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1 Introduction

Supervised learning is obtaining an underlying rule from training examples made up of input points
and corresponding output values. If the input-output rule is successfully acquired, then we can
estimate appropriate output values corresponding to unknown input points. This ability is called
the generalization capability. It is known that higher levels of the generalization capability can be
acquired if we actively design input points. In this paper, we discuss the problem of designing
input points for the maximal generalization capability. This problem is referred to as active learning
[4, 25, 8] or ezperimental design (11, 6, 3].

Active learning has been studied from two stand points depending on the optimality. One is
the global optimality, where a set of all input points is optimal {6, 9, 26]. The other is the greedy
optimality, where the next input point to add is optimal in each step [13, 3, 8, 24]. In this paper,
we focus on the former global optimal case and give an active learning method especially in the
trigonometric polynomial model.

2 Formulation of the problem

Let f(x) be a learning target function. It is a complex valued function of L variables defined on a
subset D of the L-dimensional Euclidean space RE. Assume that f belongs to a reproducing kernel
Hilbert space (RKHS) H [2, 22].

The training examples are made up of finite M number of sample points zp, in D and corre-
sponding M sample values yr, in C:

Ym = f(@m)+em :1<m<M,

where v, is degraded by additive noise ¢;,. Let y and € be M-dimensional vectors consist of (ym)
and (e ), respectively. Let A be an operator which transforms f to the M-dimensional vector with
the m-th element being f(xm). The operator A is called the sampling operator. Then, we have

y=Af+e (1)
Let us denote a mapping from ¥ to a learning result f oy X:
f=Xy. (2)

The supervised learning problem is an inverse problem of obtaining X that minimizes a general-
ization error. We adopt the following Jg as the generalization error of f:

Jo = Eellf - fI%, (3)

where E. is the expectation with respect to noise ensemble {€}.
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Assume that X is linear. Then, from Egs.(1) and (2), we have
f=XAf+ Xe. (4)

The first and second terms on the right-hand side of this equation are called the signal component and
the noise component of f, respectively. We require that for any given f in H, the signal component
agrees with the target function f. The requirement can be satisfied if and only if

XA=1I, (5)

where I is the identity operator on H. Let T' be the Moore-Penrose generalized inverse of an
operator T. In connection with the requirement (5), we have

Lemma 1 The following four statements are mutually equivalent.
(i) The operator equation X A = I has a solution.
(ii) AtA=1.
(iii) N(A) = {0}.
(iv) R(A*) = H.
In this case, A*A becomes non-singular.

Proof. First of all, we notice that R(A) and R(A*) are closed because CM is of finite dimension.
Then, Al in (ii) is well-defined and (iv) is equivalent to (iii). The mutual equivalence among (i)-(iii)
is a well-known result {1]. (Q.E.D.)

Since R(A*) = H means that H is of finite dimension, we shall concentrate our attention on
the finite dimensional H. Hence, all subspaces appeared in this paper are closed. Let N be the
dimension of H. Since R(A*) = H, N is less than or equal to the number of training data, i.e.
N <M.

Definition 2 (Optimal learning operator) For o fized A, if an operator X minimizes Je in
Eq.(3) subject to XA = I, then X 1is called an optimal learning operator and denoted by Xg.

Active learning problem is a problem to design sample points {Zm : 1 < m < M} so that f
minimizes the generalization error Jg. It is equivalent to design the sampling operator A so that f
minimizes Jg. In order to solve this problem, we first provide the optimal learning operator X for
each A. Then we shall devise the optimal A which minimizes Jg[Xo].

Note that f is an unbiased estimate of the original target function f if the mean of the noise
ensemble is zero because of Egs.(4) and (5).

3 Optimal learning operator

In this section, we shall devise a closed form of the optimal learning operator Xo for each A. Let us
denote the trace of an operator T by tr (7). Let Q be the noise operator defined by

Q=Ec(eg¥), (6)

where (- ®) is the Neumann-Schatten product. The rigorous definitions and properties of the trace
and the Neumann-Schatten product are described in Appendix.

Theorem 3 (Optimal learning operator) Assume that R(A*) = H. For each A, the optimal
learning operator always exists. Its general form is given by

Xo =V 1A Ut +Y(In - UUY), (7)
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where Iy is the identity operator on CM | Y is an arbitrary operator from CM to H, and

U=AA"+Q, (8)
V =AUTA (9)

Furthermore, the minimum value, say Jo, of Jg with respect to X is given by
Jo=tr (V1) - N. (10)
In order to prove this theorem, we shall prepare several lemmas.

Lemma 4 [1] For any fized operators Ty and Ty, the following statements are mutually equivalent.
(i) The equation XT1 = Ty has a solution.
(ii) N(T1) C N(Ty).
(iii) T Ty = Tp.

In this case, a general solution of XTy = T, is given by

X =TT +Y(I - T\ T}),
where I is the identity operator and Y is an arbitrary operator.

Lemma 5 (Properties of U) The operator U in Eq.(8) is positive semidefinite, and it holds that

N({U) = N(A*) N N(Q), (11)
R(U) = R(A) + R(Q), (12)
UUTA=A4A, - (13)
AUU = A", (14)

Proof. Since Q is positive semidefinite, for any u € CM, Eq.(8) yields
(Uu,u) = (AA* + Q)u,u) = [|A*u|® + (Qu,u) >0,

which implies U > 0. Furthermore, if u € N(U), then ||A*u}? = 0 and (Qu,u) = 0. Hence, A*u =0
and Qu = 0. That is, N(U) € N{A*) N N(Q). The converse is clear from Eq.(8). Hence, Eq.(11)
holds. Taking the orthogonal complement of Eq.(11) yields Eq.(12). Eq.(12) yields R(U) 2 R(A),
which implies Eq.(13). Eq.(11) yields N(U) C N(A*), which implies Eq.(14) because of Lemma 4.
(Q.ED.)

Lemma 6 (Properties of V) Assume that R(A*) = H. The operator V in Eq.(9) is self-adjoint
and non-singular.

Proof. Since U is self-adjoint, V is also self-adjoint because of Eq.(9). Let u € N(V). Since
Au € R(A) C R(U) because of Eq.(12), there exists v such that Au = Uv. Hence,

(Uv,v) = (UUtUw,v) = (UUv, Uv) = (U Au, Au)
= (A*Ut Au.u) = (Vu,u) =0.

Then, Uv = 0 and Au = 0. That is, N(V) C N(A) = {0} because of Lemma 1. Hence, N(V) = {0}.
Taking the orthogonal complement of N(V) = {0} yields R(V) = H because V* = V. That is, V is
a bijection on H, which implies V is non-singular. {Q.E.D.)

The following lemma characterizes the optimal learning operator.
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Lemma 7 Assume that R(A*) = H. An operator X is an optimal learning operator if and only if
X together with an operator C satisfies

XA=1 (15)
XQ=CA". (16)

In this case, the minimum value Jy of Jg is given by
Jo=tr(C). (17)
Proof. Assume that XA = I. It follows from Eq.(4) that |
1 = £12 = 1 Xel = tr ((Xe) 5 (X)) = tr (X (€ 3E) X7).
Then, Eqgs.(3) and (6) yield
Jo =Ec|Xe|? = tr (XQX*) = (XQ, X), (18)

where (XQ, X) is the Schmidt inner product of operators. The rigorous definition and properties of
the Schmidt inner product are described in Appendix. Let C be the Lagrange multiplier operator.
The conditional problem of variation for the optimal learning operator is reduced to the following
unconditional problem of variation with respect to X and C:

JeX,C] = (XQ, X) — 2Re(X A — I,C),

where Re stands for the real part of a complex number. Equating the partial derivative of Jg X, C]
with respect to C to zero yields Eq.(5), which is equal to Eq.(15). Equating the partial derivative
of Jg[X, C] with respect to X to zero yields

8Jc = (6XQ, X) + (XQ,5X) — 2Re(6X A, C)
= 2Re(6X, XQ — CA™) =0,

where 86X is an arbitrary operator. Then we have Eq.(16).
We shall show that Eqs.(15) and (16) have solutions. The assumption R(A*) = H guarantees
that V is non-singular because of Lemma 6. If we let

X=V1AU'! and C=V'-L : (19)
then it follows from Eq.(9) that
XA=V3AUIA=VV=1
Hence, X in Eq.(19) satisfies Eq.(15). It follows from Eqs.(S),‘(lg)‘, and (14) that

XQ=X(U - AA*) = XU — XAA* =V AU - A*
=V lA* - A*=CA". ’
Then X and C in Eq.(19) satisfy Eq.(16). That is, Eqs.(15) and (16) have solutions.

Let X, be a solution of Eqs.(15) and (16). We shall show that for any X which satisfies Eq.(15),
it holds that Jg[X] > Jg[Xo). From the definition of Xp

XoA=1 and XoQ=CA". (20)
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Then, Eq.(15) yields

XQX5 = X(XoQ)" = X(CA*)" = X(AC™)
= (XA)C* = C* = (XpA)C* = Xp(AC™)
= Xo(CA")* = Xp(XoQ)* = XoQXs,
and hence XQX3 = XoQX§. Since XoQX{ is self-adjoint, XQXj is also self-adjoint and it holds
that :
XoQX3 = XQX; = XoQX".
Therefore, Eq.(18) and @ > 0 yield

Je[X] = Jg[Xo] = tr (XQX") — tr (X0QX5)
=tr (XQX* — XQX{§ — XoQX" + X0QXp)
=tr ((X ~ Xp)Q(X — X0)*) 2 0. (21)
Then we have Jg[X] > Jg[Xo]. That is, Xp is an optimal learning operator.
Conversely, assume that Jg[X] = Jg[Xo] for X which satisfies Eq.(15). Eq.(21) yields (X —
X0)Q = 0, and hence XQ = XoQ = CA*. That is, X satisfies Eq.(16). It means that all optimal

learning operators are given as solutions of Eqs.(15) and (16).
Finally we shall show Eq.(17). It follows from Egs.(18) and (20) that

JelXo] = tr (XoQX3) = tr (CA*X) = tr (C(XoA)*) = tr (C),

which implies Eq.(17). (Q.E.D.)

This proof states that the operator C in Eq.(16) is the Lagrange multiplier and the minimal
value of Jg is given by the trace of C.

Lemma 7 has transformed a variational problem for the optimal learning operator to an algebraic
problem. It characterizes the optimal learning operator by using the system of two equations. The
following lemma characterizes it by using only one equation.

Lemma 8 Assume that R(A*) = H. An operator X is an optimal learning operator if and only if
X satisfies
XU =V~14* (22)

Proof. The assumption R(A*) = H guarantees that V is non-singular. From Lemma 7, it is
enough to show that the system of Egs.(15) and (16) is equivalent to Eq.(22). Let X and C be
solutions of Egs.(15) and (16). It follows from Egs.(8), (15), (16), (9), and (13) that

XU = X(AA*+Q) = XAA*+ XQ = A"+ CA"
=(I+C)A*=(I+C)VV 14
= I+ CO) AUt AV A* = (I + C)A")UTAV1A®
= XUUtAVTI4* = XAV~ 14* = V1A%,
which implies Eq.(22). This proof also guarantees the existence of a solution of Eq.(22).
Conversely, let X be a solution of Eq.(22) and C = V! — I. 1t follows from Eqgs.(13), (22), and

(9) that
XA=XUUIA=V A UA=V"V =1,

which implies Eq.(15). It follows from Egs.(8), (22), and (15) that

XQ=X(U - AA") = XU - XAA*
=V1A* - A*= (V1 -DA* = CA*,



119

which implies Eq.(16). (Q.E.D.)

In the light of these lemmas, we shall prove Theorem 3

(Proof of Theorem 3)

As is shown in the proof of Lemma 8, Eq.(22) has a solution. Its general form is given by Eq.(7)
because of Lemma 4. We shall show Eq.(10). As is shown in the proof of Lemma 7, we can use
C =V~-! -1 as C in Eq.(17), which implies Eq.(10). (Q.E.D.)

4 Simpler expressions of the optimal learning operator

According to the noise characteristics ), the expression of the optimal learning operator in Eq.(7)
becomes much simpler. In order to show that, the following lemma is useful.

Lemma 9 (Operator pseudo-inversion lemma) [16] Let Ty be an operator from a Hilbert space
H, to o Hilbert space Hy. Let Tb be a positive semidefinite operator on H,. If and only if R(T1) C
R(T3), it holds

(T + Tt =T) - T (I + T{ T ) ' T T3,

where I, is the identity operator on Hs.
This lemma leads us to the following theorem.
Theorem 10 Assume that R(A*) = H. If R(Q) D R(A), then Egs.(7) and (10) reduce to
Xo = (4'Q'A)'AQ" +Y(I - QQY). (28)

and
Jo=tr ((A*Q*A)—l) . | (24)

Proof. Since R(Q) 2 R(A), Eq.(12) yields R(U) = R(Q). Then, UUt = Ppyy = Pr(g) = QQ!
and the second terms of the right-hand sides of Egs.(7) and (23) agree with each other.

In order to prove the first terms of the right-hand sides of Egs.(7) and (23) agree with each other,
let us temporarily denote A*Q'A by B. Since Q* = Q, when R(4) C R(Q), it follows from the
operator pseudo-inversion lemma that

(AA* +Q)t = Q' - Q1A + 4*QT4) 1A Q. (25)
Egs.(8) and (25) yield
AUt = A* (A4 +Q)f
= A"[Q" - QIA( + B) ' 4*Q]
= A*Qt - (A*QTA)(I + B) 1A' Q!
=[I - B(I+B)™A*Q!
= +B)7'Aq
and hence
AUt = (I + B)1AQt. | (26)

Egs.(26) and (9) yield V = A*'UTA= (I + B)~1B. Then we have B = (I + B)V. Since I + B and
V are non-singular, B is also non-singular. Hence,

v~ = B~}(I+ B). (27)



120

From Egs.(27) and (26), the first term of the right-hand side of Eq.(7) becomes
viaUut = [B-Y(I + B)J[(I + B)"'A*Ql] = B~14*Q".

This is the first term of the right-hand side of Eq.(23).

Finally, we shall prove Eq.(24). It follows from Eq.(27) that V=! — I = B~!. Then, Eq.(10)
yields Eq.(24). (Q.E.D.)

This theorem states that if R(Q) 2 R(A), then we can replace U in Eq.(7) with Q. Since
Q = o%I); implies R(Q) 2 R(A), the following is a direct consequence of the theorem.

Corollary 11 Assume that R(A*) = H. If Q = o%Ip (o > 0), then the optimal learning operator
is uniquely determined and Xo = A!. Furthermore, it holds that

Jo = o?tr ((A*A)71). (28)

5 Optimal sampling operator

Active learning is a problem to design sample points {m, : 1 < m < M} so that f minimizes the
generalization error .Jg. It is equivalent to design the sampling operator A so that A minimizes
the minimum value Jy in Eq.(10). Such an operator A is called an optimal sampling operator. In
this section, we shall provide a necessary and sufficient condition for A to be an optimal sampling
operator under some assumptions.

5.1 Optimal sampling operator
Let K(z,x') be a reproducing kernel of H. Let us define tunctions {4y : 1 < m < M} by

Ym(z) = K(z,@m) : 1 <m < M. (29)

Then, the sampling operator A is expressed by

M

A= Z (em ® Ym) - (30)

m=1

Furthermore, it holds that

M

A= Un®en), (31)

m=1

M

AA=Y " (Um0 Pm) - (32)

m=1
Equation (31) means that R(A*) is the subspace spanned by the set {m : 1 < m < M}. Hence,
R(A*) = H holds if and only if the set {4, : 1 < m < M} spans the whole space H.

Theorem 12 Assume that
(i) H is a finite N-dimensional RKHS whose reproducing kernel satisfies

K(z,z)=x foranywz in D, (33)

where k 18 a positive constant.
(ii) R(A*) = H. -
(ii)) Q= a*Ipr: o >0. (34)
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Then, Jo in Eq.(10) is minimized if and only if

v, KM -
A*A= NI. (35)

In this case, the minimum value, say J*, of Jo is given by

J* = . (36)
Proof. It follows from Egs.(29) and (33) that
tr (Ym @ Pm) = [[¥ml* = K(Tm, Tm) = £. (37)
Then, Eq.(32) yields
tr (A*A) = kL. (38)

Let || 7|2 be the Schmidt norm of an operator T'. Its rigorous definition and properties are described
in Appendix. Let us temporarily denote (A*A)Y/? by B. The operator B is self-adjoint and non-
singular because of Lemma 1. From the Schwarz inequality and Eq.(38), we have

N?=tr(I)? =tr (BB™Y)* = (B,B7})?

< |BIIB~ 13 = tr (B®) tr ((B*)™)

= tr (A*A) tr ((4*4)7!) = sMtr ((4*4)71).
Hence, Eq.(28) yields
c2N?
M
Since B # 0, the equality in Eq.(39) holds if and only if B = AB~1 with ) a positive constant. That
is, the equality holds if and only if

Jo = oltr ((A*A)71) > (39)

A*A= AL (40)

In this case, tr (A*A) = AN. Hence, Eq.(38) yields A = xA[/N. Then, Eq.(40) is equivalent to
Eq.(35). Eq.(36) is clear from Egs.(39). (Q.E.D.)

Based on this theorem, we can obtain an optimal set of sample points {z, 1 <m <M }. It is
a subject in Section 6.

5.2 Mechanism of achieving maximal generalization capability

In this subsection, we investigate how the generalization capability is maximized by Theorem 12.
For this purpose, the following corollary is useful.

Corollary 13 Under the assumptions in Theorem 12, it holds that

IAf) = /SIfl :feH (41)
Aty = { Vel su € B, (42)
0 cu € R(A)*L.

Proof. It follows from Eq.(35) that for f € H,

JAfIE = (At Af. £y = ISR
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which implies Eq.(41). For u € CM, it holds that
| Atull? = (A1) Alu, u) = <<AT>*(A* ) A", u)

MAMUAWu=r—%MN)uw

—ﬁ(PR(A)u, u) = m”PR(A)u” :

This implies Eq.(42). (Q.E.D.)

Corollary 13 implies that \/—7—714 becomes an isometry and \/:1‘7 A" becomes a partial isometry
with the initial space R(A).

Using Corollary 13, we show how Theorem 12 maximizes the generalization capability. In the
following, we assume that kM/N > 1. Let us decompose the noise € into € in R(A) and et in

R(A)*:
=&+ &t

Then the sample value vector y is rewritten as
y=Af+e+&-

Since A! is the optimal learning operator, the signal component Af is transformed to the original
function f by A!. Indeed, using R(A*) = H, we have

ATAf = Priasf = f.

From Eq.(42), Al suppresses the magnitude of the noise & in R(A) by ,/ﬁ’w and completely removes

the noise &% in R(A)*:
| ATe]l = /3 lEl)

Atet =o0.

In general, it is difficult to suppress the effect of the noise € in R(A) since it can not be distin-
guished from the signal component Af. However, the above analysis suggests that the effect of the
noise € is minimized if the magnification of Al for each sample value vector y is minimized. Since
minimizing the magnification of Al is equivalent to maximizing the magnification of 4, the effect of
the noise & is minimized if the norm of Af is maximized for each f in H. This principle well agrees
with our intuition that the sampling with the highest signal-to-noise ratio in the sample value vector
y provides the maximal generalization capability.

6 Optimal design of sample points

The condition (35) in Theorem 12 can be characterized by using the concept of the pseudo orthogonal
basis. It leads us to a method for designing the optimal set of sample points {Z, : 1 < m < M}.
6.1 Pseudo orthogonal bases

Definition 14 [19, 18] A set {um : 1 < m < M} in an N-dimensional Hilbert space H is called a
pseudo orthogonal basis (POB) if any f in H is ezpressed as

M
f=Y {f  ttm)tm. (43)

m=1
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Eq.(43) means M > N. That is, the concept of POB is an extension of the orthonormal basis
(ONB) to linearly dependent over-complete systems. Clearly, a POB reduces to an ONBif M = N.
POBs and their extensions, pseudo biorthogonal bases (PBOB) [14, 18], have been successfully
applied to various real world problems including signal restoration [15, 18], computerized tomography
[20], neural network learning (17], and robust construction of neural networks [10, 12].

Lemma 15 [19] A set {um :1 < m < M} is a POB in H if and only if

M
IF12 =" K um)?  for any f in H.
m=1

This equation is an extension of the Parseval equality. It implies that a POB is a tight frame with
frame bound one [5] or a normalized tight frame [7] in the frame terminology. Eq.(43) is equivalent

to
M

Y (um ®Tm) =1. '- (44)

m==1l

Taking the trace of Eq.(44) gives the following invariant for the POB:

M
> lluml? = N, (45)
m=1

where N is the dimension of H. Note that the left-hand side of this equation is independent of not
only the number of elements M but also the chosen elements {um :1 <m < M }
The following two lemmas give construction methods of POBs.

Lemma 16 [19] Let T be an isometry from H to an M-dimensional Hilbert space H' and {op:1<
m < M} be an ONB in H'. If we let

Unm = T*vym  form=1,2,..., M, (46)
then the set {um : 1 < m < M} becomes a POB in H.

Note that all POBs can be constructed by changing T with a fixed ONB {vm : 1 < m < M} or
by changing {vn, : 1 < m < M} with a fixed T

If a set {tm :1 < m < M} is a POB and |juif| = |lugf| = -+ = [lupml), then the set is called a
pseudo orthonormal basis (PONB). In this case, it follows from Eq.(45) that

luml = 1/% form=1,2,...,M. (47)

Lemma 17 [21] Let M = pN, where y is a positive integer and N is the dimension of H. Then, a
set {tm : 1 < m < M} becomes a PONB in H if a set {\/fium :1 <m < M} consists of i sets of
ONBs in H.

6.2 Optimal design of sample points

In this subsection, we shall provide a method for designing the optimal set of sample points {Zm :
1 < m < M} by using the concept of POB.

¢m=1/EJKVT'¢m :1’_<Pm§M. oo ' (48)

Under the assumptions in Theorem 12, Jg in Eq.(3) is minimized if and only if {iom : 1 <m < M}
is a POB in H.

Theorem 18 Let
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Proof. It follows from Egs.(32) and (48) that

M v oM M
A*AZZ('le@wm):_‘N_ > (om @ Pm) -
m=1 m=1
Then Eq.(35) holds if and only if {¢m : 1 <m < M} is a POB in H because of Eq.(44). (Q.E.D.)
Note that if {¢m : 1 <m < M} in Eq.(48) is a POB, then it is a PONB, because of Eq.(37). In

the following subsection, Theorem 18 is applied to the trigonometric polynomial model.

6.3 Trigonometric polynomial space

In this subsection, we show optimal sets of sample points { : 1 < m < M} for the trigonometric
polynomial model based on Theorem 18. '

Let us discuss functions defined on [—, 71]. It is easily extended to a general L-variable functions.
Let H be a trigonometric polynomial space of order Ny, which is denoted by T, [—,7]. That is,
Tn, [—, ) is a space spanned by the functions {exp(inz) : 0 < [n| < N1} with the inner product
defined by

1 —_—

(f,9) = o= f(a)g(z)dz.

2m J_»

The dimension of T, [—7, 7] is N = 2Ny + 1. The reproducing kernel of Ty, [, 7] is given by

sin ((2N; + 1)(z — 2')/2) P
K@o)={  sm(@-a)j2) 11T (49)
2N +1 ife=ux"

It follows from Eq.(49) that Tn,[—7, 7] is a RKHS that satisfies the condition in Eq.(33) with
k = 2N; + 1 = N. Hence, the condition (35) reduces to A*A = MI. Therefore, related to Theorem
18 and Lemma 17, we have the following two sets of optimal sample points.

Theorem 19 Let M > N = 2N;+1 and ¢ be an arbitrary constant such that —m < ¢ < —m+27/M.
If we let

zm=c+%(m—l) 1< m< M, (50)
then {zm : 1 < m < M} is the optimal set of sample points.

Theorem 20 Let M = uN = u(2N; + 1) with u a positive integer. Fort = 1,2,...pu, let ¢, be an
arbitrary constant such that —m < ¢ < —m + 2 /N. If we let

2
mm=ct+—1§(p—1) cm=(t—-1)N+p, t=1,2,...,4, p=12,....N, (51)

then {zm : 1 < m < M} is the optimal set of sample points.

7 Conclusion

We derived a general form of the optimal learning operator for a given sampling operator. Using
the optimal learning operator, we gave a necessary and sufficient condition of sample points for
maximizing the generalization capability. By utilizing the properties of pseudo orthogonal bases, we
clarified the mechanism of achieving the maximal generalization capability. Based on the optimality
condition, we gave design methods of optimal sample points for the trigonometric polynomial model.
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Appendix: Mathematical preliminaries

For readers’ convenience, we first briefly review the Schmidt inner product, the Schmidt norm,
and the trace of operators. After that, the Neumann-Schatten product is introduced [23]. Let T}
and T, be linear operators from an N-dimensional Hilbert space H; to a Hilbert space Hp. Let
{tn : 1 € n < N} be an orthonormal basis in H;. The following sum is independent of the chosen

{un:1<n<N}
N

(1, Tp) = ) _(Tyttn, Tyttn).

n=1

(Ty,Ty) is called the Schmidt inner product. Furthermore, ||T1[l2 = 4/(71,73) is called the Schmidt
norm of Ty and tr (T) = (T, I) is called the trace of T, where T is a linear operator from Hj to H,
and I is the identity operator on Hj. The following formulas are used in this paper.
(T1X,Tp) = (T1, TR.X"),
(XT1, ) = (Th, X*T),
tr (T%) = ||T||3 if T is self-adjoint.
Let u and v be given elements in Hilbert spaces H; and Hj, respectively. Let u ® U be an operator

from Hs to Hy defined by

(v T)w = (w,v)u,
where w is any element in Hy. The operator is called the Neumann-Schatten product. The following
formulas are used in this paper.

(u®T)' =WeH),

(Thu) ® (Tov) = Th (u®7) T3,
tr(u®a) = [|uf®.



