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Topics on Free Boundary Problems for Ideal Fluids

BERBAY  HIFEH £ B (Atusi TANI)

Department of Mathematics, Keio University

This article reviews the free boundary problems for the motion of an incompressible
ideal fluid. These problems are typically classified into the following three types according
to the geometrical cofigulations of fluid domain:

[I] Vortical water waves, i.e., fluid motion in a domain of infinite extent bounded by the
upper free surface and the lower bottom of finite or infinite depth (in this case a dominant
external force is due to a gravitation downward vertically),

[IT] Circulating fluid around a celestial body, i.e., fluid motion around a rigid body with
a compact free surface (in this case a dominant external force is due to a gravitation of
the celestial body),

[II1] Gaseous stars, i.e., luid motion in a domain bounded by the free surface (in this case
a dominant external force is due to a self-gravitational forcee).

In general, as the vector fields of external forces we should take not only the potential
but the general form. Besides the forces mentioned above the effect of the surface tension
is taken into account.

We have a long history and a lot of works discussing on these problems, however con-
cerning the most fundamental study of the wellposedness of these problems there are not
so many works. In this article we are inerested in just this wellposedness.

We begin with a classical description of the problem.

At time ¢ > 0 let Q(t) be a domain in R¥(N = 2,3) occupied by the fluid, which is
bounded by a bottom T, and a free surface I';(2):

Iy = {xeR"|F(x)=0},
I,() = {xeR"|F(x,t)=0}.

We always assume that T'y N T',(t) = @ for any ¢ > 0. Corresponding to problems [I], [II]
and [I1I], we usually consider the fluid motion in the domains given by

Fy(x) = zy —b(X), Fi(x,t)=zy—n(x,t) (x=(x,2n)),
Fb(x) = |XI - b(w)v Fs(x’t) = le - U(w,t) (w € SN_I))
Fb = ma Fs(x7t) = |X| - n(wyt) (w € SN-I)’

respectively, where S¥~! is an (N-1)-dimensional sphere.
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The motion of an incompressible ideal fluid is described in the Eulerian coordinates by

(1) gDRtv +Vep=of, div;v=0 in Q(f), t>0,

where v = v(x,t) is the velocity vector field, p = p(x,t) is the pressure, f = f(x, 1) is
a vector field of exterior mass forces, ¢ is the constant density of the fluid and D/Dt =
0/t + v - V, is a material derivative.
Note that correspondent to problems [I}, [II] and [III], the suitable forms of the external
forces are considered as
f(x,t) = —ogVO(x,t), &(x,t) ==z,
1

f(x,t) = oMgV®(x,t), &(x,t) = I;l-,

f(x,t) = dmegVP(x,t), B(x,t) = /n(t) [x = y %

where g is a gravitational constant, z, is a perpendicular component of x and M is a
mass of a celestial body. In problem [II] we take the barycenter of the celestial body as
an origin of the coordinate system.

The boundary conditions on [,(¢) are

l:)—F =0 (kinematic condition),
(2) Dt

p=pe+20H (dynamic condition),
and on I,
(3) (v—v)-m=0.

Here p, is an atmosphere pressure, o(> 0) a coefficient of surface tension, H a mean
curvature (H > 0 if I'; is convex outside the fluid region), v, velocity of I', and n; a
normal vector to I';.
Initial conditions are
Q)= (Is(0) =T),
(4) {

V]eo = Vo(x), divvp =0, x€Q.

Our aim is to find a solution (2(t), v(x,t), p(x,t)) for ¢ > 0 to problem (1) — (4).
It is convenient to write the problem in the Lagrangean coordinates ¢:

Q Sx=vot), o=

which can be solved by the formula

(5) x=e+ [uEm dn (e = vixi6 0.0,

0
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Let G(&,t) = G(x(&,t),t). Then from (5) it follows that
i} D
o’ = >
In particular, F(§,t) = F(x,t) satisfies
%f'=0, hence Ty = {¢ € RY | F(€) =0}.
One can easily check that the mapping £ — x is ont-to-one from Q onto Q(t), from T,

onto I'y(t) and from I'y onto I',. Let M be a Jacobian matrix

6(x) (6.’12_7)
M=—L=(=L :
(&) O / jk=12,...N
Then (5) yields

0,,  0(v)
a1 = ™M
from which
(6) M| =detM =1 (Liouville’s theorem).

Noting that

Vo= M)V, =V,
with M* being the transposed matrix of M, we transform problem (1)-(4) into the fol-
lowing problem in the fixed domain, which is denoted by Problem A.

Problem A. Find (u(.t), p(¢,t)) satisfying

((Ju 1 .

— 4+ ~Vup—f=0 in Q, t>0,
gt o

Veru=0 in Q, t>0,

A

p=pe+20H on Ty, t>0,

(V—\"b)'nb=0 on I'y, t>0,

| Ul;g =Vo(§) on @ (divvo=0).

When f = V,;h and p. = constant, one can deduce from Problem A to the following
problem.

ProblemA’. Find (u(é.t), ¢(£,t)) satisfying

( u 1

§-+5qu=0 in , t> 0,

V,-u=0 in Q, ¢>0,
\ ¢g=—ph+20H on T, t>0,

(v—vp) m;y=0 on Ty t>0,

| ul,g =Vo(§) on Q (divvo=0),
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where ¢ = p — p, — ph.

For Problem A’ in case [I] we have the following works. [?], [?], [38], [64], [65].

For Problem A’ in case [I} with rotation free case we have the following works. [52],
[53], [54], [55], [?], [?], [?], [94], [95]. We give another formulation.

Since operating the material derivative to equation (5) implies

X, — V

1
M* (x4 — £) + Evg’) =0.

Equation (6) is indeed equivalent to equation (1)2, however it is not a divergence form.
Following Ovsjannikov, we derive an equivalent divergence form.
For any A;(x(£)) it holds that

0

-éEk—Aj =X¢, V,;.Aj = divm (ng.Aj) - Ajdivzx&,
and for any Jacobian matrix 4
. 1 0
lezX§k = Ma—é_klMl

If | M| is constant, then it holds that for any A = (A;, A;, As)
diveA = div, (MA)
In our case |[M| = 1. Thus MA = x; = v and (1.1)? yield
dive (M™'x;) = 0.
Problem B. To find (x(¢,1),p(§,t)) satisfying
( M*(xtt—f)+%V£p=O in 2, t>0,
dive (M~ !x;) =0 or (1.6) in Q, t >0,
(7) . p#pe+20H on Iy, t>0,
(x¢e —=vp)-mp=0 on Ty, t>0,
| (% %t)];=0 = (€, vo(§)) on Q (divve =0).

Following Weber (1868) (see, for example [81]), we proceed further to deduce the equiva-
lent problem to (4.1) when f = V h. Since

. 8\ . 8. 1
M Xyt = a (M Xt) - Mtxt = & (M Xt) - §V£|Xt|2,
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(1.8)! is equivalent to
®) ‘ &(Mxt)‘FV{ P—h—§|Xt| =0.
Applying the rotation operator to (8) leads to

%(rotEM*xt) =0,

hence
rote M*x; = rot¢vo.

Then one can see that there exists ¢ such that
M*x;, = Vg(P + vo.

Note that this ¢ is generally multi-valued and single-valued if 2 is simply connected.
Substituting this into (8) and integration with respect to ¢ imply

1
¢r+p=h+5hal’ +x() for Vx(t).
In the following we set x(t) = 0. ;From (7)? it follows
div (.A/t_l./\/f“—1 (Vg(,o + Vo)) =0.

Finally we arrive at the equivalent problem to Problem B:
Problem B’'. To find (x(¢,t), p(&,1)) satisfying

[ M*x, =Vep+vy in Q, t>0,

dive M™IM* 1 (Vep+v)) =0 in Q, t>0,

(9) § pr=h+3 M (Ve + vo)P =pe—20H on Ty, t>0,
M*1(Vep+ve)—vy) mpy=0 on Ty, t>0,

[ (% 9)l—o = (£,0) on Q.

We remark a little bit further. Let w = rot,v. Then (1.1)! yields

—w — w - Vv =rot,f.

Dt
When f = VA, this equation becomes
D
(10) LA Vv =0.
Therefore

w = Mrotgvg
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follows, which is known as Lagrange-Cauchy theorem (cf. [81]). Then it is easily seen
that rot,f = 0, rot,ve = 0 if and only if w = 0.

In the case of rotation free there exist a velocity potential ® such that v = V,®. Then
M*x; = V¢®, which implies rot¢(M*x,) = 0. This means that M*x, is a potential if and
only if M*M; is symmetric, i.e., M*M; = MiM. For a potential flow it follows from
(8) that

1
q)t +p = h+ §|xt|2.

Then one can see that ® is connected with ¢ appeared in the Weber transformation:

®=p+d, ®o=2|,.

In the two-dimensional case, since v = (vy, v3,0)(z, 2), M and w3 = w become

Tig Tig O

M= Lo T24, 0 )
0 0 1
d
" _om _ow
W= a.’L']_ 61}2'

For a potential flow (4.4) becomes

a’Uo 2 61}0,1

w = wp(£1,&) = 65; =6

(From the equation
w = rot; = MroteM*x,

it follows that

(1)t T1eT16t — TLaT1e6t + T2.6T2.60t — T2.6T2.6t = wolél, &2)-

(6) implies

(11)2 T16026 — T16T26 = 1.

(7)® becomes
T -Vep=7:Vepe+207:-VeH on T,

where 7 = (11, 72) is a tangential vector to I',. This, together with (7)!, yields

1) [z (e — i) + Tag (@2 — f)I 71+ [T16 (T — fi) + Do, (T2 — f2)] T2

1 20
= ——7V¢pe — —7 -+ V:H.
0 ¢Pe 0 ¢
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Summing up, the two-dimensional problem for a potential flow is to find x satisfying

2

1)1, (11)2 in Q, t>0,

7)4 on I'y, t>0,
5

in Q

(
(11)* on Iy, t >0,
(
(

7)

\
under the conditions divevgy = 0, rotsvy = wp.

For Problem B’ in the three dimensional and the rotation free case Bimenov proved the
existence result by virtue of Nash-Moser inplicit theorms [17], [18]. Using the same way,
we shall be able to prove the well-posedness for the vortical case.

And Andreev (8], [9] discussed the discussed th stability for Problem B. Following his
method, we shall be able to construct the solution around Gerstner’s trocoidal solution.
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