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Abstract

We shall show fundamental applications of the theory of re-
producing kernels to the Tikhonov regularization that is powerful
in best approximation problems in numerical analysis.
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1 Introduction

In the 2001 ISAAC Berlin Congress, the author [4] gave a plenary lecture
~ in which the author showed that the theory of reproducing kernels is fun-
damental, beautiful and applicable widely in analysis. After then, the
author found fundamental applications of the theory to the Tikhonov
regularization that is powerful in best approximation problems in nu-
merical analysis. In this survey article, we shall present their essences,
simply.
At first, we recall a fundamental theorem for the best approximation by
the functions in a reproducing kernel Hilbert space (RKHS) based on

1,3].
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Let E be an arbitrary set, and let Hx be a RKHS admitting the repro-
ducing kernel K (p,q) on E. For any Hilbert space H we first consider a
bounded linear operator L from Hyg into . Then, we shall consider the
best approximate problem

nf ILf —dllx (1.1)

for a member d of ‘H. Then, we have

Proposition 1.1  For a member d of H, there exists a function f in
Hyg such that

inf [|Lf —dllx = |Lf—dl|lx (1.2)
feHk v ,
if and only if, for the RKHS Hy defined by
k(p,q) = (L*LK(:,q), L"LK (-, p)) (1.3)

L*d € H;. (1.4)

Furthermore, if the ezistence of the best approzimation f satisfying (1.2)
is ensured, then there ezists a unique extremal function f* with the min-
tmum norm in Hg, and the function f* is expressible in the form

fil) = (L*d,L*LK(-,p))n, on E. . (1.5)
In Proposition 1.1, note that
(L*d)(p) = (L*d’ K('vp))HK = (d, LK('vp))'H; v (1'6)

that is, L*d is expressible in terms of the known d, L, K(p, ¢) and H.
In Proposition 1.1, even when L*d does not belong to Hi, the function

a'(p) = (d, LL*LK(:, p))w (1.7)

is still well defined and the function is the extremal function in the best
approximate problem

as we see from Proposition 1.1, directly.
'Let P be the projection map of H to R(L) (closure). Then, there exists

f in Hy satisfying (1.2) if and only if Pd € R(L). This condition is
equivalent to

d=Pd+(I-P)de k(L) +R(L)* .
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Further, this condition is equivalent to
Lf —d e R(L)* = N(L*)
for some f € Hg; that is, for some f € Hy,
L*Lf = L*d.
f4 in (1.5) is the Moore-Penrose generalized inverse of the equation
Lf=d.

In particular, if the Moore-Penrose generalized inverse fj exists, it coin-
cides with f3* in (1.7).

Proposition 1.1 is rigid and is not practical in practical applications,
because, practical data contain noises or errors and the criteria (1.4) is
not suitable.

Meanwhile, the representation (1.7) is convenient in these senses. How-
ever, the function f4*(p) is, in general, not suitable for the problem (1.1).
Indeed, we shall give an estimate of ||Lf}* — d||». We shall show good
relationship between the Tikhonov regularization and the theory of re-
producing kernels. For the Tikhonov regularization, see, for example,

2].

2 Tikhonov regularization

We shall introduce the Tikhonov regularization in the framework of the
theory of reproducing kernels based on ([1],{3], pp. 50-53). However, from
the viewpoint of Tikhonov regularization we shall give a further result
constructing the associated reproducing kernels and a new viewpoint for
the previous results.

Let L be a bounded linear operator from a reproducing kernel Hilbert
space Hx admitting a reproducing kernel K (p, g) on a set E into a Hilbert
space H. Then, by introducing the inner product, for any fixed positive

A>0

(fa g)HK(L;A) = ’\(fs g)HK + (Lf7 Lg)'Ha (2’9)

we shall construct the Hilbert space Hy(L;A) comprising functions of
Hy. This space, of course, admits a reproducing kernel and we shall
denote it by K1(p,q; A). Then, we first have the elementary properties:
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LEMMA 2.1 The reproducing kernel Ki(p,q;\) is determined as the
unique solution K (p,q; \) of the equation:

~ 1 - 1
K(p,¢; ) + (LK, LKp)u = 7K (p, ) (2.10)
with ; N
K,=K(,q;)) € Hx for g€ E. (2.11)

Note here, in general, that the norm of the RKHS H)x admitting the
reproducing kernel AK(p,q) (XA > 0) is given by

71y = A1 (2.12)

and the members of functions of Hyx are the same of those of Hg.

We shall consider that the reproducing kernel K (p, q) is known and we
wish to construct the reproducing kernel K (p,q;A). For this construc-
tion we can obtain a very effective method by using the Neumann series.
We define the bounded linear operator L from Hy into Hg defined by

(LA)(®) = (Lf, LKp)y = (L*Lf)(p)-
Then, from (2.10) we obtain directly

THEOREM 2.2 If||L|| < A, then Kr(p,q; \) is ezpressible in terms of
K(p,q) by the Neumann series:

~

Ku(p,a ) = (I+§) SK@a) =) (——é) K@), (213)

n=0
where (I + %)‘1 is a bounded linear operator from Hy into Hy satisfying
1 1

l—sll < .
I+3°  1-|3l

Of course, if the operator L is compact, then we can apply the spec-
tral theory to the equation (2.10) without the restriction ||L|| < A. In

particular, (I + ¥)" is a bounded linear operator and

~

Ki(p,g; ) = (I+§-) '}K(P,Q)-
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Furthermore, we can obtain a further related result. See, for example,

[2].

We shall consider the best approximation problem, for any given f, € Hg
and d € H:

inf {Mlfo = flif +11d — LAY, (214)

in connection with the Tikhonov regularization for the equation Lf = f.
Then, we can obtain, from Proposition 1.1:

THEOREM 2.3 In our situation, for any given fo € Hx and d € H,
the generalized solution f* of the equations '

fo=f in Hg

and
d=Lf in H

in the sense

in {lfo = flfa + 14 - L1}

= Allfo = f* I, + lld — LE*I3, - (215)
exists uniquely and it is represented by
f*(p)

= A(fo(-), Kp(-, 05 A)) g + (d, LKL(+, 25 A)) - (2.16)

In Theorem 2.3, in particular, we shall consider the best approximating
function, for fop =0

f:,d(p) = (d, LKL('1p; )‘))’H, (217)
which is the extremal function in the Tikhonov regularization (2.15) for
fo=0.

In general, in the Tikhonov regularization, the operator L is compact and
the extremal functions are represented by using the singular values and
singular functions of the selfadjoint operator L*L. So, the representations
are, in a sense, abstract. And the behaviour of the extremal functions as
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A tends to zero is an important problem, because the limit function may
be expected as a solution of the equation Lf = f as in the Moore-Penrose
generalized inverse.

From many examples in our situation ([5,6,7]), however we see that

lim K (p, g; A) (2.18)
A—0
and v
lim(d, LK1 (p,q; A))n (2.19)
A—0

do, in general, not exist.

3 Main Results

We now give our main results in this paper:

THEOREM 3.1 For the two best approzimate functions fy 4(p) in (2.17)
and f5*(p) in (1.7) we have the estimate

) - )] < (AuLn + LI L fn\/%) VEG )l
| (3.20)

COROLLARY 3.2 If LL* is unitary, then we have for the two best
approzimate functions fx 4(p) in (2.17) and f3*(p) in (1.7) we have the

estimate
|fxa(P) — f3*(0)| < AlL|[v K (p, p)|d]| (3.21)

which shows that as A tends to zero, f}4(p) tends to f3*(p) with the
order A and the convergence is uniform on any subset of E satisfying
K(p,p) < .

For the best approximate function f3*(p) when there exists, we have

d**(p) = (L*da L*LK(’ p))HK

= (L*LL*d)(p). (3.22)
For the image of f1*(p), we thus obtain the estimate
ILf&" — dllse < |ILL7LL” — I|[|d}- (3.23)

The quantity ||LL*LL* — I|| may be understood as a distance of the
operator LL* from being unitary.. |
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THEOREM 3.3 If L is a compact operator, then for the Moore-Penrose
generalized inverse f},

lim f3a(p) = fa(p), (3.24)
—0
uniformly on any subset of E satisfying K (p,p) < 0o.

Proof: Since L is compact, we have, from (2.10)

1
Ki(p,g;A) = mK(p, q).
Then,
fra(p) = (d, LKL(-,p; A))n
= (L*d7 KL('ap; )‘))HK
1 *
= (e ””)HK

As we see by using the singular value decomposition of L, for the Moore-
Penrose generalized inverse f}, as A — 0,

1
M+ L°L
(see Section 5.1 in [2]). Hence, from the identity

frap) — fa(p)

1 * *
= (mL d — f3, K( ,P))HK,

we have the desired result.

L*d - f}, in Hg

COROLLARY 3.4 If g € N(L)*, then
}‘ILI(I) f;,Lg(p) = fZQ(p) = g(p) (325)

uniformly on any subset of E satisfying K(p,p) < co.

Meanwhile,

COROLLARY 3.5 Ifd € H belongs to R(Hg), then
i " = ' : 3.26
}‘l_ff(l) Lfya(p)=d in H (3.26)

For several concrete applications of our general theorems, see the forth-
coming papers [5,6,7].
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