<table>
<thead>
<tr>
<th>Title</th>
<th>On the quantized Noumi-Yamada systems (Expansion of Lie Theory and New Advances)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>名古屋 創</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2003), 1348: 163-172</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2003-12</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25102</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On the quantized Noui-

野海・山田による $A_1^{(1)}$ 型高階 Painlevé 方程式 (野海・山田系) [5] はアフィン Weyl 群作用で不変な Poisson 構造を持つ。この事実に注目すれば、Poisson 拡弧を交換子に置き換えるという意味での量子化があるべきである。また長谷川は量子細胞の理論を用いて植原・野海・山田による拡大アフィン Weyl 群の表現 [3] の量子化を構成した [2]。これを量子 Painlevé 対称性とすることにしよう。そもそも野海・山田系は $A_1^{(1)}$ 型拡大アフィン Weyl 群の表現から構成される離散系の連続極限の結果として得られたものである。同様に $A_1^{(1)}$ 型量子 Painlevé 対称性から構成される離散系の連続極限が計算できれば、$A_1^{(1)}$ 型対称性を持つ非可換微分方程式が得られることになる。実際この計算を $l = 2n + 1$ ($n = 1, 2, \ldots$) 的場合に実行することができ、$l = 2n$ の場合の野海・山田系の量子化と呼ばれるべきものを得た。$l = 2n + 1$ の場合も Poisson 拡弧を交換子に置き換えてもうまくいくことがわかった。本稿では量子野海・山田系及びその Hamiltonian 構造と Lax 形式について説明する。

2 量子野海・山田系

$l = 2, 3, \ldots$ に対して、C 上の微体 K_l を生成元

$$f_i, \alpha_i \quad (0 \leq i \leq l), \quad (2.1)$$

と定義関係式

$$[f_i, f_{i+1}] = h \quad (h \in \mathbb{C}, 0 \leq i \leq l), \quad (2.2)$$

$$[f_i, f_j] = 0 \quad (j \neq i \pm 1), \quad [f_i, \alpha_j] = 0, \quad [\alpha_i, \alpha_j] = 0 \quad (2.3)$$

で定義する。ただし、素子は $\mathbb{Z}/(l + 1)\mathbb{Z}$ の元と理解する。上記の生成元と定義関係式で定義される非可換代数は Ore domain であることを示すことができ、Ore domain である非可換代数からはそれを構成できることが知られている。

定理 2.1 K_l の C-derivation ∂ を次で定めることができる。

(1) $l = 2n$ のとき

$$\partial f_i = f_i \left(\sum_{1 \leq r \leq s \leq n} f_{i+2r-1}f_{i+2s} \right) - \left(\sum_{1 \leq r \leq s \leq n} f_{i+2r}f_{i+2s+1} \right)f_i + \alpha_i, \quad (2.4)$$

$$\partial \alpha_i = 0 \quad (0 \leq i \leq l). \quad (2.5)$$

(2) $l = 2n + 1$ のとき

$$\partial f_i = f_i \left(\sum_{1 \leq r \leq s \leq n} f_{i+2r-1}f_{i+2s} - \left(\sum_{1 \leq r \leq s \leq n} f_{i+2r}f_{i+2s+1} \right)f_i \right) + \left(\frac{k}{2} - \sum_{1 \leq r \leq s \leq n} \alpha_{i+2r} \right)f_i + \alpha_i \left(\sum_{1 \leq r \leq s \leq n} f_{i+2r} \right), \quad (2.6)$$
\[\partial \alpha_i = 0 \quad (0 \leq i \leq l) \quad (2.7) \]

ただし、\(k = \alpha_0 + \ldots + \alpha_l \) とする。

\(\partial \) が定義関係式を変形して直接計算することによって定理 2.1 を証明することができる。また、次のことに注意する。\(\partial f_i = [H, f_i] \) をみたすような Hamiltonian \(H \in K_l \) が存在すれば \(\partial \) は well-defined である。なぜならば

\[
\partial(f_if_j) - \partial(f_jf_i) = \partial(f_i)f_j + f_i\partial(f_j) - \partial(f_j)f_i - f_j\partial(f_i) \\
= [H, f_if_j] + [H, f_i]f_j - f_j[H, f_i] - [H, f_if_j] = 0
\]

が成り立つからである。実際にこのような Hamitonian が存在することを後で見ると。また積の順序が定理のようになる理由も後に見る Hamiltonian から理解することができる。

2.1 アフィン Weyl 群対称性

次に量子野球・山田系が \(A_l^{(1)} \) 型アフィン Weyl 群対称性を持つことを説明する。

命題 2.2 ([2]) \(K_l \) 上の 代数射 \(s_0, \ldots, s_l, \pi \) を次で定めることができる:

\[
s_i(\alpha_j) = \begin{cases}
-\alpha_j, & j = i \pm 1 \\
\alpha_j + \alpha_i, & j \neq i, i \pm 1,
\end{cases} \quad s_i(\alpha_j) = \alpha_j \quad (j \neq i, i \pm 1),
\]

\[
s_i(f_j) = f_j, \quad s_i(f_j) = f_j \pm \frac{\alpha_i}{f_i} \quad (j \neq i, i \pm 1),
\]

\[
\pi(\alpha_j) = \alpha_{j+1}, \quad \pi(f_j) = f_{j+1}.
\]

定理 2.3 ([2]) 代数射 \(s_0, \ldots, s_l, \pi \) は拡大 \(A_l^{(1)} \) 型アフィン Weyl \(\overline{W} = \langle s_0, \ldots, s_l, \pi \rangle \) の表現を定めることができる。すなわち、次の関係式を満たす:

\[
s_i^2 = 1, \quad (s_is_j)^3 = 1 \quad (j = i \pm 1), \quad \pi^{l+1} = 1, \quad \pi s_i = s_{i+1} \pi.
\]

定理 2.4 \(\overline{W} \) の作用は群体 \(K_l \) の derivation \(\partial \) と可換である。

定理 2.4 は直接計算することによって確かめることができる。実際に計算を以下のように実行することができる。(計算手順は古典の場合と同様である。)

まず、Demazure 作用素 \(\Delta_i (i = 0, \ldots, l) \) を次で定義する。

\[
\Delta_i(\varphi) = \frac{1}{\alpha_i}(s_i(\varphi) - \varphi) \quad (\varphi \in K_l).
\]

定義より \(\Delta_i \) は次の性質を持つことが容易にわかる。

\[
\Delta_i(\varphi \psi) = \Delta_i(\varphi)\psi + s_i(\varphi)\Delta_i(\psi) \quad (\varphi, \psi \in K_l),
\]

\[
\Delta_i(\alpha_j) = -2, \quad \Delta_i(\alpha_j \pm 1) = 1, \quad \Delta_i(\alpha_j) = 0 \quad (j \neq i, i \pm 1),
\]

\[
\Delta_i(f_j) = 0, \quad \Delta_i(f_j \pm 1) = \pm \frac{1}{f_i}, \quad \Delta_i(f_j) = 0 \quad (j \neq i, i \pm 1).
\]

定理 2.4 の証明. \(i = 0, \ldots, l \) に対して, \(F_i \) を式 (2.4), (2.8) の右側部分とする。このとき非可換にするとき \(\partial s_i(f_j) = s_i(\partial f_j) \) と

\[
\Delta_i(F_j) = -\frac{u_j}{f_i} F_i \frac{1}{f_i}
\]

(14.14).
が同値であることが容易にわかる。\(\pi \) による回転対称性より (2.14) を \(j = 0 \) に対して示せばよい。

\[
\Delta_1(F_0) = \frac{1}{f_1} F_1 \frac{1}{f_1}, \quad \Delta_1(F_0) = -\frac{1}{f_1} F_1 \frac{1}{f_1}, \quad \Delta_i(F_0) = 0 (i \neq 1, l).
\]

(2.15)

一例として, \(\Delta_1(F_0) = \frac{1}{f_1} F_1 \frac{1}{f_1} \) を示す。\(l = 2n \) のとき

\[
\Delta_1(F_0) = \Delta_1(f_0) \sum_{1 \leq r \leq n} f_{2r-1} - \sum_{1 \leq r \leq n} f_{2r} \Delta_1(f_0) - \frac{\alpha_1}{f_1} \Delta_1(f_0) - \Delta_1(f_0) f_0 + \Delta_1(\alpha_0)
\]

\[
= -\frac{1}{f_1} \sum_{1 \leq r \leq n} f_{2r-1} - \sum_{1 \leq r \leq n} f_{2r} \frac{1}{f_1} + \frac{\alpha_1}{f_1} \frac{1}{f_1} - \frac{1}{f_1} f_0 + 1
\]

\[
= \frac{1}{f_1} \left[\sum_{1 \leq r \leq n} f_{2r} - (\sum_{1 \leq r \leq n} f_{2r-1} - f_0) f_1 + 1 \right]
\]

\(l = 2n + 1 \) のとき

\[
\Delta_1(F_0) = \Delta_1(f_0) \sum_{1 \leq r \leq n} f_{2r-1} f_2 + s_1(f_0) f_1 \Delta_1(f_2) - \Delta_1(\sum_{1 \leq r \leq n} f_{2r-1}) f_0 + s_1(f_0) \Delta_1(f_2) f_0 + \Delta_1(\alpha_0)
\]

\[
= -\frac{1}{f_1} \sum_{1 \leq r \leq n} f_{2r-1} f_2 + (f_0 - \frac{\alpha_1}{f_1}) - \frac{1}{f_1} \sum_{1 \leq r \leq n} f_{2r+1} f_0
\]

\[
+ \sum_{1 \leq r \leq n} f_{2r} f_{2r+1} \frac{1}{f_1} + \frac{\alpha_1}{f_1} \sum_{1 \leq r \leq n} f_{2r+1} - f_0 - (k - \sum_{1 \leq r \leq n} \alpha_{2r} - \alpha_1) \frac{1}{f_1}
\]

\[
+ \sum_{1 \leq r \leq n} f_{2r} + (\alpha_0 + \alpha_1) \frac{1}{f_1}
\]

\[
= \frac{1}{f_1} \left\{ \left(\sum_{1 \leq r \leq n} f_{2r-1} f_2 \right) f_1 + \left(\sum_{1 \leq r \leq n} f_{2r} f_{2r+1} \right) + \alpha_1 \sum_{1 \leq r \leq n} f_{2r+1}
\]

\[
- \left(\sum_{1 \leq r \leq n} f_{2r+1} f_0 \right) f_1 + \frac{k}{2} - \sum_{1 \leq r \leq n} \alpha_{2r+1} f_1 + f_1 \left(\sum_{1 \leq r \leq n} f_2 f_1 \right) \right\} \frac{1}{f_1}
\]

\[
= \frac{1}{f_1} \left\{ \left(\sum_{1 \leq r \leq n} f_{2r} f_{2r+1} \right) - \left(\sum_{1 \leq r \leq n} f_{2r-1} f_2 \right) f_1 - \left(\sum_{1 \leq r \leq n} f_{2r+1} f_0 \right) f_1
\]

\[
+ \frac{k}{2} - \sum_{1 \leq r \leq n} \alpha_{2r+1} f_1 + \alpha_1 \sum_{1 \leq r \leq n} f_{2r+1} \right\} \frac{1}{f_1}
\]

\[
= \frac{1}{f_1} \frac{1}{f_1}
\]

(2.15) の他の場合も同様に示すことができる。□

2.2 Hamiltonian

この節では、量子力学・山田系が多項式 Hamiltonian を持つことを示す。非可換定数 \(h \) が 0 であるとき、量子の場合の Hamiltonian は古典の場合の Hamiltonian になっている。Hamiltonian を定義するための記号は [5] に従い、まずその記号を列挙する。
$i = 1, \ldots, l$ に対して、ϖ_i を A_l 型のルート系の i 番目のfundamental weight とする。すなわち

$$
\varpi_i = \frac{1}{l+1} \{ (l+1-i) \sum_{r=1}^{i} r \alpha_r + i \sum_{r=i+1}^{l} (l+1-r) \alpha_r \}
$$

(2.16)

とする。また $\varpi_0 = 0$ とおく。

Γ を $A_l^{(1)}$ 型の Dynkin 図形とし、その頂点には $\mathbb{Z}/(l+1)\mathbb{Z}$ の元によって順に番号が付けられているものとする。$j, j+1, \ldots, j+m-1 (m \leq l)$ の頂点からなる Γ の部分連結図形に対して、$\chi(C_{j,m})$ を次で定義する。

$$
\chi(C_{j,m}) = \varpi_j - \varpi_{j+1} + \cdots + (-1)^{m-1} \varpi_{j+m-1}.
$$

(2.17)

そして、Γ の真部分図形 C に対して、$\chi(C)$ を次で定義する。

$$
\chi(C) = \sum_{j} \chi(C_{j,m}).
$$

(2.18)

ここで右辺の和は C の全ての連結成分に対して取る。

$d \in \{1, \ldots, l, l+1\}$ に対して S_d を次で定める。

$$
S_d = \{ K \subset \{0,1,\ldots, l\} | |K| = d, \Gamma \backslash K = \sum_{j,m_{\text{even}}} C_{j,m_j} \}.
$$

(2.19)

$C_{j,m} (m \leq l)$ に対して、

$$
f_{C_{j,m}} = f_j f_{j+1} \cdots f_{j+m-1}.
$$

(2.20)

とおく。このとき、$K \in S_d (d = 1, \ldots, l)$ に対して f_K を次で定めることができる。

$$
f_K = \prod_{j} f_{C_{j,m_j}}.
$$

(2.21)

ここで右辺の積は K の全ての連結成分に対して取る。

定義 2.5 Hamiltonian H_0 を次で定める。

(1) $l = 2$ のとき

$$
H_0 = f_0 f_1 f_2 + h f_1 + \sum_{K \in S_1} \chi(K^c) f_K.
$$

(2.22)

$l = 2n, n \geq 2$ のとき

$$
H_0 = \sum_{K \in S_1} f_K + \sum_{K \in S_2} \chi(K^c) f_K.
$$

(2.23)

(2) $l = 3$ のとき

$$
H_0 = f_0 f_1 f_2 f_3 + h (f_0 + f_2)(f_1 - f_3) + \sum_{K \in S_2} \chi(K^c) f_K + \left(\sum_{i=1}^{3} (-1)^{-1} \varpi_i \right)^2.
$$

(2.24)

$l = 2n + 1, n \geq 2$ のとき

$$
H_0 = \sum_{K \in S_1} f_K + \sum_{K \in S_2} \chi(K^c) f_K + \left(\sum_{i=1}^{l} (-1)^{-1} \varpi_i \right)^2.
$$

(2.25)
命題 2.6 $l = 2n$ のとき, 量子野吹・山田系 (2.4), (2.5) は次のように表すことができる。

$$\partial f_j = \frac{1}{\hbar}[H_0, f_j] + \delta_{j,0}k \quad (0 \leq j \leq l).$$ (2.26)

$l = 2n + 1$ のとき, 量子野吹・山田系 (2.6), (2.7) は次のように表すことができる。

$$\partial f_j = \frac{1}{\hbar}[H_0, f_j] - (-1)^j \frac{k}{2} f_j + \delta_{j,0}k \quad (0 \leq j \leq l).$$ (2.27)

ここで $g_0 = f_0 + f_2 + \cdots + f_{l-1}$ とする。

証明. $i = 0, \ldots, l$ に対して, C-derivation ∂_i を次で定義する。

$$\partial_i f_j = \delta_{ij}.$$ (2.28)

このとき, $\psi \in \mathcal{K}_l$ に対して次が成立する。

$$[\psi, f_j] = h(\partial_{j-1} - \partial_{j+1})\psi.$$ (2.29)

これらを用いて $[H_0, f_j]$ を計算する. $A_2^{(1)}$ と $A_3^{(1)}$ の場合は $[H_0, f_j]$ を容易に直接計算でき, (2.26) と (2.27) を得る.

$A_2^{(1)}$ ($n \geq 2$) の場合を考える. (2.23) から, $\frac{1}{\hbar}[H_0, f_j]$ を次のように計算できる。

$$\frac{1}{\hbar}[H_0, f_j] = (\partial_{j-1} - \partial_{j+1}) H_0$$

$$= \sum_{K \in S_2(\Gamma \backslash \{j-1\})} f_K - \sum_{K \in S_2(\Gamma \backslash \{j+1\})} f_K + \chi(\Gamma \backslash \{j-1\}) - \chi(\Gamma \backslash \{j+1\})$$

$$= f_j(\sum_{r=1}^n f_{2r-1}) - (\sum_{r=1}^n f_{2r}) f_j - \varpi_{j-1} + 2\varpi_j - \varpi_{j+1}$$

$$= F_j - \delta_{j,0}k.$$ (2.28)

したがって, (2.26) が正しいことが示された. $A_2^{(1)}$ ($n \geq 2$) の場合も同様に示すことができる.

2.3 Heisenberg 方程式

この節では, 量子野吹・山田系が Heisenberg 方程式として表せることを示す.

Case $A_2^{(1)}$: f_i に対する新しい座標

$$(q; p; x) = (q_1, \ldots, q_n; p_1, \ldots, p_n; x)$$ (2.30)

を次で定める。

$$q_j = f_{2j}, \quad p_j = \sum_{r=1}^j f_{2r-1} \quad (j = 1, \ldots, n),$$

$$x = f_0 + f_1 + \cdots + f_l.$$ (2.31)

この座標変換の逆変換は次で与えられる。

$$f_0 = x - \sum_{r=1}^n q_r - p_n, \quad f_1 = p_1, \quad f_2 = q_1.$$
\[f_{2j-1} = p_j - p_{j-1}, \quad f_{2j} = q_j \quad (j = 2, \ldots, n). \] (2.32)

新しい座標に対する変換関係は次のようになる。

\[[p_i, q_j] = h\delta_{ij}, \quad [q_i, q_j] = [p_i, p_j] = [p_i, x] = [q_i, x] = 0, \] (2.33)

ただし \(i, j = 1, \ldots, n \) とする。初節で得た Hamiltonian \(H_0 \) を \((q; p; x) \) を用いて書いたものを \(H \) とする。このとき次が成り立つ。

\[\partial q_j = \frac{1}{\hbar} [H, q_j], \quad \partial p_j = \frac{1}{\hbar} [H, p_j], \quad \partial x = k, \] (2.34)

ただし \(j = 1, \ldots, n \) とする。

Case \(A_{2n+1}^{(1)} \)：まず最初に (2.27) より

\[g_0 = \frac{k}{2} g_0, \quad g_1 = \frac{k}{2} g_1 \] (2.35)

が成り立つことに注意する。ただし \(g_0 = f_0 + f_2 + \cdots + f_{2n}, g_1 = f_1 + f_3 + \cdots + f_{2n+1} \) である。ゆえに、

\[\tilde{f}_{2r} = g_0 f_{2r}, \quad \tilde{f}_{2r+1} = g_0^{-1} f_{2r+1} \quad (r = 0, 1, \ldots, n), \] (2.36)

とおくことによって

\[\partial \tilde{f}_j = \frac{1}{\hbar} [H_0, \tilde{f}_j] + \delta_{j,0} g_0^2 \quad (j = 0, 1, \ldots, 2n + 1). \] (2.37)

を得る。新しい座標

\[(q; p; x) = (q_1, \ldots, q_n; p_1, \ldots, p_n; x_0, x_1) \] (2.38)

を次で定める。

\[q_j = g_0 f_{2j}, \quad p_j = g_0^{-1} \sum_{r=1}^{j} f_{2r-1} \quad (j = 1, \ldots, n), \]
\[x_0 = g_0 = f_0 + f_2 + \cdots + f_{2n}, \quad x_1 = g_1 = f_1 + f_3 + \cdots + f_{2n+1}. \] (2.39)

この座標変換の逆変換は次で与えられる。

\[f_0 = x_0 - x_0^{-1} \sum_{r=1}^{n} q_r, \quad f_1 = x_0 p_1, \quad f_2 = x_0^{-1} q_1, \]
\[f_{2j-1} = x_0 (p_j - p_{j-1}), \quad f_{2j} = x_0^{-1} q_j \quad (j = 2, \ldots, n). \] (2.40)

新しい座標に対する交換関係は次のようになる。

\[[p_i, q_j] = h\delta_{ij}, \quad [q_i, q_j] = [p_i, p_j] = 0, \]
\[[p_i, x_0] = [q_i, x_0] = [p_i, x_1] = [q_i, x_1] = [x_0, x_1] = 0, \] (2.41)

ただし \(i, j = 1, \ldots, n \) とする。初節で得た Hamiltonian \(H_0 \) を \((q; p; x) \) を用いて書いたものを \(H \) とする。このとき、次が成り立つ。

\[\partial q_j = \frac{1}{\hbar} [H, q_j], \quad \partial p_j = \frac{1}{\hbar} [H, p_j], \quad \partial x_0 = \frac{k}{2} x_0, \quad \partial x_1 = \frac{k}{2} x_1, \] (2.42)

ただし \(j = 1, \ldots, n \) とする。

上記の結果をまとめる。
定理 2.7 (1) \(l = 2n \) のとき、量子野海・山田系は上記で定めた \((q; p; x), H\) を用いて Heisenberg 方程式として表すことができる:

\[
\partial q_j = \frac{1}{\hbar} [H, q_j], \quad \partial p_j = \frac{1}{\hbar} [H, p_j], \quad \partial x = k, \tag{2.43}
\]

ただし \(j = 1, \ldots, n \) とする。

(2) \(l = 2n + 1 \) のとき、量子野海・山田系は上記で定めた \((q; p; x), H\) を用いて Heisenberg 方程式として表すことができる:

\[
\partial q_j = \frac{1}{\hbar} [H, q_j], \quad \partial p_j = \frac{1}{\hbar} [H, p_j], \quad \partial x_0 = \frac{k}{2} x_0, \quad \partial x_1 = \frac{k}{2} x_1, \tag{2.44}
\]

ただし \(j = 1, \ldots, n \) とする。

2.4 Hamiltonian の性質

Hamiltonian \(H_1, \ldots, H_l \) を次で定める。

\[
H_j := \pi (H_{j-1}). \tag{2.45}
\]

古典の場合、これらの Hamiltonian は \(W \) の作用に関してもいくつかの性質を持っている。量子の場合においても同様なことが成立立つ。以下でそのことを示そう。

命題 2.8 アフィン Weyl 群の作用関連して、Hamiltonian は次の性質を持つ。

(1) \(l = 2n \) のとき

\[
s_i (H_j) = H_j + \delta_{ij} k \frac{\alpha_i}{f_j} \quad (i, j = 0, \ldots, l). \tag{2.46}
\]

(2) \(l = 2n + 1 \) のとき

\[
s_i (H_j) = H_j + \delta_{ij} k \frac{\alpha_i}{f_j} g_j \quad (i, j = 0, \ldots, l). \tag{2.47}
\]

ただし \(g_j \) の添字は \(\mathbb{Z} / 2\mathbb{Z} \) の元と理解する。

証明. 回転対称性を表す \(\tau \) を用いることによって、\(j = 0 \) の場合のみ示せばよい。\(A_2^{(1)} \) と \(A_3^{(1)} \) の場合、\(\Delta_i (H_0) \) を計算し、(2.46) と (2.47) を順に得る。\(A_2^{(1)} \) の場合、\(\Delta_i (H_0) \) はつきのように計算される。

\[
\Delta_i \left(\sum_{K \in S_2} f_K + \sum_{K \in S_1} \chi (K) f_K \right)
\]

\[
= \Delta_i (f_{i-1} f_i f_{i+1}) + \Delta_i \left(f_i f_{i+1} \sum_{r=1}^{n-1} f_{i+2r} \right) + \Delta_i \left(f_{i+1} \sum_{1 \leq r \leq s \leq n-1} f_{i+2r} f_{i+2s+1} \right)
\]

\[
+ \sum_{K \in S_1} \Delta_i (\lambda' (i) f_K + s_i (\chi (I^{i+1}) - \alpha_i)) \frac{1}{f_i} - s_i (\lambda' (I^{i-1}) - \alpha_i) \frac{1}{f_i}
\]

\[
= \left(-f_{i+1} + f_{i-1} - \frac{\alpha_i}{f_i} \right) + \sum_{r=1}^{n-1} f_{i+2r} f_{i+2r+1} \frac{1}{f_i} - \sum_{r=1}^{n-1} f_{i+2r} f_{i+2s+1} f_{i-1} - \sum_{r=1}^{n-1} f_{i+2r+1} f_{i+2s+1} \frac{1}{f_i}
\]

\[
- \sum_{1 \leq r \leq s \leq n-1} f_{i+2r} f_{i+2s+1} \frac{1}{f_i} + (\chi (I^{i+1}) + \alpha_i) \frac{1}{f_i} - \chi (I^{i-1}) - \alpha_i \frac{1}{f_i}
\]
$\sum_{r=1}^{2n}(-1)^{r-1}f_{i+r}$

$$= \frac{\alpha_1}{f_1} + (\varpi_{i-1} - 2\varpi_i + \varpi_{i+1}) \frac{1}{f_1} = \frac{\alpha_1}{f_1} + (\alpha_i + \delta_i k) \frac{1}{f_1} = \delta_i k \frac{1}{f_i}.$$ 従って (2.46) を得る。$A_{2n+1}^{(1)}$ の場合も同様に示すことができる。

命題 2.8 は、量子野海・山田系がアフィン Weyl 群対称性を持つ事を、Hamiltonian に対する観点から見たものである。

命題 2.9 (1) $A_{2n}^{(1)} (l = 2n)$ の場合、$j = 0, \ldots, 2n$ に対して、次が成立。

$$H_{j+1} - H_j = k \sum_{r=1}^{n} f_{j+2r} - \frac{nk}{2n+1} z$$

ただし $z = f_0 + f_1 + \cdots + f_{2n}$ とする。

(2) $A_{2n+1}^{(1)} (l = 2n+1)$ の場合、$j = 0, \ldots, 2n+1$ に対して、次が成立。

$$H_{j+1} - H_j = k \sum_{1\leq r \leq n} f_{j+2r} f_{j+2r+1} - \frac{nk}{2n+1} \sum_{K \in S_2} f_K + (-1)^j \frac{k}{4} \sum_{i=0}^{l} (-1)^i \alpha_i. \tag{2.49}$$

証明。$l = 2, 3$ のとき、直接計算することによって容易に示される。

$l = 2n \ (l = 2n, n \geq 2)$ のとき、次が成立する。

$$H_0 = \sum_{K \in S_3} f_K + \sum_{i=0}^{2n} \lambda^c \chi(i^c) f_i, \tag{2.50}$$

$$H_1 = \sum_{K \in S_3} f_K + \sum_{i=0}^{2n} \pi(\chi(i-1)^c) f_i. \tag{2.51}$$

ゆえに

$$H_1 - H_0 = \sum_{i=0}^{2n} (\pi(\chi(i-1)^c) - \chi(i^c)) f_i. \tag{2.52}$$

が成り立つ。$\pi(\chi(i-1)^c) - \chi(i^c)$ を定義から計算することによって、

$$\pi(\chi(i-1)^c) - \chi(i^c) = \begin{cases} \frac{-nk}{2n+1} \left(\frac{2n+1}{2n+1} \right) & (i = 0 \text{ or } i = \text{odd}) \\ \frac{-nk}{2n+1} \left(\frac{2n+1}{2n+1} \right) & (i \neq 0, i = \text{even}) \end{cases} \tag{2.53}$$

を得る。それゆえ,

$$H_1 - H_0 = \sum_{i=0}^{2n} \frac{-nk}{2n+1} f_i + \sum_{r=1}^{n} k f_{2r} = k \sum_{r=1}^{n} f_{i+2r} - \frac{nk}{2n+1} z. \tag{2.54}$$

が成る。$l = 2n+1 \ (n \geq 2)$ の場合も同様に示すことができる。

3 Lax 形式

野海・山田系は線型方程式系の同位立条件として得られ、Lax 形式としての表示を持つ [4]。この節では量子の場合においても同様に Lax 形式としての表示を持つことを示す。

$A_l \ (l \geq 2)$ を C 上の斜体で生成元が

$$f_i, q_i, \epsilon_i, t \ (0 \leq i \leq l), \tag{3.1}$$
で定義関係式が

\[
[f_i, f_{i+1}] = [f_i, q_{i+1}] = [q_i, f_i] = h \quad (h \in \mathbb{C}),
\]
\[(3.2) \]

\[
[f_i, f_j] = 0 \quad (j \neq i \pm 1),
\]
\[(3.3) \]

\[
[f_i, \epsilon_j] = [q_i, \epsilon_j] = 0
\]
\[(3.4) \]

\[
f_i - f_{i+1} = q_i - q_{i+2}
\]
\[(3.5) \]

\[
f_0 + f_1 + \cdots + f_t = t
\]
\[(3.6) \]

であるようなものとする。ここで添字は \(\mathbb{Z}/(l+1)\mathbb{Z} \) の元とみる。

定義 3.1 \(A_1[z] \) を係数 \(A_1 \) である多項式環とする。このとき, \(L, B \in M_{n,n}(A_1[z]) \) を次で定める。

\[
L = -
\begin{bmatrix}
\epsilon_1 & f_1 & 1 & & & \\
\epsilon_2 & f_2 & 1 & & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & \epsilon_i & f_i & 1 & \\
z & & z & & & \\
z f_0 & & z & & & \\
\end{bmatrix},
\]
\[(3.7) \]

\[
B =
\begin{bmatrix}
q_1 & 1 & & & & \\
q_2 & 1 & & & & \\
& \ddots & \ddots & \ddots & \ddots & \\
& & q_i & 1 & & \\
z & & & & & \\
& & q_0 & & & \\
\end{bmatrix}
\]
\[(3.8) \]

\(\partial_z \) を \(A_1[z] \) の \(\mathbb{C} \)-derivation \(\partial_z(z) = 1 \) であるものとする。

命題 3.2 \(A_1 \) の \(\mathbb{C} \)-derivation \(\partial_z \) が次の関係式

\[
[z \partial_z - L, \partial_z - B] = 0,
\]
\[(3.9) \]

を満たすとする。このとき, \(\partial_z \) は \(f_i \) に対して量子野海・山田系を定める。すなわち, \(l = 2n \) のとき

\[
\partial_z f_i = \partial f_i,
\]
\[(3.10) \]

であって, \(l = 2n + 1 \) のとき

\[
\partial_z f_i = \frac{2}{l} \partial f_i,
\]
\[(3.11) \]

である。ただし \(\alpha_0 = 1 - \epsilon_1 + \epsilon_0, \alpha_i = \epsilon_i - \epsilon_{i+1} (1 \leq i \leq l) \) であって \(k = 1 \) とする。

証明. 式 (3.9) は次の関係式と同値である。

\[
\epsilon_i q_i = q_i \epsilon_i,
\]
\[(3.12) \]

\[
f_i - f_{i+1} = q_i - q_{i+2},
\]
\[(3.13) \]

\[
\partial_z f_i = -f_i q_i + q_{i+1} f_i + \alpha_i.
\]
\[(3.14) \]

式 (3.12) と (3.13) は (3.4) と (3.5) から順に従う。また式 (3.14) から (3.2), (3.3), (3.4), (3.5), (3.6) を用いて, \(q \) 変数を消去することができる。結果として式 (3.14) の右側部分は \(l = 2n \) のとき (2.4) の \(\partial f_i \) の右側部分と等しく, \(l = 2n + 1 \) のときは (2.6) の \(\partial f_i \) の右側部分に \(\frac{2}{l} \) をかけたものに等しい。 \(\square \)
参考文献

