<table>
<thead>
<tr>
<th>Title</th>
<th>Bell's results on, and representations of finitely connected planar domains (Applications of the theory of reproducing kernels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Taniguichi, Masahiko</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2004), 1352: 47-53</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2004-01</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/25128</td>
</tr>
<tr>
<td>Right</td>
<td>Type</td>
</tr>
<tr>
<td></td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td></td>
<td>Textversion</td>
</tr>
</tbody>
</table>

Kyoto University
Bell's results on, and representations of finitely connected planar domains

谷口雅彦 (Masahiko Taniguchi)

京都大学大学院理学研究科
Department of Mathematics, Kyoto University,

1 Ahlfors maps and Bergman kernels

Let D be a domain in \mathbb{C}. Consider the subspace $A^2(D)$ of the Hilbert space $L^2(D)$ (of all square integrable functions on D with respect to the Lebesgue measure on \mathbb{C}) consisting of all elements in $L^2(D)$ holomorphic on D. Then there is the natural projection

$$P : L^2(D) \to A^2(D),$$

which is called the Bergman projection. The corresponding kernel $K(z, w)$ is called the Bergman kernel.

When D is the unit disc,

$$K(z, w) = \frac{1}{\pi(1 - z\bar{w})^2}.$$

Hence the Bergman kernel function $K(z, w)$ associated to a simply connected domain D can be written by using the Riemann map $f_a(z)$ (determined uniquely by the conditions $f_a(a) = 0$ and $f'_a(a) > 0$) and its derivative:

$$K(z, w) = \frac{f'_a(z)f'_a(w)}{\pi(1 - f_a(z)f_a(w))^2}.$$

Let D be a non-degenerate multiply connected planar domain with smooth boundary. Fix a point a in D, and let f_a be the Ahlfors map
associated with the pair \((D, a)\). Among all holomorphic functions \(h\) which map \(D\) into the unit disc and satisfy \(h(a) = 0\), the Ahlfors map \(f_a\) is the unique function which maximizes \(h'(a)\) under the condition \(h'(a) > 0\). Such proper holomorphic maps can recover the Bergman projections and kernels in general.

Theorem 1 Let \(f : D_1 \to D_2\) be a proper holomorphic map between planar (proper) domains. Let \(P_j\) be the Bergman projection for \(D_j\). Then

\[
P_1(f' \cdot (\phi \circ f)) = f' \cdot ((P_2 \phi) \circ f)
\]

for all \(\phi \in L^2(D_2)\).

But the translation formula for the Bergman kernels is not so simple in general. For instance, it is hard to write down the following formula explicitly.

Proposition 2 Let \(f : D_1 \to D_2\) be a proper holomorphic map between planar (proper) domains. Then the Bergman kernels \(K_j(z, w)\) associated to \(D_j\) transform according to

\[
f'(z)K_2(f(z), w) = \sum_{k=1}^{m} K_1(z, F_k(w))\overline{F_k'(w)}
\]

for \(z \in D_1\) and \(w \in D_2 - V\) where the multiplicity of the map \(f\) is \(m\) and the functions \(F_k, k = 1, \ldots, m\), denote the local inverses to \(f\) and \(V\) is the set of critical values.

S. Bell obtained several kinds of simpler representations of Bergman kernel functions.

Theorem 3 ([1]) For a non-degenerate multiply connected planar domain \(D\), we can find two points \(a, b\) in \(D\) such that

\[
K(z, w) = f'_a(z)f'_b(w)R(z, w)
\]

with a rational combination \(R(z, w)\) of \(f_a\) and \(f_b\).
Here we say that a function $R(z, w)$ is a *rational combination* of f_a and f_b if it is a rational function of

$$f_a(z), f_b(z), \overline{f_a(w)}, \overline{f_b(w)}.$$

Such representation as above has the following variant.

Theorem 4 ([5]) *For a non-degenerate multiply connected planar domain D, we can find two points a, b in D such that*

$$K(z, w) = \frac{f_a'(z)f_a'(w)}{(1 - f_a(z)f_a(w))^2} \left(\sum_{j,k} H_j(z)K_k(w) \right)$$

where f_a, f_b are the Ahlfors functions, H and K are rational functions of them, and the sum is a finite sum.

Actually, we can use any proper holomorphic maps.

Theorem 5 ([2]) *Let D be a non-degenerate multiply connected planar domain, and f a proper holomorphic map of D onto the unit disk U. Then $K(z, w)$ is an algebraic function of*

$$f(z), f'(z), \overline{f(w)}, \overline{f'(w)}.$$

Moreover, we have the following

Theorem 6 ([2]) *Let D be a non-degenerate multiply connected planar domain. The following conditions are equivalent.*

1. The Bergman kernel $K(z, w)$ associated to D is algebraic, i.e. an algebraic function of z and \overline{w}.
2. The Ahlfors map $f_a(z)$ is an algebraic function of z.
3. There is a proper holomorphic mapping $f : D \to U$ which is an algebraic function.
4. Every proper holomorphic mapping from D onto the unit disc U is an algebraic function.

Also we have
Theorem 7 ([4]) Let D be a non-degenerate multiply connected planar domain. There are two holomorphic functions F_1 and F_2 on D such that the Bergman kernel on D is a rational combination of F_1 and F_2 if and only if there is a proper holomorphic map f of D onto U such that f and f' are algebraically dependent: i.e. there is a polynomial Q such that $Q(f, f') = 0$.

Then, for every proper holomorphic map f of D to U, f and f' are algebraically dependent.

Proposition 8 ([4]) Let D be a simply connected planar (proper) domain. The Bergman kernel on D is a rational combination of a function of a complex variable if and only if the Riemann map f of D and f' are algebraically dependent.

Finally, we note the following facts.

Proposition 9 ([2]) If $K(z, w)$ is algebraic, and f be a proper holomorphic map to U. Then $K(z, w)$ is an algebraic function of $f(z)$ and $f(w)$.

Corollary 1 ([2]) Let D_1 and D_2 have algebraic Bergman kernels, then every biholomorphic map of D_1 onto D_2 is algebraic.

2 Bell representations

Now the issue is to find a family of canonical domains which admit a simple proper holomorphic map to U. Bell proposed such a family, and actually, they are enough.

Theorem 10 ([6]) Every non-degenerate n-connected planar domain with $n > 1$ is mapped biholomorphically onto a domain $W_{a, b}$ defined by

$$W_{a, b} = \left\{ z \in \mathbb{C} : \left| z + \sum_{k=1}^{n-1} \frac{a_k}{z - b_k} \right| < 1 \right\}$$

with suitable complex vectors $a = (a_1, a_2, \ldots, a_{n-1})$ and $b = (b_1, b_2, \ldots, b_{n-1}).$
The above theorem is considered as a natural generalization of the classical Riemann mapping theorem for simply connected planar domains. The function $f_{a,b}$ defined by

$$f_{a,b}(z) = z + \sum_{k=1}^{n-1} \frac{a_k}{z-b_k}$$

is a proper holomorphic mapping from $W_{a,b}$ to the unit disc which is rational. Actually, it is a very classical fact that, for such an $f = f_{a,b}$ as above, f and f' are algebraically dependent. Hence the above proposition implies the following corollary.

Corollary 2 Every non-degenerate n-connected planar domain D with $n > 1$ is biholomorphic to a domain with the algebraic Bergman kernel.

Corollary 3 There are two holomorphic functions F_1 and F_2 such that the Bergman kernel on $W_{a,b}$ is a rational combination of F_1 and F_2.

Definition The locus B_n in \mathbb{C}^{2n-2} consisting of (a, b) such that the corresponding domain $W_{a,b}$ is a non-degenerate n-connected planar domain.

We call this locus B_n the coefficient body for non-degenerate n-connected canonical domains.

It is obvious that B_n is contained in the product space

$$(\mathbb{C}^*)^{n-1} \times F_{0,n-1}\mathbb{C},$$

which has the same homotopy type as that of

$$X = (S^1)^{n-1} \times F_{0,n-1}\mathbb{C},$$

where

$$F_{0,n-1}\mathbb{C} = \{(z_1, \cdots, z_{n-1} \in \mathbb{C}^{n-1} \mid z_j \neq z_k \text{ if } j \neq k}\}$$

is called a configuration space.

To clarify the topological structure of the coefficient body, it is more convenient to use the following modified representation space.

Definition We set

$$B_n^* = \{(a_1, \cdots, a_{n-1}, b) \in (\mathbb{C})^{2n-2} \mid (a_1^2, \cdots, a_{n-1}^2, b) \in B_n\},$$

and call it the modified coefficient body.
Theorem 11 B_n^* is a circular domain, and has the same homotopy type as that of the product space X.

Corollary 4 The homotopy type of B_n is the same as that of X.

Remark The fundamental group of $F_{0,n-1} \mathbb{C}$ is called the pure braid group, and its structure is well-known.

Problem

1. Determine the Ahlfors locus of B_n which consists of all (a, b) such that $f_{a,b}$ gives an Ahlfors map (, or more precisely, $e^{i\theta}f_{a,b}$ with a suitable $\theta \in \mathbb{R}$ is an Ahlfors map).

2. Fix a point (a, b) in B_n, and let $W = W_{a,b}$ be the corresponding n-conencted canonical domain. Determine the leaf $E(W)$ of B_n for W, consisting of all points which correspond to n-connected canonical domains biholomorphically equivalent to W.

3. Determine the collision locus C of B_n which consists of all (a, b) such that the corresponding map $f_{a,b}$ has a pair of critical points (counted with multiplicities) whose image is the same. (Note that $B_n - C$ is a finite-sheeted holomorphic smooth cover of the intersection of $F_{0,2n-2} \mathbb{C}$ and the unit polydisc.)

Example 1

$$B_2^* = \{(a, b) \in \mathbb{C}^2 : a \neq 0, |b + 2a| < 1, |b - 2a| < 1\},$$

which is biholomorphic to the polydisc deleted the diagonal.

Next, the set

$$\left\{ (a, b) \in B_2^* : \frac{4a^2}{1 - (b + 2a)(b - 2a)} = \frac{4r}{4 + r^2} \right\}$$

corresponds to a leaf of B_2 for every given $r > 2$, and the collision locus of B_2 is empty.
参考文献

