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Incompressible ideal fluid motion with free boundary
far from equilibrium

BRI K « IR /NI EBjfE (Masao Ogawa)

Department of Mathematics, Keio University

1. Introduction

We study the motion of an incompressible ideal fluid with free boundary. The fluid

occupies a semi-infinite domain (t),t > 0, in the two-dimensional space:
Qt) = {z = (21,22); —h+b(z1) <z <nlt,21), 21 €R'}, h>0.
Here the domain is bounded by the bottom I'; and the free surface T;(2):
Ty = {z=(21,2); z2=—h+b(z1), z1 € R'},
T,(t) = {z = (z1,22); 22 =7(t, 21), 21 € R'}.

We consider the free boundary problem

p(F+ov V.v) +Vep=—p(0,9) i), £>0,

at
V., - v=20 in (), t >0,
P = Pe on [',(t), t >0,
?a'g + 1,1%71_ e on T,(t), t >0,
v-n=20 ; onI}, t>0,
n(0,21) = no(z1), v(0,2) = vo(2) on 2 = 0(0),

(1.1)

(1.2)
(1.3)

(1.4)

(1.5)
(1.6)

where p is density (constant), v = (v1,v;) is the velocity, p is the pressure, g is a gravita-
tional positive constant, p. is an atmospheric pressure (constant) and n is the unit outer

normal to [.

In this paper, the unique solvability of problem (1.1) - (1.6) will be shown. For this

purpose, put
P

and transform problem (1.1) - (1.6) by the Lagrangian coordinates (%, z),

z=z+ J; u(r,z)dr = ®u(z;t), u(t,z) = v(t, u(;t)).
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Then we obtain the fixed boundary problem
Ou

¥+vuq=0 inQ, t>0, (1.7)
Va-u=0 nQ,t>0, (1.8)
4=y (mz + j: us(r, :c)dT) on Ty = T,(0), t >0, (1.9)
u-n(®,(z;t)) =0 onTy, t>0, (1.10)
U0 = Vo on {1, (1.11)

where ¢(t,z) = P(t,®u(z;1)), Vu = AyV; and A4, = ¥(89,/0z)"L.
Since it holds that

v(t,z) = ll(t, @;l(zﬂ))a P(tvz) = q(t,q};l(z;t)), Q(t) = Qu(ﬂ; t),

we will construct the solution of problem (1.7) - (1.11).

Several papers addressed the well-posedness for the problem of water waves. In [6], [12]
and [13], the unique existence of solution to this problem was shown under the assumption
that the boundaries of the domain were almost flat and the initial velocity was sufficiently
small. Recently, in [10], [11], Wu removed these restrictions for the problem in case of
infinite depth. Moreover, the problem of capillary-gravity waves with a bottom and the
large initial data was treated by Iguchi [4].

On the other hand, the well-posedness of the problem describing the dynamics of vor-
tical surface waves was shown in [5], [7],[8], [9]. However, the assumptions for the bound-
aries and the initial velocity as above are necessary to prove the well-posedness in these
articles. Then we address the well-posedness for the free boundary problem when the flow
is rotational and the initial surface and the bottom are uneven.

Here we state our main result.

Theorem. Let s > 4. There exists a positive constant 6 such that if
Mo € H"+2(Rl), be H’+3(R1), vy € Ha+3/2(Q)’

IVollg2+1/2(0y + llwoll 24172y < 6,

where wo = V3 - vo, V3 = (—0/0xz,,0/08x1), and v, satisfies the compatibility conditions,
then problem (1.7) - (1.11) has a unique solution (u,q) on some time interval [0, T)
satisfying '

u € C¥([0,T); H*+3/2-312(Q)), j=0,1,2,3,
q € C([0,T); H**+*9/%(Q)), j=1,2
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Now we explain the outline of the proof. At first, we introduce the function X by
t ' -
X(t,z) = J u(r,z)dr, z €N, (1.12)
0

and denote the restrictions of X to the boundaries by

X(t,ﬂ?l) = X(t, 31'1,’)70(.’121)),
X(t,xl) = X(t, z, —h+ b(:l?l))
Then it follows from (1.1),(1.3) that

— 2G > 2 v
(1 \ axl> X, (dno N 6Xz) (g+ 0 X?) =0 for t>0. (L14)

(1.13)

0z, /] 0t? dz, 0z, 0t
On the other hand, for the vorticity V1 - v = w, the Helmholtz theorem implies that
Viu=w, in @, t>0. O (L15)
Hence, by (1.8),(1.15), we see that
Xu=KXy+H for t2>0 o (1.16)

with an operator K = K(X) and a function H = H(X,X,w).
If the functions X and X are given, we obtain H. Then assuming that an H is given,
we solve the Cauchy problem (1.14),(1.16) for X with the initial conditions determined

by (1.12),(1.13),. Next, for a given X, we find u by solving the boundary value problem

Veru=0, Vi -u=uw inQ, t>0,
u = Xy onTy, t >0,
u-n(®,(z;t)) =0 onTy, t>0.

Moreover, for a given u, the functions X and X are determined through (1.12) and
(1.13),, respectively. By repeating this procedure, the iteration method gives the solution

(X,u,X,X).
In order to obtain g, we solve the boundary value problem
(Ag=-V-(A7'u,) inQ, t>0,
t
< q9=4g (1‘2 +J U2(T,$)d‘r> on Fsa t Z O,
0
99 (u-Va)u-n(®y) on Ty ¢ >0
= —(u-Vyu-n(®, , t>0.
| 9n(®.) ‘ on te

Then the proof is complete.
In Section 3, we will give the explicit form of K and H. In Section 4, the properties of
K are investigated. Even if the free surface is uneven, we can obtain the same estimates
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for K as those in the previous articles. Moreover we will see that the initial value problem
for (1.14),(1.16) is well-posed.
The details of the proof for the main theorem will appear elsewhere.

2. Notations

Let j be a nonnegative integer, 0 < T < oo and B a Banach space. We say that
u € C¥([0,T); B) if u is a j-times continuously differentiable function on [0, T'] with values
in B. By H*(D), s € R', D C R", we denote the Sobolev space. Moreover the adjoint
operator of A is denoted by A*.

Let no be the Lipschitz continuous function. We introduce the non-tangential cones

CE(P), P = (y1,m0(31)) € Ts,
{C+(P) = {(z1,22) € R?; z, —770(!/1) > M|z, — nl},
C~(P) = {(z1,72) € R% 22 — mo(y1) < —M|z1 —y1l},

where ||7h]|L=(r1) < M. Then for a function v on R?\ T, the maximal functions and the
non-tangential limits of v are given by

vE(P)= sup |w(X)| for P €T,
XeCt(P)

+ _ .
v¥(P) = X—)P}?l(rEnC'*(P)v(X) for P€T,,
respectively.
Further we use integral operators £;(u), Li(u), 1 = 1,2 and M(u) = (M;(u), M,(w)),
defined by

1 g no(yr) = 22 — mp(ya) (w1 — @1)
bule)le) = 2 J—“’ (1 = 21)? + (no(31) — 22)° uly)du,

_ 1y =@+ mo(yn)(no(ys) — 22) -
Lo = 5 | T ) e M0 2 ERIAT

e = Ly [ M) = mo(@) = olys)(yr — 21)
Ly (u)(21) V" .J_oo (y1 — 21)2 + (Mo(¥1) — N0(21))?

Aa) = Lop [ g2+ M) (m0(ys) = 70(21))
LZ( )( 1) - o . .J_m (-y1 - 3:1)2 + (7’0(y1) . 770(371))2

u(y1)dys,

u(y)dy;, z1 € RY,
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Ml(u)(x) = I J—oo (y1 _ $1)2 + (770(?]1) — 222)2 (yl) 1yl:
_Lge o) — %2 u(y)dy;, =€ R?
Ma(u)(z) = o J_oo (y1 — 21)? + (mo(wn) — 22)° (y1)dus, € R\ [,

3. Representation of K and H

Throughout this section, let the time ¢ > 0 be arbitrarily fixed. We regard the plane
R? ., as the complex space of z = z; +12;. Then I's(t) and I';, are given by

{F,,(t) : wy(31) = 21+ Xi(21) + i(no(21) + Xa(21)),
Ty  :wy(z) =2 +i(=h + b(z21)), —00 < 21 < 00.

Moreover, we regard the function v as the complex function and put
F =v, —1v,,

f(@1) = F(ws(21)),
g9(z:) = F(wy(21))-

Since
V.v=0, Vi.v=w inQ(t),

Cauchy integral formula implies that

LJ f(y1) dw’(yl)dy 4 _1_J g(y1)  dwi(y)
2mi dr, ) we(yr) — 2°  dw Yo I, wa(yn) — 2°  duyy

— 0 _ .0
+ z” wa—E-Lz—Z—ldzldzg - ” w—a—Mdzldz’g.
Q(2) Q(t)

621 aZQ

F(z%) = -

dy,
(3.1)

Here 2° € Q(t) and E is the fundamental solution for Laplace’s equation in two-
dimensional space:

1
E(z) = ﬁlog |2

We notice that Re f = vi|r,1), Im f = —v2|r, (1), Reg = Ir, and Im g = —v,|r,. There-
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fore, by taking 2° to w? = w,(z;) on I',(t) non-tangentially, the imaginary part of (3.1)
leads to the relation X,, = KX, + H with

1 -1
K=~ (-2- —A'l) o,

1 -1 . .
H=- (5 - A1) (=B2 X1t + By Xo + Hy),

where

'Alu(:cl)
- %v.p.f‘: {1+ X1 (w1)) (o) + Xa(n) — mo(z1) — Xa(21))
~(m(w) + X3 (12))(¥1 + Xa(y1) — 21 — Xu(=1)) }

x {6+ Za(w) = 21 = K@) + (ro(0n) + Kalwn) = 0(21) = Ko@)} ulaa)dys,
Axu(zy)

= 5rv [ {04 X))o+ Xalw) - 1~ Ka(e))
+(y1) + X3(92))(Mo(®1) + Xa(91) — mo(z1) = Xo(21)) }

x {(s1 + Xa(mn) — &1 = Xa(21))? + (10(v1) + Xa(v2) — mo(zz) — ).(2(551))2}—1 u(y1)dy,

_ 1 o —h+b(yi) —mo(z1) = Xa(z1) — V(v — 21 — Xi(21))
Bule) = 02| G e o} £ (o £ 6] o~ T )i
_ Ly m = Xalen) +¥(=h 4 b(y) — (@) = Xo(z1) |
Bl = 5 | T S TR 8] rlen) ~ e

_ 0E(z — w?)
\Hl = Jjﬂ(t) w(z)Td~1dZQ.

We can divide the operators A; and A, as follows:

Al = B3+B5,
Az = By — B,
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where

(Bau(z1) = Ly(u)(z1),
Byu(z1) = La(u)(z1),
Bsu(zy) = -2}; | mmlog{i+
+{ (11 = 21)(Xa(y1) — Xa(21)) + (mo(y1) = m0(20))(Xa(y1) — Xa(21))
~i{(m0(y1) — m0(z1)) (K (1) = Xu(21)) = (91 — 21)(Ka(@n) — Xa(21))} }

] x {(yl — 1) + (mo(y1) — nﬂ(xl))z}_l}ul(yl)dyla

Begu(z,) = 21—71_.[_00 Relog{1+
+{(1: — 22)(Xa(v) = Xa(22)) + (70(v1) = 0(20))(Xa(91) = Xa(21)
~i{(m0(y1) = m0(21))(Ka(31) = Xu(21)) — (91 — 21)(Ka(wn) — Xa(1))} }

| {on = 20 + (o) = o))} F(y)dun.

Therefore the operator K has the form

-1
K=- (1 — By- Bs) (Bs — Be)

2
- (1 B B)—l<-1-' D—B—B)
= - 2— 3— Ds 228811 q 6 |
= —isgnD + 2(—B; — Bs) (32)

11,
+2(—B3 + Bs) (— - B3+ Bs) (EzsgnD + B + BG)
=: —isgnD + K;,

where

D= -za/a'vl, B-,'U(.'L‘]) = QLJOO ].Og{l + (T,O(yl) — 770(371)) }1/2u’(y1)dy]-

T J—00 Nnh—z

4. Problem on the surface

By [2], [12], we can show

Lemma 4.1. Suppose that inf{no(z1) — (—h + b(z1))} > 0.
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(1) Letno, X, X° e H*(R'), s 20, b the Lipschitz continuous function and || X || g(r1),
| X || gerry < d for some d > 0. It holds that

{HBJ'(X)UHH%RI) < Cllullgomyy,
| B;(X)u — A;(X%)ul|gemr) < CIIX = X ge@mnyllullmomy, 5 =1,2
where C = O(S, Cl, ”'I]o“]{a(nl), “b’“Lco(Rl)) > 0.
(2) Letno € H*(R'Y), s,80 > 3/2. It holds that
| Biullger1y < Cllullgeorr), J=3,7, C=C(s,50,||n0llzemy) > 0.

(3) Let o be the Lipschitz continuous function and ng € H*+*3/*(R}), s > 0. It holds
that

| Bjullgsmry < Cllullmemr), J=3,7, C=C(s,||nollge+sr2(mry, 1Mol Lo rry) > 0.
(4) There exists a positive constant c such that if nj € L*(R!), no, X, X% € H*(R}Y),

s> 2 and “X_HHZ(RI), ”XOHHZ(RI) < c, ”X”H‘(Rl), ”XOHH'a(Rl) < dfOT‘ somed > 0,
then it holds that

{IIBJ'(X)UHH'(RI) < O X ge@myllullmeo @),
| B;(X)u — Bj(X°)ullgsr) < C X — X°|gomyl|ul| o), 5 = 5,6, so > 3/2,

where C = C(s, 89, ¢, d, I|770”H‘(R1)1 ”T]g”Loo(Rl)) > 0.

In order to show the invertibility of the operator % — B3 — Bs, the following proposition

is useful.

Proposition 4.1. Suppose that A is a bounded linear operator in L*(R!) and satisfies

lAull 2y 2 Clluflz@y, A w|lamy 2 Cllullzame (4.1)

for any u € L}(R'), where C > 0. Then the operator A is invertible in L*(R").

By [1] and [3], we have

Lemma 4.2.

(1) Ly(u)(zy), La(u)(z1) exist for almost every z; € R! and
“L{(U)”L?(Rl) < Cllullzzryy, 1=1,2,

where C = C(||ng|lLewr)) > 0.
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(2) The mazimal functions (L;(u))E,i = 1,2, satisfy

I(Li()F 2@y < Cllulle@msy,  i=1,2,

where C = C(||ngl|Leemry) > 0. Moreover, the non-tangential limits (L;(u))* (1),
i =1,2, exist for almost every z; € R! and

. :
{wl(u))*(m) = F5u(e) + L()(a1),
(Lo(u))E(z1) = La(u)(z1) for a.e. z; € RL.
Moreover the divergence theorem yields

Lemma 4.3. Let 1o be the Lipschitz continuous function. Suppose that
(1) v = (v1,V;) satisfies V-v=0 and V* -v=0 in R?\ T,
(2) The mazimal functions V¥ = supxcos(p) [V(X)|, P €T,, belong to L*(R!),

(3) The non-tangential limits V¥ = (V¥,V¥) = limx_pxect(p)V(X), P € T, ezist
for almost every P,
(4) v(z) = O(Jz]™) as |z| = oo.
If we denote the normal vector and the tangential vector to I'y by N = (N, N,), T =
(N2,—Ny), respectively, then the norms ||V1|IL2(Rt),]|V2||L2 r1), [N - V||z2m1) and ||T -
V21 are equivalent, where V=V*

Lemma 4.4. The operator 3 — B L2(R1) — L*(R1') is invertible. Moreover, it holds
that

||(§ — Bs)lullzery) < Cllullzerry
with C = C(||nollze(m1)) > 0.
Proof. Let us first consider the layer potentials
v = Ly(u), vy =—Ly(u)
for u € L*(R!). By Lemma 4.2, we see that

1
vi = Fau + Bsu, VI = -Bju. (4.2)

Moreover, v satisfies V-v = 0 and V* -v = 0. Hence it follows from (42) and Lemma
4.3 that

1 1
I(5 + Bs)ullz2mey < Cll(5 — Ba)ull2ms)-
Therefore it holds that
1
“uIlL:(Rl) S 0”(5 - B3)“”L2(R1)- (43)
Next, we consider the layer potentials

v ==M1(u), 62 = Mz(u)
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for u € L*(R!). Then for the non-tangential limits V* of ¥, Lemma 4.2 implies that
N.V* = Ng(ZF%u _Blw), T.Vi=_N,B.
Again Lemma 4.3 leads to |
G + Biullzagny < CI(5 — BiJullacay,
hence we see that
Iz < CUG ~ Bullzams. (44)
Thus estimates (4.3), (4.4) give our assertion. I

Lemma 4.5. Suppose that no € H*+*3/2(RY), X, X° € H*(RY), linoll gs+sr2mr) < & and
8.> 2. There exists a positive constant c such that if | X ||z2(m1), |[)_(°|]H2(R1) < ¢, then the
operator 3 — By — Bs : H*(R') — H*(R!) is invertible. Moreover it holds that

1 -
(5 = Bs — Bs)"ulleme) < Clullrscm,

1 -1 % 1 ~1(%
IG5 = Bs = Bs)"{(X)u — (5 = Bs — Bs) ™ (X°)ul| o(mr)
S CIIX - Xl gy llull zerrys
where C = C(s,x) > 0.

Proof. Using Lemma 4.4, we easily see that the operator — Bj is invertible in H*(R!), s >
0. Moreover, we define the inverse operator (1 — B; — Bs)™! by

1 4 & 1 -1 1 -1
(5—Bs—Bs)™" =2 (—(5 - Bs) Bs) (5—Bs)™
n=0
Then by the proof for [12, Lemma 4.22(4)], the above assertions are obtained. 0

It follows from (3.2) and Lemmas 4.1, 4.5 that

Lemma 4.6. There exists a positive constant ¢ such that if no € H*(R') N H*+3/2(R!),
XZXO € HS(RI), f > 2, S0, .E] > 3/2 and “nOIIH‘(R’)’H"?OHHHH/?(R‘) <K, “X“H2(R1)',
| X% ez @y < € | XN aemay, | X0 memr) < d for some d > 0, then it holds that
{”-’Q(X)u”m(nl) < Cllullgs @y,
HI\"l(X’)u ol I(](Xo)unya(nl) S CH):’ - XOHHa(Rl)“u”Heo(Rx),
where C = C(s, sg,¢c,d, k) > 0.
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Now, for a given H, we solve the initial value problem

= 2y ¢ 02X
(1+axl>axl+(dno+akz> (g+ Xz):o for t20,  (45)

a.’cl at2 d.’Ul al‘l at2
Xy=KX,+H for t>0, (4.6)
Xli=o = (0,0), Xitls=0 = uailr, - : (4.7)

Putting
Y=Xu, Z:le’ W:—(X,Y,Z), W,=(X,Yi),

we reduce the above problem to the initial value problem for a quasi-linear system

Xu =Y, Yiu+e(W)D|Y: = (W, W], H),
Yo = (W, W, H), Zuw= fs(W,W,,H), Zy=fu(W,W,H), (4.8)
W(0) = W= (fa?v Z)’ W;(0) = W:/ = (Xtv ?1:),
where f;, 1 = 1,2,3,4, are the lower order terms. The initial data W and ﬁZ’ should be
determined by (4.5) — (4.7).

Here we mention the inverse operator {1 + Z; + (7 + Z2) K}~ in fi. Since 1 — nj(3 —
B3)~1B4 can be expressed by the non-tangential limits of some layer potentials, we define
the inverse operator {1 —7g(3 — B3)"'Bs}~* by the same way as in Lemma 4.4. Moreover,
1+ nyK =1—nj(3 — B3 — Bs)"'(Bs — Bg) and {1 + Z, + (1 + Z,) K} ™" are defined as
in Lemma 4.5 without the assumption for the almost flatness of the boundary.

Then the arguments in [5], [6], [8], [12] show that the initial value problem (4.8) is
uniquely solvable. Furthermore, we see that

Theorem 4.1. There exists a positive constant € such that if s > 3+1/2,0< T} < o0
and 1o, uo1lr,, H satisfy the conditions

{770 € H*(RY), wuolr, € H**'(RY),

lworlr, ||z (rey < €/2,

H e C([0,Ty); H*+3/*32(RY)), j=1,3,
{HH(O)”H?(RI) + || Hy(0)| m2rey < €/2,

then there exists T € (0,T;] such that problem (4.5) - (4.7) has a unique solution
X € Ci([0,T); H*+3/*1ARY)), j=1,2,3,4.
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