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Every strongly definable  C^{r}G vector bundle
admits a unique strongly definable  C^{\infty}G

vector bundle structure

Tomohiro KAWAKAMI  *

Abstract

Let  G be a compact subgroup of  GL_{n}(\mathbb{R}) . We prove that every
strongly definable  C^{r}G vector bundle over an affine definable  C^{\infty}G

manifold admits a unique strongly definable  C^{\infty}G vector bundle struc‐
ture up to definable  C^{\infty}G vector bundle isomorphism  (0\leqq r<\infty) .

1 Introduction

By [12], if  s is a non‐negative integer, then every  C^{s} Nash map between affine
Nash manifolds is approximated in the definable  C^{s} topology by Nash maps.
This definable  C^{s} topology is a new topology defined in [12].

In this paper,  G denotes a compact subgroup of  GL_{n}(\mathbb{R}) , every definable
map is continuous and any manifold does not have boundary, unless otherwise
stated. Under our assumption,  G is a compact algebraic subgroup of  GL_{n}(\mathbb{R})
(e.g. 2.2 [10]). We consider an equivariant definable version of the above
theorem in an  0‐minimal expansion  \mathcal{M}=(\mathbb{R}, +, \cdot, <, \ldots) of the standard
structure  \mathcal{R}=(\mathbb{R}, +, \cdot, <) of the field  \mathbb{R} of real numbers. General references
on  0‐minimal structures are [1], [3], see also [13]. Further properties and
constructions of them are studied in [2], [4], [11].
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We consider strongly definable  C^{\infty}G vector bundle structures of strongly
definable  C^{r}G vector bundles  (0\leqq r<\infty) .

Everything is considered in  \mathcal{M} and the term “definable” is used through‐
out in the sense of “definable with parameters in  \mathcal{M} each definable map is
assumed to be continuous.

2 Preliminaries

An ordered structure  (R, <) with a dense linear order  < without endpoints is
‐minimal (order minimal) if every definable set of  R is a finite union of open

intervals and points, where open interval means  (a, b),  -\infty\leq a<b\leq\infty.

If  (R, +, \cdot, <) is a real closed field, then it is  0‐minimal and the collection
of definable sets coincides that of semialgebraic sets.

The topology of  R is the interval topology and the topology of  R^{n} is the
product topology.

Let  X\subset R^{n} and  Y\subset R^{m} be definable sets. A continuous map  f :  Xarrow Y

is definable if the graph of  f(\subset X\cross Y\subset R^{n}\cross R^{m}) is a definable set.  A

definable map  f :  Xarrow Y is a definable homeomorphism if there éxists a
definable map  f' :  Yarrow X such that  fof'=id_{Y},  f'of=id_{X}.

A group  G is a definable group if  G is a definable set and the group
operations  G\cross Garrow G and  Garrow G are definable.

Let  G be a definable group. A pair  (X, \phi) consisting a definable set  X

and a  G action  \phi :  G\cross Xarrow X is a definable  G set if  \phi is definable. We
simply write  X instead of  (X, \phi) and gx instead of  \phi(g, x) .

A definable map  f :  Xarrow Y between definable  G sets is a definable
 G map if for any  x\in X,  g\in G,  f(gx)=gf  (x) . A definable  G map is a
definable  G homeomorphism if it is a homeomorphism.

Definition 1 A topological fiber bundle  \eta=(E,p, X, F, K) is called a
definable fiber bundle over  X with fiber  F and structure group  K if the
following two conditions are satisfied:

(1) The total space  E is a definable space, the base space  X is a definable
set, the structure group  K is a definable group, the fiber  F is a definable
set with an effective definable  K action, and the projection  p:Earrow X is a
definable map.

(2) There exists a finite family of local trivializations  \{U_{i},  \phi_{i} :   p^{-1}(U_{i})arrow
 U_{i}\cross F\}_{i} of  \eta such that each  U_{i} is a definable open subset of  X,  \{U_{i}\}_{i} is a finite
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open covering of  X . For any  x\in U_{i} , let  \phi_{i,x} :  p^{-1}(x)arrow F,  \phi_{i,x}(z)=\pi_{\iota}\circ\phi_{i}(z) ,
where  \pi_{i} stands for the projection  U_{i}\cross Farrow F . For any  i and  j with
  U_{i}\cap U_{j}\neq\emptyset , the transition function  \theta_{\iota j}  :=\phi_{J^{x}},\circ\phi_{\dot{i},x}^{-1} :  U_{i}\cap U_{J}arrow K is
a definable map. We call these trivializations definable. Definable fiber
bundles with compatible definable local trivializations are identified.

(3) A definable fiber bundle is a definable vector bundle if  F=\mathbb{R}^{n} and
 K=GL(n, \mathbb{R}) .

Definition 2 (1) Let   0\leqq r\leqq\infty . A Hausdorff space  X is an  n‐dimensional
definnable  C^{r} manifold if there exist a finite open cover  \{U_{i}\}_{i=1}^{k} of  X,
finite open sets  \{V_{i}\}_{i=1}^{k} of  \mathbb{R}^{n} , and a finite collection of homeomorphisms
 \{\phi_{i} : U_{i}arrow V_{i}\}_{i=1}^{k} such that for any  i,j with  U_{i}\cap U_{j}\neq\emptyset,  \phi_{i}(U_{i}\cap U_{j}) is definable
and  \phi_{j}\circ\phi_{\dot{i}}^{-1} :  \phi(U_{i}\cap U_{j})arrow\phi_{J}(U_{i}\cap U_{J}) is a definable  C^{r} diffeomorphism.
This pair  (\{U_{i}\}_{i=1}^{k}, \{\phi_{i} : U_{i}arrow V_{i}\}_{i=1}^{k}) of sets and homeomorphisms is called
a definable  C^{r} coordinate system.

(2) A definable  C^{r} manifold  G is a definable  C^{r} group if  G is a group
and the group operations  G\cross Garrow G,  Garrow G are definable  C^{r} maps

(3) Let  G be a definable group. A pair  (X, \phi) consisting a definable  C^{r}

manifold  X and a  G action  \phi :  G\cross Xarrow X is a definable  C^{r}G manifold if
 \phi is a definable  C^{r} map. We simply write  X instead of  (X, \phi) and gx instead
of  \phi(g, x) .

Definition 3 ([6]) Let  G be a definable  C^{r} group and  0\leqq r\leqq\infty.
(1) A definable  C^{r}G vector bundle is a definable  C^{r} vector bundle  \eta=

 (E,p, X) satisfying the following three conditions.
(a) The total space  E and the base space  X are definable  C^{r}G manifolds.
(b) The projection  p:Earrow X is a definable  C^{r}G map.
(c) For any  x\in X and  g\in G , the map  p^{-1}(x)arrow p^{-1} (gx) is linear.

(2) Let  \eta and  \zeta be definable  C^{r}G vector bundles over  X . A definable  C^{r}

vector bundle morphism  \etaarrow\zeta is called a definable  C^{r}G vector bundle
morphism if it is a  G map. A definable  C^{r}G vector bundle morphism  f :
 \etaarrow\zeta is said to be a definable  C^{r}G vector bundle isomorphism if there
exists a definable  C^{r}G vector bundle morphism  h :  \zetaarrow\eta such that  f\circ h=id
and  h\circ f=id . If  r=0 , then a definable  C^{0}G vector bundle (resp. a definable
 C^{0}G vector bundle morphism, a definable  C^{0}G vector bundle isomorphism)
is simply called a definable  G vector bundle (resp. a definable  G vector
bundle morphism, a definable  G vector bundle isomorphism).
(3) A definable  C^{r} section of a definable  C^{r}G vector bundle is a definable
 C^{r}G section if it is a  G map.
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Definition 4 ([8], [6]) Let  0\leqq r\leqq\infty.

(1) A group homomorphism (resp. A group isomorphism) from  G to
 O_{n}(\mathbb{R}) is a definable group homomorphism (resp. a definable group
isomorphism) if it is a definable map (resp. a definable homeomor‐
phism).

Note that a definable group homomorphism (resp. a definable group
isomorphism) between  G and  O_{n}(\mathbb{R}) is a definable  C^{\infty} map (resp.  a

definable  C^{\infty} diffeomorphism) because  G and  O_{n}(\mathbb{R}) are Lie groups.

(2) An  n‐dimensional representation of  G means  \mathbb{R}^{n} with the linear action
induced by a definable group homomorphism from  G to  O_{n}(\mathbb{R}) . In this
paper, we assume that every representation of  G is orthogonal.

(3) A definable  C^{r} submanifold of a definable  C^{r}G manifold  X is called a
definable  C^{r}G submanifold of  X if it is  G invariant.

(4) A definable  C^{r}G manifold is called affine if it is definably  C^{r}G dif‐
feomorphic (definably  G homeomorphic if  r=0 ) to a definable  C^{r}G

submanifold of some representation of  G.

(5) A definable  C^{r}G manifold with boundary is defined similarly.

If   0\leqq r<\infty , then every definable  C^{r} manifold is affine ([8], [7]) and if
 \mathcal{M} is exponential, then each compact definable  C^{\infty}G manifold is affine [8].

Recall universal  G vector bundles (e.g. [6]) and existence of a Nash  G

tubular neighborhood of a Nash  G submanifold of a representation of  G ([9]).
Let  \Omega be an  n‐dimensional representation of  G induced by a definable

group homomorphism  B :  Garrow O_{n}(\mathbb{R}) . Suppose that  M(\Omega) denotes the
vector space of  n\cross n matrices with the action  (g, A)\in G\cross M(\Omega)\mapsto
 B(g)AB(g)^{-1}\in M(\Omega) . For any positive integer  k , we define the vector
bundle  \gamma(\Omega, k)=(E(\Omega, k),  u,  G(\Omega, k) as follows:

 G(\Omega, k)=\{A\in M(\Omega)|A^{2}=A,tA=A, TrA=k\},

 E(\Omega, k)=\{(A, v)\in G(\Omega)\cross\Omega|Av=v\},

 u:E(\Omega, k)arrow G(\Omega, k), u((A;v))=A,

where  tA denotes the transposed matrix of  A and  TrA stands for the trace
of A. Then  \gamma(\Omega, k) is an algebraic vector bundle. Since the action on  \gamma(\Omega, k)
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is algebraic, it is an algebraic  G vector bundle. We call it the universal  G

vector bundle associated with  \Omega and  k . Remark that  G(\Omega, k)\subset M(\Omega) and

  E(\Omega, k)\subset M(\Omega)\cross\Omega are nonsingular algebraic  G sets. In particular, they
are Nash  G submanifolds of  M(\Omega) and   M(\Omega)\cross\Omega , respectively.

Theorem 5 ([9]) Every Nash  G submanifold  X of a representation  \Omega of  G

has a Nash  G tubular neighborhood  (U, \theta) of  X in  \Omega.

Definition 6 ([6]) (1) Let  G be a definable group. A definable  G vector
bundle  \eta=(E,p, X) over a definable  G set  X is called strongly definable if
there exist a representation  \Omega of  G and a definable  G map  f :  Xarrow G(\Omega, k)
such that  \eta is definably  G vector bundle isomorphic to  f^{*}(\gamma(\Omega, k)) , where  k

denotes the rank of  \eta.

(2) Let  G be a definable  C^{r} group and   0\leqq r\leqq\infty . A definable  C^{r}G

vector bundle  \eta=(E,p, X) over an affine definable  C^{r}G manifold  X is called

sirongiy definabíe if there exist a representation  \Omega of  G and a definable  CG

map  f :  Xarrow G(\Omega, k) such that  \eta is definably  C^{r}G vector bundle isomorphic
to  f^{*}(\gamma(\Omega, k)) , where  k denotes the rank of  \eta.

3 Our results

Theorem 7 ([5]) If   0\leqq s<\infty and  M admits  C^{\infty} cell decomposition and
exponential, then every definable  C^{s}G map between affine definable  C^{\infty}G

manifolds  i_{\mathcal{S}} approximated in the definable  C^{S} topology by definable  C^{\infty}G

maps.

Our main result is the following.

Theorem 8 ([5]) Let  X be an affine definable  C^{\infty}G manifold and  M admits
 C^{\infty} cell decomposition and exponential. If   0\leqq r<\infty , then every strongly
definable  C^{r}G vector bundle over  X admits a unique strongly definable  C^{\infty}G

vector bundle structure up to definable  C^{\infty}G vector bundle isomorphism.
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