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Abstract

In this paper we introduce a unified method of solving inverse
problems in some general linear differential equations numerically and
as a prototype example we shall show a practical real inversion formula-
for the Gaussian convolution. |
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1 Introduction

Let L : Hx — H be a bounded linear operator of Hilbert spaces. We consider
the best approximation problem

inf IILf = gl | (1

where g € H is given. If there exists an element f* € Hg which attains
the infimum (1) then the problem (1) is called solvable otherwise it is called
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unsolvable. If Hg is a reproducing kernel Hilbert space admitting a repro-
ducing kernel K(p,q) on a set E then whether the problem (1) is solvable or
not, the problem

88 Ol + 117 — gl) @)

is always solvable for all A > 0 and we can obtain a method of obtaining the
member f3  of the smallest norm in Hx which attains the infimum (2). The
problem (2) is called a Tikhonov regularization for the problem (1). If the
problem (1) is solvable then f; := limy0 f} , in Hx and f; is the element of
the minimum norm which attains the infimum (1)([9]). If the problem (1) is
unsolvable then lim,_;g f,{‘,g does not exist in Hx. Even though the problem
(1) is unsolvable, for a value of A, we can think of f5 ; as a generalized solution
of

Lf=g.

2 Background Theorems

Theorem 1 ([2,5]). Let Hk be a Hilbert space admitting the reproducing
kernel K(p,q) on a set E. Let L : Hx — M be a bounded linear operator of
Hilbert spaces. Then, for g € H the problem

inf IILf = gll e

is solvable if and only if L*g € Hy, where Hy, is the reproducing kernel Hilbert
space admitting the RK k(p,q) = (L*LK(.,q), L*LK(-,p))y, on E. Further-
more, if the problem (8) is solvable then

f;(p) = (L*gv L*LK('7P)>H;,
is the element of Hyx with the smallest norm which attains the infimum (3).

Theorem 2 ([7]). Let Hx, L, H and E be as in Theorem 1 and let V be
the underlying vector space of Hx. For A > 0 introduce a structure in V and
call it Hk, as

(fl,fz)HKA = XMf1, fod g, + (Lf1, Lf2)y (4)
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then Hy, is the Hilbert space with the reproducing kernel K\(p,q) on E
satisfying the equation

K('aQ) = ()‘I + L*L)K)\('aQ)’ (5)
where L* is the adjoint of L : Hx — H.

Theorem 3 ([7]). Let Hk, L, H and E be as in Theorem 1 and let K be
as in Theorem 2. Then, for any A > 0 and for any g € ‘H, the approzrimation
problem

Anf (M1 +11LS - gll3) (6)
s solvable and |
f;,g(p) = <g= LKA(')I’))’H (7)

is the member of Hi with the smallest Hy -norm which attains the infimum

(6)-

3 PDE and inverse problems

We will be able to apply our theory to various inverse problems to look for
the whole data from local data of the domain or from some boundary data.
Here, we will refer to these problems with a prototype example in order to
show this basic idea, clearly, from [6].

We recall a Sobolev imbedding theorem ([1], pp. 18-19). In order to use
the results in the framework of Hilbert spaces, we assume p = g = 2 there.

Let W£(G) (¢ = 0,1,2,...) be the Sobolev Hilbert space on G, where
G C R" is a bounded domain with a one piecewise-smooth continuously
differentiable boundary I'. We assume that ‘

. n o
>0 — —.
k>l- (8)

Let m =0,1,2,... such that

m>n-—2(£—-k), 2<n—22$——k)' (9)
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Let D C GUT be any £ times continuously differentiable manifold of dimen-
sion m. Then, for any u € W£(Q), the derivative (D%u)(z) € Ly(D)(z € D),
where |a| < k, and we have the continuity of the imbedding operator

|1 D%ullL,p) < MHU“Wg(G), (M > 0;u € W{(G)). (10)
Of course |
lullweey < lullwemny, (11)

and we can construct the reproducing kernel for the space W(R") by using
Fourier’s integral for 2¢ > n. Then, for any linear differential operator L
with variable coefficients on G satisfying

| Lullzae) < llullwge) (12)

and for any linear (boundary) operator B with variable coefficients on D
satisfying
I BullLo(0) < llullwe(a), (13)

-We can discuss the best approximation: For any Fy € Ly(G) , for any F;, €
Ly(D) and for any A > 0,

uEV%’?{R“) {/\”u”?zvg(nn) +[|F1 - Lu”%a(G) +[[F2 — Bu“%z(D)} . (14)

If F1 = 0 and X is very close to zero then the problem may be interpreted
that we wish to construct the solution u of the differential equation

Lu=0 on G
satisfying
Bu=F, on D.

Our general theory gives a practical construction method for this inverse
problem that from the observation F, on the part D, we construct « on the
whole domain G satisfying the equation Lu = 0.



175

4 Gaussian Convolution

In this section we will consider the integral operator L; : Hg — La(R) defined
by

00 _ 2
)@) = = [ 1@ exal-E 10t (15)

for given t > 0. Here Hy is the first order Sobolev Hilbert space on the whole
real line with norm defined by

1l = [ (F@)7 + f())de (16)
admitting the reproducing kernel
1 oo (@) |
Ze—lz-yl — —_—
K(z,y) = e = /_ R (17)

We now consider the best approximation problem: For any given g € Ly(R)
and for A > 0,
inf (M + I1f = olface }- (18)

Then for the RKHS H Kk, consisting of all the members of Hg with the norm

1, = /\HfH?qs + 1 Lef 1z om), (19)

the reproducing kernel K (z,y) can be calculated directly by using Fourler S
integrals as

follows: _
1 o ekl@-v)ge

Bley) = o Lo X+ @) 1 e

Hence the unique member of Hs with the minimum Hg-norm which attains
the infimum (18) is given by

fro@ = o= [ {0®
"'p(E a:)dp
YT . (21)

2 4+ 1)eP’t + eP*

(20)

For f € Hg and for g(&) = (Lyf)(€), we have the favourable formula
Tim £,(x) = £(2)
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uniformly on R ([7]). ~

Twenty years ago, the last author gave a surprise characterization of
the image of (15) for Ly(R) = Ly(R,dz) functions in terms of an analytic
function and established a very simple complex inversion formula. The paper
created a new method and many applications to general integral transforms
in the framework of Hilbert spaces and various analytic extension formulas
([5]). However, in particular, its real inversion formulas are very involved and
one might think that its real inversion formulas will be essentially involved
for catching “enalyticity” in terms of the data on the real line as in the real
inversion formulas of the Laplace transform. This is a typical and famous ill-
posed problem. See (7] for more details. For example, recall the classical real
inversion of the Gaussian convolution formula: For a bounded and continuous
function f(z) and for ¢t =1,

~D*(Lif(z)) = f(z) pointwisely on R

([4], p. 182).
The real inversion formula (21) will give a practical formula for the Gaus-

sian convolution. We will show experimental results by computers in Figures
1 and 2. There, we will see that in order to overcome the high “ill-posedness”
in the real inversion and in order to catch “analyticity” of the image of (15)
we must work hardly; that is, we must take a very small A and we must
calculate the integral (21) hardly in the sense of numerical. Computers help
us this hard work to calculate the integral for a very small .

Meanwhile, for any A > 0 and any ¢t > 0, we shall define a linear mapping

M,\,t : Lz(R) — Hs

by M.:(9) = fx g4 Now, we consider the composite operators L;M); and
M, +L,. Using Fourier’s integrals it can be shown that for f € Hg,

(MyLuf)(z) = 51; [ {s©

e 9] ‘( z)
PE—2)dp }§

,\(p2 +1)e?’ + 1 (22)

and for g € L (R),
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Figure 1: For ¢ = 1 and for g(z) = x[-1,1), the inversion (21) for A = 10~2(the

smaller one) and A = 10~23(the larger one).

(LMra)®) = 5= [ {9©

2m
—ip(§—-z) 4
. /°° € P —}de.
—0 AM(p? + 1)e?P’t + 1

A 1 (o"0) e"'ip(g—'x) d
Nz -8 = o /—oo Ap? + 1)t +1 P
in (22) and (23), we have

Setting

(MuLef)(@) = [ FOBN ~d, (f € H)

and

Then we obtain that

}‘li)r(l) A)‘(SL“— E) = 5(-'1" - f)a

LMg)@) = [~ 9Ol — O, (g € La®)-

(23)

(24)

(25)

(26)
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Figure 2: The images of Figure 1 by the Gaussian convolution: the bold curve
corresponds to the larger curve of Figure 1 and the other one corresponds to

the other one.

lim My, L, = I (27)
and
}‘IE)I}) LtM)s,t =1. (28)

The precise meaning of (26) and (27) is given as follows: For any f € Hg
lim (M Lf)(@) = £(z)

uniformly on R ([7], Section 3). The precise meaning of (26) and (28) is
given as follows: For any g € R(L;) + R(L;)*

lim L,Mysg = g

in Ly(R) ([9]). See for example, [3] for the Tikhonov regularization.
In order to see (27) numerically, we consider an example: Let f(z) = e~
then f € Hs. Att = 1, we see from Figure 3 that limy_,o(My:L:f)(z) = f(z).

z?
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Figure 3: The figure shows how the graphs of (M) ;L) f(z) approach to f(z)
as A —= 0.

Now we give another experimental result to see the behaviour of
lim L M
AIE)I(I) tdVIa ¢

on Ly(R)\ R(L;). Here, we consider g(z) = x[-1,] then g € La(R) \ R(Ly).
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A=10"3

Figure 4: The figure shows the graphs of L;M);g(x) at ¢t = 1 for different
values of A and g(z).
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