kmθ̇(t), (11)

where km is a constant gain of the servo amplifier. By setting θ̇(0) = 0, the controller (10) can be rewritten
as

Vref (t) = kmk
′
p

∫ t

0

[
f(s)− fd

]
ds+ kmk

′
dwxx(0, t). (12)

Substituting (12) into (11) yields θ̈(t) = k′p
[
f(t)− fd

]
+ k′dwxxt(0, t), and thus we can implement the110

controller (10) by using the speed reference-type servo amplifier of the motor. As we mentioned earlier, we
can measure the tip force and the strain at the root of the arm by the force sensor and the strain gauge,
respectively. Therefore, we can easily implement the controller without the use of physical parameters. For
more details of the speed reference-type servo amplifier of the motor, see [5, 20].

3.2. Closed-loop system115

As the state space, the following functional space is introduced:

H =
{
z = (u, v) ∈ H2(0, L)× L2(0, L) | u(0) = 0

}
, (13)

where the space Hm(0, L) and L2(0, L) are the Sobolev space of order m and the usual square-integrable
functional space, respectively. The space H becomes a Hilbert space with the following inner product:

〈z, ẑ〉H =
ρ

2

∫ L

0

v¯̂vdx+
EI

2

∫ L

0

uxxûxxdx+
1

2
u(L)û(L). (14)

Let us define the unbounded linear operator

A
(
u
v

)
=

 v

−EI
ρ
uxxxx

 , (15)
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with domain

D(A) =
{
z = (u, v) ∈ H4(0, L)×H2(0, L) |
u(0) = v(0) = uxx(0) = uxx(L) = 0, uxxx(L) = kpux(0) + kdv(L)} . (16)

Then, the closed-loop system (6) and (9) can be written as the following evolution equation on the state
space H:

d

dt
z(t) = Az(t), (17)

where z(t) = (y(·, t), yt(·, t))T.
Now, we investigate the property of the closed-loop system.

Lemma 1. Let H and A be defined by (13) and (15), respectively. Then, the operator A generates a
C0-semigroup of contractions on H.

Proof. From (14)–(16), we can obtain

2Re〈Az, z〉H = 〈Az, z〉H + 〈z,Az〉H

= −EIkd|v(L)|2 − 1

2
kpEIux(0)v(L) +

1

2
v(L)u(L)− 1

2
kpEIux(0)v(L) +

1

2
u(L)v(L), (18)

for any z = (u, v)T ∈ D(A). By using the Cauchy-Schwarz inequality, the inequality

|a||b| ≤ 2|a||b| ≤ r1|a|2 +
|b|2

r2
, for a, b ∈ C, (19)

where r1 and r2 are arbitrary positive constants, and Poincaré inequality

∫ b

a

|z(x)|2dx ≤ d

∫ b

a

|zx(x)|2dx+

{∫ b

a

z(x)dx

}2
 , for z ∈ H1(a, b), (20)

where d is a positive constant, we obtain the following inequalities:

− ux(0)v(L) ≤ r1
2
|ux(0)|2 +

1

2r1
|v(L)|2, v(L)u(L) ≤ r2

2
|v(L)|2 +

1

2r2
|u(L)|2,

− ux(0)v(L) ≤ r1
2
|ux(0)|2 +

1

2r1
|v(L)|2, u(L)v(L) ≤ r2

2
|u(L)|2 +

1

2r2
|v(L)|2,

|ux(0)|2 ≤ 2(1 + d)

∫ L

0

|uxx|2dx+ 2d|u(L)|2.

(21)

From (18) and (21), the estimate (18) yields

Re〈Az, z〉H ≤ −
1

2

(
EIkd −

EI

2r1
kp −

1

2r2

)
|v(L)|2 +

1

2
kpEIr1(1 + d)

∫ L

0

|uxx|2dx

+

(
r2
4

+
kp
2
r1EId

)
|u(L)|2

≤ −1

2

(
EIkd −

EI

2r1
kp −

1

2r2

)
|v(L)|2 + α〈z, z〉H, (22)

where

α = max
{
kpEIr1(1 + d),

r2
2

+ kp2r1EId
}
. (23)
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Thus, we obtain the following estimate from (22):

Re〈(A− α)z, z〉H ≤ −
1

2

(
EIkd −

EI

2r1
kp −

1

2r2

)
|v(L)|2

≤ 0, (24)

where r1 and r2 are designed satisfying the following inequality:

EIkd −
EI

2r1
kp −

1

2r2
> 0. (25)

Therefore, we obtain the dissipativity of the operator (A− α).120

Next, we prove that the operator A−1 is compact. A solution z ∈ D(A) of Az = ẑ for any ẑ = (û, v̂)T ∈ H
is given by

u(x) =c1x+ c2x
3 − ρ

EI

∫ x

0

∫ s1

0

∫ s2

0

∫ s3

0

v̂(s4)ds4ds3ds2ds1, (26)

v(x) =û(x), (27)

where c1 and c2 are the following constants:[
c1
c2

]
=

[
−kp 6

0 6L

]−1 [ ρ
EI

∫ L
0
v̂(s)ds+ kdû(L)

ρ
EI

∫ L
0

∫ s1
0
v̂(s)dsds1

]
. (28)

Therefore, it can be seen that there are nontrivial solutions u and v, that means A−1 exists. In addition,
A−1 is a compact by Sobolev’s embedding theorem [36]. Furthermore, the spectrum σ(A) of the operator A
consists of isolated eigenvalues [37].

Since the spectrum σ(A) consists of isolated eigenvalues, there exists a λ0 > α such that λ0 + α ∈ ρ(A),
where ρ(A) = C \σ(A) [38]. This means that the operator [(λ0 +α)I −A]−1 = (λ0I −A+α)−1 is bounded,125

and thus we obtain λ0 ∈ ρ(A−α). Therefore, the operator (A−α) generates a C0-semigroup of contractions
from Lumer-Phillips theorem. In addition, the operator A also generates a C0-semigroup of contractions
from the perturbations by bounded linear operators [36].

3.3. Exponential stability of the closed-loop system

First, we show the relationship between the stability of the closed-loop system and the eigenvalue of the130

system. Then, we show the exponential stability of the closed-loop system by analyzing the eigenvalues of
the system.

3.3.1. The relationship between the stability and the eigenvalues

We analyze the asymptotic behavior of the eigenvalues of A to investigate the relationship between the
stability and the eigenvalues. For z = (u, v)T ∈ D(A) and eigenvalue λ ∈ C, let us consider the eigenvalue
problem Aφ = λφ. Eliminating v in Aφ = λφ gives the following equations:

λ2u+
EI

ρ
uxxxx = 0, (29)

u(0) = uxx(0) = uxx(L) = 0, (30)

uxxx(L) = kpux(0) + kdλu(L). (31)

Here, note that the eigenvalue of A is real symmetric because of Az = [v,−EIρ uxxxx]T = Az̄.
The solution of (29) can be found as

u(x) = C1eβω1x + C2eβω2x + C3eβω3x + C4eβω4x, (32)
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where λ = β2
√

EI
ρ , β = |β|eiargβ , ω1 = e

3
4πi, ω2 = e

π
4 i, ω3 = −ω2, ω4 = −ω1, and the constants C1, · · · , C4

are determined by the boundary conditions (30) and (31). From (30) and (31), the following characteristic
equation is obtained:

∆(β) := β7det


1 1 1 1
ω2
1 ω2

2 ω2
3 ω2

4

W1 W2 W3 W4

P1 P2 P3 P4

 = 0, (33)

where 
Wi = ω2

i eβωiL,

Pi = ω3
i eβωiL − kd

β

√
EI

ρ
eβωiL − kp

β2
ωi,

for i = 1, · · · , 4. (34)

Now, we investigate the eigenvalues of A on the two sectors S = {β ∈ C : π
4 ≤ argβ ≤ π

2 } and135

S0 = {β ∈ C : 0 ≤ argβ < π
4 }. In the following, we consider the case that |β| is large enough, that is the

eigenvalues located far from the origin of the complex plane.
First, we consider the characteristic equation on the sector S0. In the sector S0, it can be seen that

Re(βω1) < 0, Re(βω2) > 0, Re(βω3) < 0, and Re(βω4) > 0, and thus we obtain |eβω1 | ≈ 0, |e−βω2 | ≈ 0,
|eβω3 | ≈ 0, and |e−βω4 | ≈ 0. Substituting these facts into (33) gives

∆(β) = −β7eρ(ω2+ω4)Ldet


1 0 1 0
−1 0 1 0
0 1 0 −1

− kp
β2ω1 iω2 − kd

β

√
EI
ρ

kp
β2ω2 iω1 − kd

β

√
EI
ρ

 = 0. (35)

Thus, the characteristic equation on S0 is calculated as follows:

4kd
β

√
EI

ρ
+ 2
√

2 6= 0. (36)

This means that the eigenvalue does not exist on this sector far from the origin.
Next, we consider the characteristic equation on the sector S. In this sector, by the same method as

above, the characteristic equation is calculated as follows because of Re(ρω1) ≈ 0:

∆(β) =2
√

2β7eβω4L

[(
i+

√
2kd
β

√
EI

ρ

)
e−βω2L −

(
1 +

√
2kd
β

√
EI

ρ

)
eβω2L +O(β−2)

]
= 0. (37)

To show the operator A satisfies the spectrum-determined growth condition, we use the result of [39].
According to this result, if the characteristic equation represented by

∆(β) = β7eβω4
(
[Θ−1(β)]1e−ρω2 + [Θ0(β)]1 + [Θ1(β)]1eρω2

)
(38)

satisfies

Θ2
00 − 4Θ1,0Θ−1,0 6= 0, (39)

then the spectrum-determined growth condition holds, where [Θi(β)]1 = Θi0 + O(β−1), Θi0 is constant,
and i = −1, 0, 1. Here, note that we say that a C0-semigroup T(t) generated by A satisfies the spectrum-140

determined growth condition if the growth rate ω0 = inft>0 log ‖T(t)‖/t is equal to sup{Reλ ∈ σ(A)},
where the classical solution of (17) is given by z(t) = T(t)z(0). It is easy to check that the characteristic
equation (37) satisfies (39). Therefore, the operator A defined by (15) satisfies the spectrum determined
growth condition [39], and the exponential stability of (17) is determined by the sign of the real parts of the
eigenvalues. These are summarized as follows.145

Theorem 2. If the feedback gains are set so that the real parts of the eigenvalues are negative, the closed-loop
system (17) is exponentially stable.
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3.3.2. Exponential stability

Now, in order to examine the exponential stability of the system (17), we investigate the sign of the real
parts of eigenvalues. From the characteristic equation on the sector S (37), we obtain(

i+

√
2kd
β

√
EI

ρ

)
e−βω2L −

(
1 +

√
2kd
β

√
EI

ρ

)
eβω2L +O(β−2) = 0. (40)

Using a Taylor series in this equation gives eβω2L − ie−βω2L +O(β−1) = 0. This equation has the following
solution by virtue of Rouche’s theorem: βn = β̃n+O(n−1), where n ∈ N and β̃n = πi

ω2L
(n+ 1

4 ). Substituting

this solution into (40) and using a Taylor series lead to O(n−1) = − kd
β̃n

√
EI
ρ +O(n−2). Therefore, we obtain

βn = β̃n − kd
β̃n

√
EI
ρ +O(n−2) which results in

λn = −2kd

√
EI

ρ
+
iπ2

L2

(
n+

1

4

)2

+O(n−1) (n = 1, 2, 3 · · · ), (41)

Here, note that 1/ω2
2 = −i. From this, the real parts of all eigenvalues are negative when the eigenvalues

are located far from the origin.150

Next, we investigate the eigenvalues in the region where the eigenvalues are located close to the origin
so that it can be numerically analyzed. To determine the parameter set (kp, kd) of the controller such that
the real parts of the eigenvalues, which are close to the origin, are negative, we use the parameter space
method [40, 41]. In the first step, to obtain the boundary of the stable region in the parameter space (kp, kd),
we derive kp and kd where the real parts of eigenvalues are zero. For this, let us consider the case where the
eigenvalue is expressed as follows:

λ = β2

√
EI

ρ
, where β =

√
y2i, y ∈ R. (42)

Substituting (42) into (33) leads to the following characteristic equation:

∆(β) = g1 + g2i = 0, (43)

where

g1 = −16

√
EI

ρ
y2kd sin (yL) sinh (yL), (44)

g2 = −8y
{[
kp + y2 cos (yL)

]
sinh (yL) +

[
kp − y2 cosh (yL)

]
sin (yL)

}
. (45)

Solving (43) gives the following kp and kd:

(i) When y = nπ
L :

kp =
n2π2

L2
(n = 1, 3, 5 · · · ), kd = any (46)

(ii) When y 6= nπ
L :

kp =
y2 [cosh (yL) sin (yL)− sinh (yL) cos (yL)]

sinh (yL) + sin (yL)
, kd = 0. (47)

Since the boundary of the stable region is obtained, we derive kp and kd where the real parts of eigenvalues
are not negative by using numerical calculation software. By substituting complex number whose real parts
are not negative into the characteristic equation (33), we obtain kp and kd so that the system has eigenvalues

9



Figure 2: Unstable region under the proposed controller (9).

whose real parts are not negative. As the example, we show the kp and kd on the kp− kd plane as shown in155

Fig. 2. All of the values of physical parameters are set as 1. In this figure, the horizontal axis represents the
feedback gain kp, and the vertical axis is the feedback gain kd. The hatched region represents the area of
feedback gains kp and kd having eigenvalues whose real part is positive. Here, note that we want to examine
the regions of kp and kd where the closed-loop system is exponentially stable, that is, the eigenvalues
are negative. For this reason, it may seem better to directly find kp and kd when the real parts of the160

eigenvalues are negative. However, an infinite-dimensional model has an infinite number of eigenvalues. For
this reason, it is impossible to numerically obtain the feedback gains kp and kd in which the real parts of
infinite eigenvalues are all negative. Therefore, in this paper, the stability is discussed after finding kp and
kd where the real part is positive. In this figure, the stable region is the unhatched region. From this figure,
if kp and kd are set as the values on the unhatched region, the real part of the eigenvalue is negative, so165

the system becomes exponentially stable. In other words, if kp <
π2

L2 , it turns out that the system becomes
exponentially stable because of theorem 2 and the facts that the real parts of eigenvalues far from the origin
are negative from (41) and the real parts of eigenvalues in the region where the eigenvalues are close to the
origin are negative.

Finally, we investigate the root locus of the system in order to confirm this fact. We derive some170

eigenvalues by the Newton Raphson method and plot them when kp is gradually increased from 1 as shown
in Fig. 3. All of the values of physical parameters and kd are set as 1. From this figure, it can be seen that
the real parts of some eigenvalues increase according to kp. In addition, two eigenvalues near the origin cross

the imaginary axis when kp = π2

L2 . And other eigenvalues do not cross the imaginary axis or cross when kp

is a value which is bigger than π2

L2 . This value increases according to the distance from the origin. From175

these facts and theorem 2, it can be seen that when kp >
π2

L2 , the real part of some eigenvalues is positive, so
the system becomes unstable. Here, note that Fig. 3 is a figure to confirm the fact that the system becomes
exponentially stable if kp < π2/L2. From Fig. 3, we found that the reason why the closed-loop system
becomes unstable when kp > π2/L2 in Fig. 2 is because the real parts of the two eigenvalues near the origin
in Fig. 3 become positive when kp > π2/L2.180

4. Modified controller design

4.1. Design of modified controller

It is known that the time derivative of the shear force at the root of the flexible arm, wxxxt(0, t),
suppresses the vibration more than the time derivative of the strain at the root of the arm, wxxt(0, t) [42].
In particular, the real parts of the eigenvalues of the system under the feedback of wxxxt(0, t) would tend
to −∞ as the distance between the eigenvalues and the origin increases. On the other hand, the real
parts of the eigenvalues of the system under the feedback control of wxxt(0, t) would tend to a vertical line

10



Figure 3: Root loci of the system under the proposed controller (9).

which is parallel to the imaginary axis [43]. Thus, it seems that the feedback control of wxxxt(0, t) can well
suppress vibration of high frequency. From this fact, to realize the better control performance, we propose
the following new controller:

u(t) = −kp
ρ

[
f(t)− fd

]
− EI

ρ
kdwxxxt(0, t). (48)

The first term of the controller is the feedback of the contact-force at the arm-tip to realize the control
objective (f(t) → fd). The second term is corresponding to the damping term consisting of the time
derivative of the shear force at the root of the arm to suppress the vibration. Moreover, the contact-force185

at the tip and the shear force at the root of the beam can be measured by the force sensor and the strain
gauge, respectively. To implement the controller, we use the speed reference-type servo amplifier of the
motor as shown in (12). Therefore, we do not need to use the physical parameter in the implementation of
this controller, and thus the controller is robust against uncertainty in physical parameters.

4.2. Closed-loop system under the modified controller190

To formulate the system in the state space H defined by (13), let us define the linear operator

B
(
u
v

)
=

 v

−EI
ρ
uxxxx

 , (49)

with domain

D(B) =
{
z = (u, v) ∈ H4(0, L)×H2(0, L) |
u(0) = v(0) = uxx(0) = uxx(L) = 0, uxxx(L) = kpux(0) + kdvx(L)} . (50)

The difference between the operator A and B is the boundary condition in the domain. The closed-loop
system (6) and (48) can be represented as the following evolution equation on H,

d

dt
z(t) = Bz(t), (51)

where z(t) = (y(·, t), yt(·, t))T.
As the property of the operator B, we have the following lemma:

Lemma 3. Let B be defined by (49). Then, B−1 exists and compact. Therefore, the spectrum of B consists
of the isolated eigenvalues with finite multiplicities.

Proof. The proof is the same manner in the proof of lemma 1 and is straightforward. Thus, it is omitted.195
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4.3. Eigenvalue analysis of B
The feedback control of wxxxt(0, t) leads to the lack of the dissipativity, and we cannot show the estimation

of the operator B like the operator A (24). Thus, it is difficult to show the existence of a C0-semigroup using
the estimation of the operator like (24). Here, we investigate the exponential stability and the C0-semigroup200

generation from the eigenvalue analysis.
For z = (u, v)T ∈ D(B) and the eigenvalue λ′ ∈ C, we consider the eigenvalue problem Bφ = λ′φ. Using

the same procedure in section 3.3 gives the following characteristic equation:

∆(γ) := γ7det


1 1 1 1
ω2
1 ω2

2 ω2
3 ω2

4

W1 W2 W3 W4

P1 P2 P3 P4

 = 0, (52)

where 
Wi = ω2

i eγωiL,

Pi = ω3
i eγωiL − kd

√
EI

ρ
ωie

γωiL − kp
γ2
ωi,

for i = 1, · · · , 4, (53)

λ′ = γ2
√

EI
ρ , γ = |γ|eiargγ , ω1 = e

3
4πi, ω2 = e

π
4 i, ω3 = −ω2, and ω4 = −ω1.

We investigate the eigenvalues of B on the two sectors S and S0 like section 3.3. In the following, we
consider |γ| is large enough.

The characteristic equation on the sector S0 is obtained as follows:

2
√

2kd

√
EI

ρ
+ 2
√

2 6= 0. (54)

Thus, we found that the eigenvalues do not exist in this sector far from the origin.205

On the other hand, the characteristic equation on the sector S is given by

∆(γ) = 2
√

2γ7eγω4L

[
−eγω2L

(
1 + kd

√
EI

ρ

)
+ i

(
1− kd

√
EI

ρ

)
e−γω2L +O(γ−2)

]
= 0. (55)

When kd =
√

ρ
EI , this leads to

2eγω2L +O(γ−2) 6= 0. (56)

Therefore, when kd =
√

ρ
EI , eigenvalue does not exist. On the other hand, when kd 6=

√
ρ
EI , solving (55)

gives the following γn and λ′n:

γn =
1

2ω2L
ln |K|+ i

2ω2L

(π
2

+ 2nπ
)

+O(n−2), (57)

λ′n =
1

2L2

√
EI

ρ

(π
2

+ 2nπ
)

ln |K|+ i

4L2

√
EI

ρ

[(π
2

+ 2nπ
)2
− (ln |K|)2

]
+O(n−1), (58)

where K =
1−kd
√
EI/ρ

1+kd
√
EI/ρ

, n = 1, 2, 3 · · · . From |K| = | 1−kd
√
EI/ρ

1+kd
√
EI/ρ
| < 1,

√
EI/ρ

2L2 (π2 + 2nπ) ln |K| is negative.

Therefore, we found that the real parts of all eigenvalues are negative when the eigenvalues are far
from the origin. Here, the characteristic equation (55) satisfies (39) if kd 6=

√
ρ
EI . Therefore, we found the

following facts from [39]: the spectrum-determined growth condition holds, the system is exponentially stable
and the operator B generates a C0-semigroup if the real parts of eigenvalues are negative. To summarize,210

we have the following theorem:
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Theorem 4. Let H and B be defined by (13) and (49), respectively. If kd 6=
√

ρ
EI and the feedback gains

are set so that the real parts of the eigenvalues are negative, the closed-loop system (51) is exponentially
stable, and the operator B generates a C0-semigroup on H.

We have already shown that the real parts of the eigenvalues located far from the origin are negative as215

shown in (58).
Next, using the same procedures in section 3.3, we consider the eigenvalues in the region where the

eigenvalues are close to the origin so that it can be numerically analyzed. First, to obtain the boundary of
the stable region, we investigate the eigenvalues located on the positive imaginary axis as follows:

λ′ =

√
EI

ρ
γ2, where γ =

√
κ2i, κ ∈ R. (59)

Substituting (59) into (52) gives the following characteristic equation:

∆(γ) = f1 + f2i = 0, (60)

f1 =4
√

2

{
−κ2

(
kd

√
EI

ρ
+ 1

)
sin(κL) cosh(κL)

− κ2
(
kd

√
EI

ρ
− 1

)
cos(κL) sinh(κL) + kp(sin(κL) + sinh(κL))

}
, (61)

f2 =4
√

2

{
−κ2

(
kd

√
EI

ρ
− 1

)
sin(κL) cosh(κL)

− κ2
(
kd

√
EI

ρ
+ 1

)
cos(κL) sinh(κL)− kp(sin(κL) + sinh(κL))

}
. (62)

Solving (60) gives the following kp and kd:
(i)When κ satisfies sin(κL) cosh(κL) + cos(κL) sinh(κL) 6= 0

kp =
κ2{sin (κL) cosh (κL)− cos (κL) sinh (κL)}

sin (κL) + sinh (κL)
, kd = 0. (63)

(ii)When κ satisfies sin(κL) cosh(κL) + cos(κL) sinh(κL) = 0

kp =
2 sin(κL) cosh(κL)

sin(κL) + sinh(κL)
κ2, kd = any. (64)

The boundary of the stable region is found, and thus we can derive kp and kd where the real parts of the
eigenvalues become non-negative with numerical calculations. By using the same procedure in section 3.3.2,
we obtain kp and kd so that the real parts of the eigenvalues are not negative as shown in Fig. 4. Here, all of220

the physical parameter values are set as 1. From this figure, it can be seen that if kp < 7.043, which is derived
from (64), the real parts of the eigenvalues are negative, and thus we obtain the exponential stability of the
closed-loop system, and we found that the operator B generates a C0-semigroup. However, we found that
the stable region of the newly proposed controller is narrower than of the controller proposed in section 3.
In addition, whether the newly proposed controller suppresses high-frequency vibration compared to the225

controller in section 3 is verified by numerical simulations in the next section.

5. Numerical Simulations

In order to conduct numerical simulations, we used the eigenfunction expansion method and derived
the finite dimensional model. In the simulation, we used MATLAB/Simulink as the software, and we
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Figure 4: Unstable region under modified controller (48).

Figure 5: Contact-force f(t) under the proposed controller (9).

considered first twelve modes and set the physical parameters as follows: E = 2.06 × 1011[N/m2], I =230

3.33× 10−11[m4], L = 1.05[m], and ρ = 0.78[kg/m]. Here note that, if the number of modes is increased to
13 or more, the numerical error becomes large, and we could not obtain the eigenvalues. Thus, we used the
first twelve modes in the numerical simulations. If more modes are required, we consider that it is necessary
to make the system dimensionless.

First, to support the stable region in the section 3.3, we consider the step response of the desired contact235

force fd = 1[N ] for the following three cases: case A: kp = 4(< π2

L2 ), kd = 2, case B: kp = π2

L2 , kd = 2,

and case C: kp = 15(> π2

L2 ), kd = 2. Here, we used our controller (9). Fig. 5 shows the step response of
the contact-force. In this figure, the dashed line represents the response of case A (gain kp is in the stable
region). The contact-force f(t) in case A converges to the designed value. Fig. 6 shows the transverse
displacement of the beam, w(x, t), in the case A. From Fig. 6, we found that the response of w(x, t) has no240

undesired vibration and converges to the designed value.
On the other hand, the dash-dotted line and solid line in Fig. 5 represent the responses of contact-

force when case B (kp is on the boundary of the stable region) and case C (kp is in the unstable region),
respectively. When kp is on the boundary of the stable region, the vibration occurs in the response of f(t),
and the response of f(t) does not converge to the designed value. In addition, when kp is in the unstable245

region (case C), it can be seen that f(t) diverges.
In addition, we confirm the stable region of the modified controller (48) shown in the section 4 for the

following three cases: case A’: kp = 4, kd = 2, case B’: kp = 6.388967 and case C’: kp = 15, kd = 2 as shown
in Fig. 7. Here, kp = 6.388967 is the boundary value of the stable region when L = 1.05. From Fig. 7, the
same results as the controller (9) are obtained.250
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Figure 6: Transverse displacement w(x, t) under the proposed controller (9) (kp = 4, kd = 2, time = 10s).

Figure 7: Contact-force f(t) under the modified controller (48).

Next, we investigate the robustness of our controllers (9) and (48) with respect to uncertainty in physical
parameters by simulation. In order to consider the situations that the bending rigidity EI is deviated by
∆EI during controller design, the value of EI in the controller is changed to EI + ∆EI, where ∆EI is set
as 0.5[Nm2]. Here, we compare our controllers (9) and (48) with the controller in the previous study [23]:
the PD control of the strain at the root of the beam. That is, u(t) = kp(wxx(0, t)− wdxx(0)) + kdwxxt(0, t).255

Here, note that the proposed controller is (9), the modified controller is (48), and the previous controller is
the controller in [23].

The simulation result of the PD control of the root strain (the previous controller) is shown as a solid line
in Fig. 8. Gains kp and kd are designed as kp = 4 and kd = 2

√
kp. From this result, it can be confirmed that,

when there is the measurement error of physical parameters such as EI, the target strain of wdxx(0, t) = fdL
EI260

designed in the previous controller is changed, so the contact-force f(t) converges to a value different from
the desired value. On the other hand, dashed line and dash-dotted line in Fig. 8 show the contact-force
responses of the modified controller and proposed controller in section 4 and 3 when there is an error in the
measured values of EI, respectively. Gains kp and kd in both controllers are set as kp =(one fourth of the
boundary value of the stable region) and kd = 2

√
kp. In other words, gains kp and kd in proposed controller265

are designed as kp = 2.23 and kd = 2.99 and gains in modified controller are designed as kp = 1.60 and
kd = 2.52. From these lines in Fig. 8, we found that the responses of f(t) converge to the designed value by
our controllers (9) and (48), because the physical parameters are not used in the controllers.

In addition, we investigate the control performance in the case where ∆EI is doubled (∆EI = 1.0[Nm2])
and the case where ∆EI is half (∆EI = 0.25[Nm2]). Fig. 9 and 10 show the contact-force responses when270

∆EI = 1.0 and ∆EI = 0.25, respectively. Here, note that the feedback gains and other parameters are the
same as above. From these figures, we found that the responses of f(t) converge to the desired value by our
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Figure 8: Cotact-force f(t) when EI has uncertainty(∆EI = 0.5).
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Figure 9: The contact-force f(t) when EI deviates from the assumed value (∆EI = 1.0).

controllers even if ∆EI changes.
Finally, we investigate the disturbance responses of the proposed controller and modified controller. We

add the following disturbance d(t) to the control inputs from 15 [s] to 15.01 [s]:

d(t) =

{
20 [rad/s

2
] when 15.00 ≤ t ≤ 15.005 [s]

−20 [rad/s
2
] when 15.005 ≤ t ≤ 15.01 [s]

The simulation results of the proposed controller are shown as light solid line in Fig. 11 and 12. Here,
Fig. 11 shows the response of the contact-force and Fig. 12 shows the close-up of Fig. 11. Gains kp and kd of275

proposed controller are set as kp = 2.23 and kd = 2.99. On the other hand, the dark solid line in Fig. 11 and
Fig. 12 show the simulation results of the modified controller. Gains kp and kd of the modified controller
are set as kp = 1.60 and kd = 2.52 in order to make the stability of the modified controller becomes almost
same as the stability of the proposed controller. From these lines in Fig. 11 and 12, it can be seen that
the high-frequency vibration was excited by the disturbance, and the modified controller (48) suppress this280

high-frequency vibration than the proposed controller (9), and thus f(t) converges to the designed value by
the modified controller faster than by the proposed controller. From these points of view, we found that
both controllers work well for the contact-force control of the flexible arm. Further, the modified controller
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Figure 10: The contact-force f(t) when EI deviates from the assumed value (∆EI = 0.25).
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Figure 11: Contact-force f(t) when adding impulse disturbance.

has higher performance than the proposed controller, but the stable region of the modified controller is
narrower than the proposed controller.285

6. Conclusion

In this paper, we discussed the contact-force control problem of a one-link flexible arm based on an infinite
dimensional model. We proposed a boundary controller which consists of the feedback of the contact-force
at the arm-tip and the time derivative of strain at the root of the arm without the need to use the physical
parameters in the implementation of the controller. The closed-loop system is non-collocated, so there is a290

limit to the range of gain where the system becomes stable. Through the eigenvalue analysis, we proved that
closed-loop system satisfies the spectrum-determined growth condition. Then, we showed that the closed-
loop system becomes exponentially stable by setting feedback gains to place eigenvalues of the closed-loop
system on the complex left half-plane. Further, we derived the range of the feedback gain that makes the
system exponentially stable and confirmed the stable region by numerical simulation. On the other hand,295

to obtain high control performance, we proposed the modified controller which consists of the feedback
of the contact-force and the time derivative of shear force at the root of the arm. Also, in this case, we
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Figure 12: Contact-force f(t) when adding impulse disturbance (Time=[14.5s 16s], f(t)=[0.9N 1.1N]).

analyzed the eigenvalue of the closed-loop system and obtained the range of the gain that makes the system
exponentially stable and investigated the stable region by numerical simulation. In addition, we investigated
the robustness to uncertainty in physical parameters. Although the stable region of the modified controller300

in section 4 is narrower than the stable region of the proposed controller in section 3, it is confirmed that
the convergence speed of the modified controller is faster than the speed of the proposed controller when
adding the disturbance to the control input and exciting the high-frequency vibrations.

As the next problem to be tackled is to investigate the stability of the system including the dynamics
of the motor. Further, as future research, the results of this paper can be applied to cooperative control by305

multiple flexible arms and to cooperative transportation of space structure by flexible arms.
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