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Every strongly definable C"G vector bundle
admits a unique strongly definable C*°G
vector bundle structure

Tomohiro KAWAKAMI*

Abstract

Let G be a compact subgroup of GL,(R). We prove that every
strongly definable C"G vector bundle over an affine definable C*°G
manifold admits a unique strongly definable C*°G vector bundle struc-
ture up to definable C*°G vector bundle isomorphism (0 < r < o).

1 Introduction

By [12], if s is a non-negative integer, then every C* Nash map between affine
Nash manifolds is approximated in the definable C* topology by Nash maps.
This definable C* topology is a new topology defined in [12].

In this paper, G denotes a compact subgroup of GL,(R), every definable
map is continuous and any manifold does not have boundary, unless otherwise
stated. Under our assumption, G is a compact algebraic subgroup of GL,,(R)
(e.g. 2.2 [10]). We consider an equivariant definable version of the above
theorem in an o-minimal expansion M = (R,+,-,<,...) of the standard
structure R = (R, +, -, <) of the field R of real numbers. General references
on o-minimal structures are [1], [3], see also [13]. Further properties and
constructions of them are studied in [2], [4], [11].

*Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani
Wakayama 640-8510, Japan.
2010 Mathematics Subject Classification. 14P10, 14P20, 03C64.
Key Words and Phrases. O-minimal, definable G vector bundles, definable C*°G vector
bundles, definable C°°G manifolds.



We consider strongly definable C*°G vector bundle structures of strongly
definable C"G vector bundles (0 < r < 00).

Everything is considered in M and the term “definable” is used through-
out in the sense of “definable with parameters in M” | each definable map is
assumed to be continuous.

2 Preliminaries

An ordered structure (R, <) with a dense linear order < without endpoints is
o-minimal (order minimal) if every definable set of R is a finite union of open
intervals and points, where open interval means (a,b), —00 < a < b < co.

If (R,+,-, <) is a real closed field, then it is o-minimal and the collection
of definable sets coincides that of semialgebraic sets.

The topology of R is the interval topology and the topology of R" is the
product topology.

Let X C R*and Y C R™ be definable sets. A continuousmap f: X —- Y
is definable if the graph of f (C X x Y C R" x R™) is a definable set. A
definable map f : X — Y is a definable homeomorphism if there exists a
definable map f': Y — X such that fo f' =idy, f' o f =idx.

A group G is a definable group if G is a definable set and the group
operations G x G — G and G — G are definable.

Let G be a definable group. A pair (X, ¢) consisting a definable set X
and a G action ¢ : G x X — X is a definable G set if ¢ is definable. We
simply write X instead of (X, ¢) and gz instead of ¢(g, ).

A definable map f : X — Y between definable G sets is a definable
G map if for any z € X, g9 € G, f(gx) = gf(z). A definable G map is a
definable G homeomorphism if it is a homeomorphism.

Definition 1 A topological fiber bundle n = (E,p, X, F, K) is called a
definable fiber bundle over X with fiber F' and structure group K if the
following two conditions are satisfied:

(1) The total space F is a definable space, the base space X is a definable
set, the structure group K is a definable group, the fiber F' is a definable
set with an effective definable K action, and the projection p: F — X is a
definable map.

(2) There exists a finite family of local trivializations {U;, ¢; : p~(U;) —
U; x F'}; of n such that each U is a definable open subset of X, {U;}; is a finite



open covering of X. For any z € U,, let ¢, : p7*(z) = F, ¢,.(2) = mo¢,(2),
where 7, stands for the projection U; x ' — F. For any ¢ and j with
U;NU; # 0, the transition function 6,; := ¢, o qzﬁl_; U NU, = K is
a definable map. We call these trivializations definable. Definable fiber
bundles with compatible definable local trivializations are identified.

(3) A definable fiber bundle is a definable vector bundle if F' = R™ and
K = GL(n,R).

Definition 2 (1) Let 0 = r < co. A Hausdorff space X is an n-dimensional
definnable C™ manifold if there exist a finite open cover {U;}F_ | of X,
finite open sets {V;}*_, of R", and a finite collection of homeomorphisms
{¢i : U; = V;}¥_, such that for any i, j with U;NU; # 0, ¢;(U;NU;) is definable
and ¢; 0 ¢; ' ¢(U; NU;) — ¢,(U; N U,) is a definable C™ diffeomorphism.
This pair ({U;}f_,,{¢, : U; = V;}¥_,) of sets and homeomorphisms is called
a definable C™ coordinate system.

(2) A definable C™ manifold G is a definable C™ group if G is a group
and the group operations G x G — G,G — G are definable C” maps

(3) Let G be a definable group. A pair (X, ¢) consisting a definable C”
manifold X and a G action ¢ : G x X — X is a definable C"G manifold if
¢ is a definable C"™ map. We simply write X instead of (X, ¢) and gz instead

of ¢(g,x).

Definition 3 ([6]) Let G be a definable C” group and 0 < r < occ.
(1) A definable C"G vector bundle is a definable C" vector bundle n =
(E,p, X) satisfying the following three conditions.

(a) The total space E and the base space X are definable C"G manifolds.

(b) The projection p : E — X is a definable C"G map.

(c) For any z € X and g € G, the map p~!(z) — p~'(gz) is linear.
(2) Let n and ¢ be definable C"G vector bundles over X. A definable C"
vector bundle morphism n — ( is called a definable C"G wvector bundle
morphism if it is a G map. A definable C"G vector bundle morphism f :
n — ( is said to be a definable C"G wvector bundle isomorphism it there
exists a definable C"G vector bundle morphism h : { — 7 such that foh = id
and hof =id. If r = 0, then a definable C°G vector bundle (resp. a definable
CYG vector bundle morphism, a definable C°G vector bundle isomorphism)
is simply called a definable G vector bundle (resp. a definable G vector
bundle morphism, a definable G vector bundle isomorphism).
(3) A definable C" section of a definable C"G vector bundle is a definable
C"G section if it is a G map.



Definition 4 ([8], [6]) Let 0 < r < oo.

(1) A group homomorphism (resp. A group isomorphism) from G to
O,.(R) is a definable group homomorphism (resp. a definable group
isomorphism) if it is a definable map (resp. a definable homeomor-
phism).

Note that a definable group homomorphism (resp. a definable group
isomorphism) between G and O, (R) is a definable C* map (resp. a
definable C'*° diffeomorphism) because G and O,(R) are Lie groups.

(2) An n-dimensional representation of G means R™ with the linear action
induced by a definable group homomorphism from G to O,(R). In this
paper, we assume that every representation of GG is orthogonal.

(3) A definable C” submanifold of a definable C"G manifold X is called a
definable C"G submanifold of X if it is GG invariant.

(4) A definable C"G manifold is called af fine if it is definably C"G dif-
feomorphic (definably G homeomorphic if 7 = 0) to a definable C"G
submanifold of some representation of G.

(5) A definable C"G manifold with boundary is defined similarly.

If 0 £ 7 < oo, then every definable C” manifold is affine ([8], [7]) and if
M is exponential, then each compact definable C*°G manifold is affine [8].

Recall universal G vector bundles (e.g. [6]) and existence of a Nash G
tubular neighborhood of a Nash G submanifold of a representation of G (]9]).

Let €2 be an n-dimensional representation of G induced by a definable
group homomorphism B : G — O,(R). Suppose that M(Q2) denotes the
vector space of m x n matrices with the action (g,A) € G x M(§2) —
B(g)AB(g)™' € M(). For any positive integer k, we define the vector
bundle v(, k) = (E(Q, k), u, G(, k) as follows:

G k) = {Ae M(Q)|A> = Af A= A TrA=k),
E(Q,k)={(4,v) € G() x QAv = v},
u: E(Q k) = G(Q,k),u((A;v)) = A,

where ‘A denotes the transposed matrix of A and T'rA stands for the trace
of A. Then ~(£2, k) is an algebraic vector bundle. Since the action on v(€2, k)



is algebraic, it is an algebraic G vector bundle. We call it the universal G
vector bundle associated with 2 and k. Remark that G(§2,k) € M(Q) and
E(Q,k) C M(2) x Q are nonsingular algebraic G sets. In particular, they
are Nash G submanifolds of M () and M () x £, respectively.

Theorem 5 ([9]) Every Nash G submanifold X of a representation Q2 of G
has a Nash G tubular neighborhood (U, ) of X in €.

Definition 6 ([6]) (1) Let G be a definable group. A definable G vector
bundle n = (E, p, X) over a definable G set X is called strongly definable if
there exist a representation 2 of G and a definable G map f : X — G(9, k)
such that 7 is definably G vector bundle isomorphic to f*(v(£, k)), where k
denotes the rank of 7.

(2) Let G be a definable C" group and 0 < r < oco. A definable C"G
vector bundle n = (E, p, X ) over an affine definable C”G manifold X is called
strongly de finable if there exist a representation {2 of G and a definable C"G
map f : X — G(, k) such that 7 is definably C"G vector bundle isomorphic
to f*(v(€, k)), where k denotes the rank of 7.

3 Our results

Theorem 7 ([5]) If0 < s < oo and M admits C*™ cell decomposition and
exponential, then every definable C°G map between affine definable C*°G
manifolds s approximated wn the definable C° topology by definable C°G
maps.

Our main result is the following.

Theorem 8 ([5]) Let X be an affine definable C*°G manifold and M admits
C* cell decomposition and exponential. If 0 < r < oo, then every strongly
definable C™G vector bundle over X admits a unique strongly definable C*G
vector bundle structure up to definable C°G wvector bundle isomorphism.
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