この研究成果は論文 Kobayashi and Ishikawa (2019)として発表したものである。

1. はじめに

2018年の東日本の夏季平均気温は1946年の 統計開始以降最高を記録した(気象庁, 2018)。こ のような猛暑をもたらした要因のひとつとして、 北半球中緯度における東西平均対流圏気温偏差 が高温であったことがあげられている (気象庁, 2018、Shimpo et al. 2019)。 北半球中緯度域の 世界各地でも熱波が報じられ、ヨーロッパや東 アジア、米国南西部などでは記録的な高温とな った(NOAA, 2018, JMA, 2019)。これらの極端 イベントも、北半球中緯度で帯状平均対流圏気 温偏差が高温であったことと関連している可能 性がある。本研究ではこの北半球中緯度域の対 流圏高温偏差に着目し、気象庁現業季節予測シ ステムによりこの予測可能であったことを示し、 感度実験を用いてこの高温偏差の形成と継続に ついての要因を考察した。

2. 利用データと予測実験の設定

実況解析に用いた大気データは、気象庁長期 再解析データ JRA-55(Kobayashi et al., 2015)で ある。また、海面水温(SST)データは COBE-SST (Ishii et al., 2005)を、対流活動の指標は NOAA の外向き長波放射 (OLR)データ(Lee et al. 2018) をそれぞれ用いた。いずれも、1981-2010 年の月 平年値からの平年偏差を用いて解析した。

一方、偏差場の形成と維持の要因を考察する ため、気象庁現業季節予報で用いられている大 気海洋結合モデル JMA/MRI-CPS2(Takaya et al., 2017)を用いて、2017 年 10 月 18 日、28 日 を初期値とした 10 メンバの 13 か月ラン(1 初 期日につき 5 メンバ)からなる再予報実験を行 小林ちあき・石川一郎 (気象研究所)

った。SST 偏差が大気に与える影響を考察する ため、この実験システムの結合モデル中で全海 域の SST を気候値 SST に予測積分中ナッジン グする実験 (GLBCST) と太平洋熱帯域だけを気 候値 SST にナッジングする実験 (TPACCST) も行った。この論文では主に各実験(再予報、 GLBCST、および TPACCST)のアンサンブル 平均同士の差を結果として示す。

3.2018年の北半球中緯度域の高温偏差(実況) と予報モデルによる再予報実験

JRA-55 再解析と COBE-SST に基づいて、図 1 に、2017 年から 2018 年にかけての帯状平均 200hPa 高度場平年偏差時系列と NINO.3 海域 (5°S-5°N,150°W-90°W)の海面水温(SST) 偏差の時系列、2018 年夏季平均(6-8月)の 200hPa 高度場平年偏差分布と、海面水温平年偏 差分布を示す。200hPa 高度場平年偏差は対流圏 気温偏差を示す指標として用いている。

2018年夏季の200hPa高度場は、北半球中緯 度域で高温偏差となり、モンゴル付近やアラス カ湾付近、ラブラドル半島付近とスカンジナビ ア半島付近で特に偏差が大きかった(図1c)。北 半球中緯度帯状平均場の正偏差は2017年秋ご ろから顕著にみられ2018年秋まで継続してお り、2018年夏は偏差が増大していた(図1a)。

太平洋赤道域東部の海面水温は、2017年秋から2018年春にかけて平年より低く、ラニーニャ 現象が発生していた(図1b)。その後、2018年 夏にはエルニーニョ・ラニーニャ現象の発生し ていない平常の状態となったが、太平洋熱帯域 の北半球側では高温偏差、南半球側では低温偏 差という南北反対称な偏差パターンを示してい た(図1d)。大西洋では北半球亜熱帯域で負偏差、 中緯度域で正偏差、高緯度域で負偏差という3極 構造の偏差分布となった(図1d)。

このような、北半球中緯度域の高温偏差の継 続や2018年夏の偏差の強まりが、季節予報結合 モデルによる予測で再現されるのか確認する。 図 1e-h は、図 1a-d に対応する再予報実験の結 果である。全海域でSSTを気候値にナッジング した実験結果からの差を平年偏差の予報値とし て示している。200hPa 高度場は予報初期の 2017年秋から北半球中緯度域の対流圏全体で高 温偏差を予測しており、この高温偏差は2018年 秋まで継続している(図 1e)。2018年夏に偏差 が増大する様子や(図 1e)、正偏差が大きい地域 も実況の偏差場をよく再現しており(図 1g)、6 か月以上前の初期値からの予測にもかかわらず、 中緯度高温偏差の継続と夏季の強化をよく予測 できていたことがわかる。

一方、NINO.3 海域の海面水温偏差は、実験で は 2017 年秋から 2018 年春にかけて低温偏差を 予測しており(図 1f)、その後 2018 年夏に偏差 は小さくなっており、2017-2018 年の NINO.3 海域の海面水温の推移を良く再現している。ま た、2018 年夏季の太平洋熱帯域の北半球側の高 温偏差、南半球側の低温偏差も予測しており(図 1h)、リードタイムが 6 か月以上にも関わらず SST 偏差パターンをよく予測できている。北太 平洋中緯度域の SST 高温偏差は、振幅は弱いも のの予測できている。一方、大西洋では、中緯度 域の高温偏差は実況をよく再現しているが、北 半球亜熱帯域の低温偏差も弱い。実況で見られた SST 偏差の 3 極構造は予測では不明瞭だった。

4. 考察

北半球中緯度域の大気の高温偏差の形成と継 続の要因を考察する。帯状平均場ではあるが大 気の偏差が 6 か月程度継続したという状況は、 大気自身にそのメモリがあるとは考えにくく、 海洋等の外部境界のメモリが介在して大気偏差 場を持続させている可能性が高い。この事例で は再予報実験が 2018 年の大気や海洋の状態を 再現しているので、モデルで予測された SST 偏 差分布が対流活動偏差を介して北半球中緯度高 温偏差場の形成持続に影響している可能性があ る。それを調べるため、実際の 2018 年の対流活 動の状況とモデル予測の様子を確認する。

図2は、2018年のOLR 偏差とその再予報実 験結果である。2018年夏季平均した実況のOLR は、北緯15度付近の北太平洋亜熱帯全域で対流 活動活発偏差を示しており、特にフィリピン海 付近で顕著だった(図2a)。また、日付変更線付 近の南緯5度を中心に対流活動が不活発であり、 北緯10度付近を境に北側で活発、南側で不活発 というパターンを示しており、帯状平均でもそ の特徴が見られた(図2b)。この帯状平均した北 緯10度を境にした活発不活発のパターンは、 2017年終わりから顕著であり、2018年夏季まで 継続して発生していた(図2c)。また、これらの対 流活動の偏差の特徴は、再予報実験でもほぼ同 様に予測されていた。(図2d,e,f)

5. まとめ

2018年に多く発生した北半球中緯度域の猛 暑、熱波に関連した大気循環場の偏差として、 北半球中緯度域の対流圏高温偏差に着目し、そ の生成と継続の要因を調べた。2018年夏は、 北半球中緯度対流圏の帯状平均気温が高く、こ の北半球中緯度の高温偏差は2017年秋ごろか ら顕著になり、2018年秋まで継続していた。 帯状偏差場高温偏差の特徴は、気象庁現業季節 予報モデルで予測されており、2018年の夏季 の特徴も予測されていた。また、高温偏差の継 続と同じタイミングで北半球亜熱帯域の対流活 動の活発な状態が継続しており、その特徴も季 節予報モデルで予測されていた。北半球亜熱帯 域の対流活動は北半球中緯度の気温偏差と各季 節で関連が深いという統計関係が確認できてお り(図略)、この対流活動偏差の継続が北半球中 緯度対流圏偏差継続の要因であった可能性があ る。また、この予測システムを用い、太平洋熱 帯域のSST 偏差の影響を感度実験によって調べ た結果、北半球中緯度対流圏の正偏差の持続と 北半球亜熱帯域の対流活動活発偏差の持続が見 られた(図略)。このことから、太平洋熱帯域の 海面水温偏差が結合モデルでよく予測できてい たことが、北半球中緯度対流圏の帯状平均気温 の予測の成功に寄与していた可能性が示唆され た。

参考文献

- Ishii, M., A. Shouji, S. Sugimoto, and T. Matsumoto, 2005: Objective analyses of sea-surface temperature and marine meteorological variables for the 20th century using ICOADS and the KOBE collection. Int. J. Climatol., 25, 865-879, doi:10.1002/joc.1169.
- JMA, 2019: Annual Report on Global Extreme Climate Events. Tokyo Climate Center (Available online at

https://ds.data.jma.go.jp/tcc/tcc/produc ts/climate/annual/annual_2018e.html).

- 気象庁,2018:「平成30年7月豪雨」及び7 月中旬以降の記録的な高温の特徴と要因について.平成30年8月10日報道発表資料,
- Kobayashi, C., and I. Ishikawa, 2019: Prolonged northern-mid-latitude tropospheric warming in 2018 well predicted by the JMA operational seasonal prediction system. SOLA, 15A, 31-36, doi:10.2151/sola.15A-006.

Kobayashi, S., Y. Ota, Y. Harada, A. Ebita, M. Moriya, H. Onoda, K. Onogi, H. Kamahori, C. Kobayashi, H. Endo, K. Miyaoka, and K. Takahashi, 2015: The JRA-55 Reanalysis: General specifications and basic characteristics. J. Meteor. Soc. Japan, 93, 5-48, doi:10.2151/jmsj.2015-001.

- Lee, H.-T. and NOAA CDR Program, 2018: NOAA Climate Data Record (CDR) of Monthly Outgoing Longwave Radiation (OLR), Version 2.7., NOAA National Centers for Environmental Information (Available online at https://doi.org/10.7289/V5W37TKD).
- NOAA, 2018: State of the climate: Global climate report for July 2018. NOAA National Centers for Environmental Information (Available online at https: //ncdc.noaa.gov/sotc/global/201807).
- Shimpo, A., K. Takemura, S. Wakamatsu, H. Togawa, Y. Mochizuki, M. Takekawa, S. Tanaka, K. Yamashita, S. Maeda, R. Kurora, H. Murai, N. Kitabatake, H. Tsuguti, H. Mukougawa, T. Iwasaki, R. Kawamura, M. Kimoto, I. Takayabu, Y. N. Takayabu, Y. Tanimoto, T. Hirooka, Y. Masumoto, M. Watanabe, K. Tsuboki, and H. Nakamura, 2019: Primary factors behind the heavy rain event of July 2018 and the subsequent heat wave in Japan. SOLA, 15A, 13-18.
- Takaya, Y., S. Hirahara, T. Yasuda, S. Matsueda, T. Toyoda, Y. Fujii, H. Sugimoto, C. Matsukawa, I. Ishikawa, H. Mori, R. Nagasawa, Y. Kubo, N. Adachi, G. Yamanaka, and T. Kuragano, 2018: Japan Meteorological Agency/Meteorological Research Institute-Coupled Prediction System version 2 (JMA/MRI-CPS2): Atmosphereland-ocean-sea ice coupled prediction system for operational seasonal forecasting. Climate Dyn., 50, 751-765, doi:10.1007/s00382-017-3638-5.

図 1 a) 2017 年から 2018 年にかけての帯状平均 200hPa 高度場平年偏差時系列と b) NINO.3 海域 (5°S-5°N,150°W-90°W) の海面水温(SST)偏差の時系列、c) 2018 年夏季平均 (6·8 月) の 200hPa 高度場平年偏差分布と、d)海面水温 平年偏差分布。e-h) a-d)と同じ。ただし再予報実験の結果であり、全海域の SST を気候値 SST にナッジングして積分 した実験 (GLBCST) からの差を示している。200hPa 高度場偏差は対流圏気温偏差を示す指標として用いた。

図 2 a) 2018 年夏季 OLR 平年偏差、b) 帯状平均 OLR(黒線)とその平年偏差(赤線)、c) 2017 年から 2018 年にかけて の帯状平均 OLR 時系列。d-f) a-c)と同じ、ただし、再予報実験と GLBCST 実験との差。