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Abstract

We study the Euler equations of compressible isentropic gas dy-
namics with spherical symmetry. Due to the presence of the singular-
ity at the origin, little is also known in the case including the origin.
In this article, we prove the existence of local solutions for the case
including the origin. We construct the approximate solutions by using
the method in [6].

1 Introduction

We study the Euler equations of compressible isentropic gas dynamics with
spherical symmetry. This is governed by the equations

{ pt+mw=_%m7 (1 1)

me+ (2 +p(p)) =22, p(p) = p7/7, FERS, 2= 3| 20,

= - )
T T e

where the scalar functions p(z,t), m(z,t) and p(z,t), are the density, the

momentum and the pressure of the gas, respectively. On the non-vacuum

state p > 0, u = m/p is the velocity. v € (1,5/3] is the adiabatic exponent.
Consider the initial boundary value problem (1.1),

(,m)|t=0 = (po (), mo()) (1.2)

and

m|m=0 =0. (13)



114

Observing (1.1), these equations have singularity at the origin. Therefore,
little is known in the case including the origin. The only global existence
theorem with large L™ initial data satisfying

0 < {po(@)}*/0 < ug(s) (1.4)

was obtained in [1]. On the other hand, for the case outside the origin
(z > 1), the local existence of weak L™ solutions was obtained in [6]. The
global existence of solutions with large initial data in L*° was discussed in
[4]. However this result is wrong. Therefore, in this case, no global existence
theorem has obtained in general.

In this article, we consider the initial boundary value problem (1.1)-(1.3)
for the case including the origin and initial data which don’t necessarily
satisfy (1.4). At the present time, it is not even clear in which functional space

- one should work, in order to prove a general existence theorem. Therefore,

although the above results are considered in L*°, we shall work in another

functional space.
Our main theorem is as follows.

Theorem 1.1 Assume that the initial data are of the form

(0, m) =0 = (po(2), mo(®)) = (Fo(@)z 7T, o(2)z5T)
satisfying
0< polz) <G, | <,
- =77 b)) | T 7

for some Cy > 0. Then, there ezists a local weak solution (p(z,t), m(z,t)) =
2 1
(p(z)z7T, ﬁz(z)x%) of the initial boundary value problem (1)-(3) satisfying

m(z,t)
FEx)

for some C(T) > Cy in the region R, x [0,T] for some T € (0,00).

0 < p(z,t) < C(T),

<C(),

[

We first transform (1.1). Set p = ﬁ:z:v_i_l, m = mz*T and £ = logz. Then

(1.1) becomes

ﬁg + ’ﬁ’l{ - —alrh,
{ (1.5)

wut (% +90), =~ —aw(p), p(3) =5/,

where § = 51, a1 =043, a,=0"'+4and a3 =61 +2.
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Our virtual goal is to prove the local existence of solutions to Cauchy
problem (1.5) and

(8, M)]t=0 = (po(@), To(z)),
where (fo(z), Go(z) = Mo(z)/po(z)) € L®(R).

For simplicity, by changing £ to z, § to p and ™ to m, we have ;

pt + mg = —a1m,
(1.6)

me+ (2 +p(p))m = —a —asp(p), plo) = p"/7.
This equation can be written as

v+ f(v)e = —g(v), TER,
{ V)emo = v0(x), o € L°(R). (1.7)

2 Preliminary

In this section, we first review some results of Riemann solutions for the
homogeneous system of gas dynamics. Consider the homogeneous system

{ pt+m.’l::0’

me+ (% +2(0)), =0, 26 =0/7 &1

The eigenvalues of the system are

M=Ze, d=—+e
p p

Any discontinuity in the weak solutions to (2.1) must satisfy the Rankine-
Hugoniot condition

o(v —w) = f(v) = f(w),

where ¢ is the propagation speed of the discontinuity, vo = (po,mp) and
v = (p,m) are the corresponding left state and right state. This means that

2 pe)=pleo) () _

PO p—

o= M=me — ma 4 p p(p)—p(pa
p—po po po  p—po

m —mg = 22(p— py) £

A discontinuity is called a shock if it satisfies the entropy condition

a(n(v) — n(w)) — (¢(v) — g(v0)) 2 0
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for any convex entropy pair (7, g).
Consider the Riemann problem of (2.1) with initial data

_ U, T < Zo,
V=0 = { ve, >0, (2.2)

where 2o € (—00,00), p+ > 0 and my are constants satisfying jmi /p+| < oo.
Then the following lemmas hold.

Lemma 2.1 There ezists a unique piecewise entropy solution (p(z,t), m(z, t))
containing the vacuum state (p = 0) on the upper plane t > 0 for the problem

of (2.2) satisfying,

w(p(z,t), m(z,t)) < max(w(p-, m_), w(p4, my)),
z(p(x, t)’ m(a:, t)) 2 min(z(p_, m—)a Z(p+, m+)):
w(p(z, t), m(z, 1)) — 2(p(=, 1), m(z, 1)) > 0.

Such solutions have the following properties.

Lemma 2.2 The regions >, = {(p,m) : w < wp,z > z,w — z > 0} are
invariant with respect to both of the Riemann problem (2.2) and the average
of the Riemann solutions in x. More preciously, if the Riemann date lie in
Y, the corresponding Riemann solutions (p(z,t), m(z,t)) lie in Y, and their
corresponding averages in x also in Y,

(b—i—a/b a:t)dm /m(mtdx) Z

The proof of Lemma 2.2 can be found in [2].

3 Approximate Solutions

In this section we construct approximate solutions v* = (o, mh) = (", puh)
in the strip 0 < ¢t < T for some fixed T € (0,00), where h is the space
mesh length, together with the time mesh length At, satisfying the following
Courant-Friedrichs-Levy condition

h

2A = 2max( sup [Ai(o",mM))) < — < 3A. (3.1)
i=1,2 g<t< At

We will prove that the approximate solutions are bounded uniformly in the
mesh length h > 0 and p*(z,t) > 0 to guarantee the construction of (p?, m#).



We construct the approximate solutions (p" m”). Let
tn =nAt, zj=jh, (n,j)€Z;xZ.
Assume that v"(z,t) is defined for ¢ < nAt. Then we define v} = (o}, m})

as, for j € Z,

ji—3)h

i+1
my =} f 3, mt(e,nAt — 0)ds, (j—}h<z<(G+ph

{ o= 1[I ph(z,nAL — 0)dz, (- DR << (+ DA, 32

Then, in the strip nAt < t < (n+ 1)At, vf(z,t) is defined as, for jh < z <
(j + 1)h (j € Z), the solution of the Riemann problem at z = (j + 3)h

{%+f@h=0,thI<U+1m,
o P, T<(j+ %)h,
Ule=nat { Vi, T> (F+ %)h

Finally we define v"(z, t) in the strip nAt < t < (n+1)At by the fractional
step procedure:

Wh(z,8) = vl(a,t) + gl (z, 1)) (t — nAe).

4 L°° Estimates

We derive a L™ bound for the approximate solutions v*(z,t) of the initial
value problem (1.7).

Theorem 4.1 Assume that the initial velocity and nonnegative density data
(po, ug) € L®(R). Then there ezxists a T > 0 such that the difference ap-
prozimate solutions of the initial value problem (1.7) are uniformly bounded.
That is, there exists a constant C > 0 such that

luh(z,t)| < C, 0<pz,t) <C, (z,t) €eRXx[0,T) (4.1)
Proof. Set

M,, = max(sup w(v*(z, nAt 4 0)), — inf 2(v"(z, nAt + 0)),1).
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For nAt <t < (n+1)At,n > 0 integer, we use Lemma 2.1 and the construc-
tion of (pf, mh) to get
h\6
w(vh) =uh+ (pe)
= w(vg) — {(uo)2 + (071 + 3)ug ()’ + (071 +2)(05)* /v} (t — nAt) + o(At)

< w(vg) - 5 { (2 + 48) (w(vg))* + 2(1 — B)w(vg)2(vg) — 26(2(v3))*} At + o(A?)

<M, - 1 { (2 + 40) M2 + 2(1 — 0) Moz(vg) — 20(2(vl)))?} At + o(At)

< M, + o(At),
and
h\@
Z(‘Uh') — uh, (pg)

= 2(vg) — {(ug)? — (67" + 3)ug(ph)’ + (671 +2)(05)* /7} (¢ — nAt) + o(At)

= z(v}) - % {—20(w(vf))? +2(1 — Ow(vd)z(vf) + (2 + 40)(2(v]))?} At + o(At)
-M, - 211— {—20(w(v}))? — 2(1 — O)w(v)) M, + (2 + 46) M2} At + o(At)

> —M, — M2At +o(At),

where Landau symbol o(At) is a constant depending only on the uniform
bound of v and o(At)/At — 0, as At — 0.
Therefore it follows from Lemma 2.2 that

Mty < Mo(1+ M,Ab),

that is,
Mn,+1 - Mn 2
—/r— T < M: 4.2
Consider the corresponding ordinary differential equation
dr _ 2
dt ?
{ r(0) = ro. (43)
It follows that
~ 1 1
<r@®)<C(M) = <t<T< —. 4.4
r<r() SO = ) 0<t<T<_ (4.4)



Noting the integral curve r = r(t) is convex curve, we obtain from (4.2)-(4.4)
that

M, < r(nAt) < O(T). (4.5)
Therefore, it follows that (4.5) for nAt < t < (n + 1)At, that is, there is a
constant C' > 0 such that
mh(z,t)
p(z,1)

by choosing At enough small.
The following proposition and theorem can be proved in the same manner
to [5] and [6].

[ut(z,1)] =

j <C, 0<pts,t) LG,

Proposition 4.2 The measure sequence

n(v")e + q(vh)e

lies in a compact subset of ngcl(ﬂ) for all weak entropy pair (n,q), where
Q C R x [0,T] is any bounded and open set.

Theorem 4.3 Assume that the approzimate solution (", m") satisfy Theo-
rem 4.1 and Proposition 4.2. Then there is a convergent subsequence in the
approzimate solutions (p"(z,t), mh(z,t)) such that

(" (2,1),m™ (2,1) = (o(z, ), m(z,1)), ae (4.6)

The pair of the functions (p(z,t), m(z,t)) is a local entropy solution of the
initial-boundary value problem (1.7) satisfying

m(z,t) ’
0 < p(z,t) <C, <C, (4.7)
(1) p(z,1)
for some C' in the region R x [0, T].
5 Open Problem
Here we list some open problems related to this paper.
e We first introduce a example.
C, u(z,t) = — (5.1)

p(z,t) = (t—!-—Cl)?:’
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where C; and C; are constants. (5.1) is a solution of (1.1). If C; > 0
(i.e. the initial velocity is positive), this solution is global. On the other
hand, if C; < 0 (i.e. the initial velocity is negative), this solution blows
up. Therefore a blow up solution certainly exists. Then can another
blow up solution be constructed, perfectly in more general?

e For the case initial Riemann Invariant z is nonnegative, the global
existence of solutions has obtained in [1]. Can the global existence of
solutions (not necessarily including the origin) be proved except this
result (of course, and (5.1))? In addition, since [4] is wrong, notice
that the global existence theorem for duct flow and self-gravitating
gases isn’t also obtained.

e The initial density of [1] and theorem 1.2 is 0 at the origin. Can the
existence (not necessarily global) with initial density, which isn’t 0 at
the origin, be proved (of course, except (5.1))?
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