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Laplacians of categories

and their spectral zeta functions
(BDSTZLF7 v ERRY MLE—42 %)

A — 5 (Kazufumi KIMOTO)* (Juk - )

1 Cauchy-Schwarz inequalities
Let K be a category. Denote by Ob(K) the set of objects of K (up to isomorphism), by
Mor(K) the set of morphisms of K, and by Mork(X,Y) the sct of morphisms from X to YV

for X,Y € Ob(K). We also write p : X — Y instead of P € Mork(X,Y). For given two
objects X and Y, we put

<X7Y>K = #MOI‘K(«X, Y’)a (11)
where #A denotes the cardinality of a set A. In the sequel, we mainly deal with the subset
Ob,(K) < Ob(K) such that X,Y € Ob,(K) implies (X,Y)x < oo. In [KuW, I, the
following problem is proposed and studied.

Problem 1.1. If K is a “good” category, then does the Cauchy-Schwarz inequality
(X, (Y, X))k < (X, X)x(Y,Y)k (1.2)
holds for any X,Y € Ob,(K) ?

We show several examples of the Cauchy-Schwarz inequality (1.2).

Example 1.1. Let Mod(F,) be the category consisting of F-modules and F,-linear maps.
The category Mod(F,) satisfies (1.2). In fact, Ob,(Mod(F,)) = {F*| k € Z5, } and

m mn (e mn T 2. TL2 7T L mn .
(Fy FodMod ) (Fo Fo ) Modry) = 7" < ¢ 1 = (Fy F Moaw) (Fy Ty ) Modr,)  (1.3)

for all m,n € Zxq.
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Example 1.2. The category Set of all sets and all maps satisfies (1.2). In fact, Ob,(Set) =
{[k]| k € Z>o } and

([m], Inset([n], [m])ser = m™n™ < m™n™ = ([m], [m])set (1], [n])set (1.4)
for all m,n € Zso. Here we put [k] := {1,2,...,k}.

Example 1.3. Dcnote by Gr the category consisting of groups and group homomorphisms.
Since it is difficult to enumerate the number of homomorphisms between given two finite
groups in general, it seems quite hard to prove the Cauchy-Schwarz inequality (1.2) for Gr.
However, we can prove the Cauchy-Schwarz inequality for the subcategory Ab of abelian
groups and group homomorphisms because we can determine the number of homomorphisms
explicitly (see [KuW}).

Remark 1.1. (1) If we consider the inequality
(X, V)V < (X, X)(Y,Y)k, (1.5)
instead of (1.2), then, for instance, this is not true even for the category Set. In fact,
(18], [10])3er = 8% > 8° x 10" = ([8], [8])set {[10], [10])ser.- (1.6)

(2) It is easy to construct an artificial counterexample to the Cauchy-Schwarz inequality
(1.2). Let K be a category which has only two objects, say X and Y, and let the morphisms
of K he given by

Morg (X, X) = {0,1}, Mork(Y,Y) = {0,1},
Morg(X,Y) = {0}, Mork(Y,X) = {a1,as,...,a,}

with the following composition rules:
0-p=0, p-0=0, 1-p=1, p-1=1 (pe Mor(K)).
Then we have

#Mork (X, Y)#Mork (Y, X) = n,
#Mork (X, X)#Mork (Y, Y) = 4.
Therefore the inequality does not hold if n > 4.
We notice that the Cauchy-Schwarz inequality is equivalent to the positivity of the 2 x 2
matrix ( > ( )
X, XYk (X,Y)k
Agk(X,Y) = ’ ’ .

Actually, (1.2) is equivalent to the inequality det Ax(X,Y) > 0. The Cauchy-Schwarz
inequality is thus regarded as a special case of the following problem.
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Problem 1.2. Define the Laplacian A of a given category K by
Ak = ({(X,Y)x)x,yeobo(K)- (1.7)

If K is a “good” category, the can one say that Ak is positive in the sensc that cvery
principal minor of Ak is positive?

Example 1.4. The Laplacians Aget, Amoq(r,) are positive [KuST]. The Laplacian Apyp of
the category Ab is expected to be positive but it is not proved yet.

A study of the Laplacian Ak of a given category K is originally motivated by the study of
the zeta functions of categories introduced by Kurokawa for the sake of unifying various zeta
functions [Ku|. Let us recall the definition of the zeta function of a category. Assume that
K is a category with a zero object, that is, an object which is initial and terminal. An object
X is called simple if Mork(X,Y) consists of monomorphisms for any object Y € Ob(K).
Denote by Prim(K) the set of isomorphism classes of simple finite objects in K. The zeta
function of the category K is defined by the Euler product

(s, K)= [ a-n~nPp)y™7, (1.8)

PePrim(K)

where N(P) is the norm of P defined by N(P) = #Endk(X) for X € P.

For example, we see the zeta function ((s, Ab) of the category Ab. A simple object of
Ab is a cyclic group of prime order. Namely, we have Prim(Ab) = {Z/pZ| p : prime } and
N(Z/pZ) = p. Therefore we have

(s, Ab) =[] (=-NP) ") "= J] a-p ) =),

PcPrim(Ab) p : prime

which is nothing but the Riemann zeta function. Thus the Riemann zeta function ((s)
allows us an interpretation as a zeta function of the category Ab. Related to this fact, the
spectrum of Aap is studied experimentally in [KuST].

Our main result is stated as follows (the precise definitions of terms are given later).

Theorem 1.1. If K i4s an involutive totally ordered category, then its Laplacian Ak is
positive.

As a corollary, the validity of the Cauchy-Schwarz inequality follows.

Corollary 1.2. If K is an involutive totally ordered category, then K satisfies the Cauchy-
Schwarz inequality.

In order to prove Theorem 1.1, we employ the representation theory of ordered categorics
which we explain below.

Remark 1.2. Since Ab is not an involutive totally ordered category, the Cauchy-Schwarz
inequality for Ab is not obtained as an application of Corollary 1.2.
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2 Ordered categories

Definition 2.1. Let K be a category. Suppose that there exist a partially ordered set (or
poset) ¥ such that

(1) every finite subset S C % has an upper bound,
(2) Ob(K) is indexed by 3, say Ob(K) = {X,| c € ¥ }.

We further suppose that there are distinguished morphisms Mg, : Xo — Xpg and piog : Xg —
X, for any comparable pair a < 8(a, 3 € ) such that

)"yﬁ)‘/ia = )‘“{a (a < /3 < ’Y) ) (21)
Haplpy = Hary (OL' < ﬁ < '7) ) (22)
Ma,@)‘ﬂa =1, (O[ < )6) » (23>

where 1, denotes the identity of X,,. Then we say that K is a purely ordered category.
A category which is equivalent to a purely ordered one is said to be an ordered category.

Remark 2.1. If the index set ¥ of an ordered category K is totally ordered, then we say K
is totally ordered category.

Definition 2.2. Let K be an ordered category. Suppose that there exists an involution
P+ P* on Mork, i.e. P = P,(PQ)* = Q*P* such that A;, = pap (o < 3). Then we say
that K is an involutive ordered category.

We present several examples of involutive ordered categories.

Example 2.1. The category A of (isomorphism classes of) Hilbert spaces and linear op-
erators is an involutive (totally) ordered category. In fact, ¥ = {0,1,2,...} U {oo} and
Ob(A) ={V,=C"|n=0,1,2,...} U {V, = [*}. The involution is given by the adjoint
action * with respect to the equipped inner product (-, - )v,.

Example 2.2. The category P of (isomorphism classes of) Hilbert spaces and linear op-
erators up to C* (i.c. Morp(V,W) = Mora(V,W)/C*) is an involutive (totally) ordered

category.

Example 2.3. The category Ab™ of finite abelian groups and group homomorphisms is an
ordered category. (This is a subcategory of Ab such that Ob(Ab") = Ob,(Ab).) In fact,
an involution is constructed by using the duality of finite abelian groups.

3 Representations of categories

We prepare several conventions which are needed below.
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Definition 3.1. Let K be a given category. A linear representation of K is a covariant
functor p from K to A. A projective representation of K is a covariant functor = from K
to P. In the sequel, we simply write ‘representation’ to mean either linear representation or
projective one. We use the adjective ‘linear’ or ‘projective’ only when we want to emphasize
which kind of representations are dealt with.

Example 3.1. For a given category K,
ok(X)=0 (X e€ObK)), ok(P)=0 (P e Mork)
defines a representation of K. We call this ok the null representation of K.

Definition 3.2. Let K be an involutive category and let p be its representation. We say
that p is called a *-representation if and only if

p(P") = p(P)*
for all P € Mork.

Definition 3.3. Let p be a representation of a given category K. A representation 7 of K
is called a subrepresentation of p if

T(X) Cp(X) (X € Ob(K)),
7(P)=p(P)lrxy (P:X—=Y).

We say that p is irreducible if and only if p has just two subrepresentations, say, p itsclf
and the null representation ok.

Definition 3.4. Let p be a representation of a category K, and let W be a subset of p(V)
for an object V' € Ob(K). Then we can construct a subrepresentation A of p by

A(X) :=Spanc{Pw| P € Mor(V, X),w e W} C p(X) (X € Ob(K)).
We call this representation A the cyclic span of W.

Definition 3.5. Let p be a representation of a category K. For each object X € Ob(K),
the restriction px := p|,x) defines a representation of the semigroup End(X) and/or the
group Aut(X) on the space p(X). These representations are called the subordinate rep-
resentations of p.

Lemma 3.1. If a representation p of a category K is irreducible, the every subordinate
representation of p is either an irreducible representation or a null representation.

Proof. In fact, if some subordinate representation px of End(X) has a nontrivial subrep-
resentation W C p(X), then the cyclic span of W gives a nontrivial subrepresentation of
p. U
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Definition 3.6. Let K be a category and suppose that two representations p, p’ of K are
given. A family of linear operators

T={T,: p(X,) = p(X,)| c € £} CMor(A)
is called an intertwiner between p and p’ if
p(P)To = Tsp(P)

for any o, € £ and any P : X, — Xj3. We say that an intertwiner T is invertible if T,
is invertible whenever p(X,) # 0. Two representations p, p’ of the same category K are said
to be equivalent if they have an invertible intertwiner. For an involutive category K, we
denote by K the set of all equivalence classes of *-irreducible representations of K.

4 Representation theory of ordered categories

Here we explain how a representation of an ordered category K is determined by its subor-
dinate representations of semigroups Endg (X). For simplicity, we put I'; := Endg(X,).

For a comparable pair @ < 3 of indices, we define 19/(3") € I's by 19%“) = Agalleg- It is
elemnentary to check that

(19,530‘))2 = ’ﬁ(ﬁ(l)’ /Laﬁ'&fﬁa) = Hapb; ﬂ(ﬁa)/\ﬁa = /\50’"

We also notice that
(@) (@) __ @) gla’) _ qo(a)

for o < av.

Lemma 4.1. Suppose that o' < a and ' < 3. For any P € Mor(Xy, Xp), there ez-
ists o morphism Q € Mor(X,, Xg) such that P = pggQAae . Namely, Mor(Xy, Xg) =
/AgngOl”(‘Xa,Xﬁ))\aa/.

Proof. Actually, the morphism @ = Agg I’ oo satisfies the required conditions. O

Lemma 4.2. Let p be a representation of an ordered category K. If there is some 3 € ¥
such that p(Xg) = 0, then p(X,) =0 for any a < 3.

Proof. We remark that p(15) = 0 by assumption. Therefore it follows that

p(1a) = p(kaslsdsa) = cp(iias)p(1s)p(Asa) =0 (c € C¥),
which implies p(X,) = im p(1,) = 0 for a < 3. O

Lemma 4.3. Let p be a representation of an ordered category K. The following two condi-
tions are equivalent.

(a) p is irreducible.
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(b) Puvery subordinate representation p, ‘= px, (0 € L) of p is irreducible.

Proof. We have proved the implication (a) = (b) in Lemma 3.1. We show the converse
(b) = (a). Take any subrepresentation M of p, and consider the quotient representation
N := p/M. By the assumption of irreducibility of subordinate representations, it follows
either M(X,) = 0 or N(X,) = 0 for each X, € £. For any a,3 € X, there exists a
certain o € ¥ such that «, 3 < 0. Hence, by Lemma 4.2, it follows either “M(X,) = 0 and
M(Xg) = 0" or “N(X,) =0 and N(Xg) = 0.” This implies that M(X,) = 0 for all X, or
N(X,) =0 for all X,. Anyway, M must be a trivial subrepresentation. This implies that p
is irreducible. g

We notice that pasAga = 1o, If we put Upo(P) = AgaPies € I for P € 1, then
Upa : I'a — T'g defines an embedding of semigroups. The following equivalence holds.

Proposition 4.4. Let p be a representation of an ordered category K, and assume a < 3.
Then the space im p(ﬁg")) 18 tnvariant under the actions of operators p(Uga(P)) (P € I'y).
Two representations (p, p(Xa)) and (p o Usy,im p(ﬁ(ﬁa))) of I'y are equivalent.

Proof. 1t follows from the relation U/ja(P)'L?I(SQ) = l‘)g:UUﬂa(P) that im p(ﬁé‘”) is p(Upga(P))-
invariant for any P € I',. The family p(Aga) : p(Xs) — im p(ﬁ(ﬁa)) gives an intertwiner
between (p, p(X,)) and (p o Ugq,,im p(ﬂgl))), and it is indeed invertible. Hence the represen-
tations (p, p(X4)) and (p o Ugs,, im p(ﬂg’))) of I',, are equivalent. O

We prepare several conventions.

Definition 4.1. Assume a < 3. For a representation 7 of the semigroup 'y, we put
low;(7) := 7 0 Uga, which is a representation of I',. This correspondence 7 — low§(7)
is called a lowering functor.

Definition 4.2. Let K be an ordered category. Assume that an irreducible represcentation
ps of the semigroup I', is given for every o € X. If these representations {p,},ex satisfy
lowgpg = p, for any a < 3, then we say that it is a compatible system.

The following proposition is fundamental.

Proposition 4.5. Let K be an ordered category. Suppose that a compatible system {p, }oecs
1s given. Then, there exist uniquely a representation p of K such that p(P) = p,(P) for
every o € X and cvery P € T',.

Sketch of proof. We notice that Mork is generated by the endmorphisms ', (¢ € ¥) and
Agas Hap (@ < ). Actually, for any P € Mor(X,, Xg), we see that

P = “’ﬂa(/\aﬁpuaa))\aay )\aﬁpﬂaa el',

for a certain o € ¥ such that o, 8 < 0. Based on this fact, we can concretely construct the
desired representation p from the family {p,}sex. O
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5 Decomposition of regular representations

Let K be an involutive ordered category and denote by ¥ its index poset. In the sequel we
discuss the case where the number (X,Y)x = #Mork(X,Y’) of morphisms is finite.

For «, 3 € X, we define a representation (R, L(Mork (X3, X,))) of the semigroup I', X I's
by

L(I\/IOI‘K(X/j, ) = {f : MOI‘K(X'B,XQ) h C},
{R(a,b)f}(P) := f(a*Pb) (a €l bely).

We recall that as a G x G-module, the regular representation L(G) of a finite group G
decomposes as follows:

G)=) n ®m (5.1)

el

Analogous to this fact, we give a decomposition of the T, x I'g-module L(Mork(Xg, Xq))
when « and [ are comparable.

Proposition 5.1. Let K be an involutive ordered category. Suppose that o < 3 and the set
Mork (X3, X4) is finite. Then, as a I'y x T'g-module, the decomposition formula

L(Mor (X5, Xa)) = Y _ pi B pg (5.2)

pEK

holds.

Proof. For abbreviation we put M := Mork (X4, X, ). First we decompose the left hand side
as a ['g-module as follows:

L(Mork (X3, Xa)) 2 > Homr, (W, L(M)) @ W, (5.3)

Wefﬁ

Here we denote by Wi the I'g-module corresponding to m. We discuss each m-component
below.

Fix an irrcducible representation m € fg. Then there uniquely exists an irreducible repre-
sentation p such that pg = 7. Thus it is enough to show the equivalence of Homp, (Wr, L(M))
and p} as a I',-module. By the definition of the lowering functor and a compatible system,
we remark that the subordinate representation p, is equivalent to lowgm on im 7(65) C Wi

In order to prove the equivalence between Homr,(Wy, L(M)) and (lowzm)* (= p}), we
construct an intertwiner as follows: For + € Homp,(Wx, L(M)),

(TY)(z) == (Vx)(pag) (z €imm(65) C Wr). (5.4)
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This indeed gives an intertwiner. Actually,
((lowgm)*(a)TY)(z) = (TY)(lowsm(a®)z)
= (V7 (Agal” ap)T) (Hap)
= p(1, Mgal" 11ag) (W) (bap) (" ¥ is a Ts-intertwiner)
= (Y2)(Htap - A3al" thap)
= (Yz)(@ pap) (. Haprsa = o)
= (R(a, 1)¥z)(pap)
= (TR(a, 1)) (z).
Finally we check that T is injective. For ¢ € Homp,(W,, L(M)),
Ty =0 = (¥7)(pag) =0 (Vz € imn(65))
= (Yz)(ptapb) =0 (Vz € im7(65),Vb € I'y) .

Since Mor(Xg, Xo) = pasl's, it follows that ¢ = 0. Hence T gives an invertible intertwiner
as desired. 4

6 Positivity of Laplacians

6.1 Proof of Theorem 1.1

By calculating the dimensions in the decomposition (5.2) of the regular representation, we
have the following equality.

Theorem 6.1. Let K be an involutive ordered category. Denote by ¥ its index poset. If
«, 3 € ¥ are comparable,

#Mork (Xa, X5) =Y dim p, dim pg (6.1)
peK
holds. o
The positivity of Laplacians is a corollary of the theorem above.

Theorem 6.2 (Theorem 1.1). If K s an involutive totally ordered category, then its
Laplacian Ax 1is positive.

Proof. Recall the Cauchy-Lagrange identity

2
<a1 N a1> . <a1, am) i1 --- Qi
det : : = > det| : - |,
<a'm7 al> cee <a"mu am> ISi) < <im=n a;,,1 Qi
where a; = (a1, ..., am), m < n. 1t is easy to see that every principal minor of the Laplacian
Ak is written in this form by Theorem 6.1. Thus the positivity follows. O

Corollary 6.3. If K is an involutive totally ordered category, then K satisfies the Cauchy-
Schwarz inequality. O
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6.2 Example: Laplacian and spectral zeta function for PB

Here we deal with the category PB attached to the full symmetric group &, as an example
in which the equality (6.1) is directly checked.
Let us recall the definition of PB. An object in PB is a finite set [n] = {1,2,...,n}.

A morphism from [m] to [n] is given by a partial bijection, that is, the triplet (¢, Dy, R,),
where D, C [m] and R, C [n] have the same cardinality and ¢ : D, — R, is a bijection.
For given two morphisms ¢ : [[] — [m] and ¢ : [m] — [n], the composition ¢ : [I[] — [n] of ¢
and 1 is defined to be a partial bijection from Dy, = ¢ }(R,N Dy) to Ry, = (RN Dy).
The distinguished morphisms A, : [m] — [n] and g, : [n] — [m] are defined by

Anm @ [m] 2z — z € [m] C [n],

Pmn © (7] D M]3z x € [m],
for n < m. For a given partial bijection ¢ : D, — R,, ¢* is defined to be the partial
bijection ¢* : Ry, 3z — ¢ () € D,.
Proposition 6.4. The category PB is an involutive totally ordered category, and hence, the
Laplacian Apg s positive definite. O

By an clementary combinatorial calculation we see that the number of morphisms are
given by

e ——r . 3 (AT (6:2)

k=0

Irreducible representations of PB are labeled by Young diagrams. Denote by p* the
attached irreducible representation of PB, and by p? the subordinate representation which
is the restriction of p* to T,,.

Proposition 6.5 ([Ne]). We have

dim p) = (|7;\|) dim A (6.3)

for any A € Y. Here we denote by dim X\ the dimension of the irreducible &y -module
corresponding to A. We remark that (2) =0ifk>n.

By using Theorem 6.1 and the well-known fact

> (dim M) = k!,

[Al=F

(Bl hen = 3 {0 mae (1) aima}

min(m,n) m n

= VKL
> (1)
k=0

we have in fact

(6.4)
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for m,n € Zxq, which (of course) coincides with the result (6.2) of a combinatorial calcula-
tion.

We put A = Apg. One of our main concern is a study of the spectrum of the Laplacian
A and its spectral zeta function (a(s). We put Ay = (([] [7])pB)o<ij<n, the principal
N-minor of the Laplacian A. Let us denote by Ay; (0 < j < N) the (j + 1)-th eigenvalue
of Ay, that is,

0<Ano S An1 <~ < Ay
Theorem 6.6 ([Kil]). For every k > 0, there exists the limit A\ := limy_,o An i > 0.

We show the numerical estimation of first 10 eigenvalues up to 10 digits (Table 1). These
values are calculated as limits of Ay x’s. The special values of the spectral zeta function are

Ao = 0.08487190949 . . .
A1 =0.2919019234 . ..
A2 = 0.8906738137 ...
Az = 2.607762169 . ..
Ay = 9.640545861 . ..
A5 = 46.47152499 . ..
Ae = 273.9773421 . ..
A7 = 1899.150590. . .
Ag = 15101.52483 ...
Ag = 135369.6103 . ..

Table 1: First 10 eigenvalues of Apg
given as follows.

Theorem 6.7. We have

1 kv 4 ko \ (ko + k3 kp + Ky .
Calm)= > kll...km!< by )( k2 )( km ) (65)

ki, kom0

In particular, we have
oo k 00
1 k 1 2k »
=Yz () =T (%) (6.6)
k

() &
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