Every strongly definable $C^r G$ vector bundle admits a unique strongly definable $C^{\infty} G$ vector bundle structure

Tomohiro KAWAKAMI*

Abstract

Let G be a compact subgroup of $GL_n(\mathbb{R})$. We prove that every strongly definable C^rG vector bundle over an affine definable $C^{\infty}G$ manifold admits a unique strongly definable $C^{\infty}G$ vector bundle structure up to definable $C^{\infty}G$ vector bundle isomorphism $(0 \leq r < \infty)$.

1 Introduction

By [12], if s is a non-negative integer, then every C^s Nash map between affine Nash manifolds is approximated in the definable C^s topology by Nash maps. This definable C^s topology is a new topology defined in [12].

In this paper, G denotes a compact subgroup of $GL_n(\mathbb{R})$, every definable map is continuous and any manifold does not have boundary, unless otherwise stated. Under our assumption, G is a compact algebraic subgroup of $GL_n(\mathbb{R})$ (e.g. 2.2 [10]). We consider an equivariant definable version of the above theorem in an o-minimal expansion $\mathcal{M} = (\mathbb{R}, +, \cdot, <, ...)$ of the standard structure $\mathcal{R} = (\mathbb{R}, +, \cdot, <)$ of the field \mathbb{R} of real numbers. General references on o-minimal structures are [1], [3], see also [13]. Further properties and constructions of them are studied in [2], [4], [11].

^{*}Department of Mathematics, Faculty of Education, Wakayama University, Sakaedani Wakayama 640-8510, Japan.

²⁰¹⁰ Mathematics Subject Classification. 14P10, 14P20, 03C64.

Key Words and Phrases. O-minimal, definable G vector bundles, definable $C^{\infty}G$ vector bundles, definable $C^{\infty}G$ manifolds.

We consider strongly definable $C^{\infty}G$ vector bundle structures of strongly definable $C^{r}G$ vector bundles $(0 \leq r < \infty)$.

Everything is considered in \mathcal{M} and the term "definable" is used throughout in the sense of "definable with parameters in \mathcal{M} ", each definable map is assumed to be continuous.

2 Preliminaries

An ordered structure (R, <) with a dense linear order < without endpoints is *o-minimal* (*order minimal*) if every definable set of R is a finite union of open intervals and points, where open interval means $(a, b), -\infty < a < b < \infty$.

If $(R, +, \cdot, <)$ is a real closed field, then it is o-minimal and the collection of definable sets coincides that of semialgebraic sets.

The topology of R is the interval topology and the topology of R^n is the product topology.

Let $X \subset \mathbb{R}^n$ and $Y \subset \mathbb{R}^m$ be definable sets. A continuous map $f: X \to Y$ is *definable* if the graph of $f (\subset X \times Y \subset \mathbb{R}^n \times \mathbb{R}^m)$ is a definable set. A definable map $f: X \to Y$ is a *definable homeomorphism* if there exists a definable map $f': Y \to X$ such that $f \circ f' = id_Y, f' \circ f = id_X$.

A group G is a *definable group* if G is a definable set and the group operations $G \times G \to G$ and $G \to G$ are definable.

Let G be a definable group. A pair (X, ϕ) consisting a definable set X and a G action $\phi : G \times X \to X$ is a *definable* G set if ϕ is definable. We simply write X instead of (X, ϕ) and gx instead of $\phi(g, x)$.

A definable map $f: X \to Y$ between definable G sets is a definable G map if for any $x \in X, g \in G, f(gx) = gf(x)$. A definable G map is a definable G homeomorphism if it is a homeomorphism.

Definition 1 A topological fiber bundle $\eta = (E, p, X, F, K)$ is called a *definable fiber bundle* over X with fiber F and structure group K if the following two conditions are satisfied:

(1) The total space E is a definable space, the base space X is a definable set, the structure group K is a definable group, the fiber F is a definable set with an effective definable K action, and the projection $p: E \to X$ is a definable map.

(2) There exists a finite family of local trivializations $\{U_i, \phi_i : p^{-1}(U_i) \to U_i \times F\}_i$ of η such that each U_i is a definable open subset of X, $\{U_i\}_i$ is a finite

open covering of X. For any $x \in U_i$, let $\phi_{i,x} : p^{-1}(x) \to F, \phi_{i,x}(z) = \pi_i \circ \phi_i(z)$, where π_i stands for the projection $U_i \times F \to F$. For any *i* and *j* with $U_i \cap U_j \neq \emptyset$, the transition function $\theta_{ij} := \phi_{j,x} \circ \phi_{i,x}^{-1} : U_i \cap U_j \to K$ is a definable map. We call these trivializations definable. Definable fiber bundles with compatible definable local trivializations are identified.

(3) A definable fiber bundle is a *definable vector bundle* if $F = \mathbb{R}^n$ and $K = GL(n, \mathbb{R})$.

Definition 2 (1) Let $0 \leq r \leq \infty$. A Hausdorff space X is an *n*-dimensional definable C^r manifold if there exist a finite open cover $\{U_i\}_{i=1}^k$ of X, finite open sets $\{V_i\}_{i=1}^k$ of \mathbb{R}^n , and a finite collection of homeomorphisms $\{\phi_i : U_i \rightarrow V_i\}_{i=1}^k$ such that for any i, j with $U_i \cap U_j \neq \emptyset$, $\phi_i(U_i \cap U_j)$ is definable and $\phi_j \circ \phi_i^{-1} : \phi(U_i \cap U_j) \rightarrow \phi_j(U_i \cap U_j)$ is a definable C^r diffeomorphism. This pair $(\{U_i\}_{i=1}^k, \{\phi_i : U_i \rightarrow V_i\}_{i=1}^k)$ of sets and homeomorphisms is called a definable C^r coordinate system.

(2) A definable C^r manifold G is a definable C^r group if G is a group and the group operations $G \times G \to G, G \to G$ are definable C^r maps

(3) Let G be a definable group. A pair (X, ϕ) consisting a definable C^r manifold X and a G action $\phi: G \times X \to X$ is a definable $C^r G$ manifold if ϕ is a definable C^r map. We simply write X instead of (X, ϕ) and gx instead of $\phi(g, x)$.

Definition 3 ([6]) Let G be a definable C^r group and $0 \leq r \leq \infty$.

(1) A definable $C^r G$ vector bundle is a definable C^r vector bundle $\eta = (E, p, X)$ satisfying the following three conditions.

(a) The total space E and the base space X are definable $C^r G$ manifolds.

(b) The projection $p: E \to X$ is a definable $C^r G$ map.

(c) For any $x \in X$ and $g \in G$, the map $p^{-1}(x) \to p^{-1}(gx)$ is linear.

(2) Let η and ζ be definable $C^r G$ vector bundles over X. A definable C^r vector bundle morphism $\eta \to \zeta$ is called a *definable* $C^r G$ vector bundle morphism if it is a G map. A definable $C^r G$ vector bundle morphism $f: \eta \to \zeta$ is said to be a *definable* $C^r G$ vector bundle isomorphism if there exists a definable $C^r G$ vector bundle morphism $h: \zeta \to \eta$ such that $f \circ h = id$ and $h \circ f = id$. If r = 0, then a definable $C^0 G$ vector bundle (resp. a definable $C^0 G$ vector bundle morphism) is simply called a *definable* G vector bundle (resp. a *definable* G vector bundle morphism).

(3) A definable C^r section of a definable C^rG vector bundle is a *definable* C^rG section if it is a G map.

Definition 4 ([8], [6]) Let $0 \leq r \leq \infty$.

(1) A group homomorphism (resp. A group isomorphism) from G to $O_n(\mathbb{R})$ is a definable group homomorphism (resp. a definable group isomorphism) if it is a definable map (resp. a definable homeomorphism).

Note that a definable group homomorphism (resp. a definable group isomorphism) between G and $O_n(\mathbb{R})$ is a definable C^{∞} map (resp. a definable C^{∞} diffeomorphism) because G and $O_n(\mathbb{R})$ are Lie groups.

- (2) An *n*-dimensional representation of G means \mathbb{R}^n with the linear action induced by a definable group homomorphism from G to $O_n(\mathbb{R})$. In this paper, we assume that every representation of G is orthogonal.
- (3) A definable C^r submanifold of a definable C^rG manifold X is called a *definable* C^rG submanifold of X if it is G invariant.
- (4) A definable $C^r G$ manifold is called *affine* if it is definably $C^r G$ diffeomorphic (definably G homeomorphic if r = 0) to a definable $C^r G$ submanifold of some representation of G.
- (5) A definable $C^r G$ manifold with boundary is defined similarly.

If $0 \leq r < \infty$, then every definable C^r manifold is affine ([8], [7]) and if \mathcal{M} is exponential, then each compact definable $C^{\infty}G$ manifold is affine [8].

Recall universal G vector bundles (e.g. [6]) and existence of a Nash G tubular neighborhood of a Nash G submanifold of a representation of G ([9]).

Let Ω be an *n*-dimensional representation of G induced by a definable group homomorphism $B: G \to O_n(\mathbb{R})$. Suppose that $M(\Omega)$ denotes the vector space of $n \times n$ matrices with the action $(g, A) \in G \times M(\Omega) \mapsto$ $B(g)AB(g)^{-1} \in M(\Omega)$. For any positive integer k, we define the vector bundle $\gamma(\Omega, k) = (E(\Omega, k), u, G(\Omega, k))$ as follows:

$$G(\Omega,k) = \{A \in M(\Omega) | A^2 = A, {}^t A = A, TrA = k\},\$$

$$E(\Omega, k) = \{ (A, v) \in G(\Omega) \times \Omega | Av = v \},\$$
$$u : E(\Omega, k) \to G(\Omega, k), u((A; v)) = A,$$

where ${}^{t}A$ denotes the transposed matrix of A and TrA stands for the trace of A. Then $\gamma(\Omega, k)$ is an algebraic vector bundle. Since the action on $\gamma(\Omega, k)$ is algebraic, it is an algebraic G vector bundle. We call it the universal G vector bundle associated with Ω and k. Remark that $G(\Omega, k) \subset M(\Omega)$ and $E(\Omega, k) \subset M(\Omega) \times \Omega$ are nonsingular algebraic G sets. In particular, they are Nash G submanifolds of $M(\Omega)$ and $M(\Omega) \times \Omega$, respectively.

Theorem 5 ([9]) Every Nash G submanifold X of a representation Ω of G has a Nash G tubular neighborhood (U, θ) of X in Ω .

Definition 6 ([6]) (1) Let G be a definable group. A definable G vector bundle $\eta = (E, p, X)$ over a definable G set X is called *strongly definable* if there exist a representation Ω of G and a definable G map $f : X \to G(\Omega, k)$ such that η is definably G vector bundle isomorphic to $f^*(\gamma(\Omega, k))$, where k denotes the rank of η .

(2) Let G be a definable C^r group and $0 \leq r \leq \infty$. A definable C^rG vector bundle $\eta = (E, p, X)$ over an affine definable C^rG manifold X is called strongly definable if there exist a representation Ω of G and a definable C^rG map $f: X \to G(\Omega, k)$ such that η is definably C^rG vector bundle isomorphic to $f^*(\gamma(\Omega, k))$, where k denotes the rank of η .

3 Our results

Theorem 7 ([5]) If $0 \leq s < \infty$ and M admits C^{∞} cell decomposition and exponential, then every definable C^sG map between affine definable $C^{\infty}G$ manifolds is approximated in the definable C^s topology by definable $C^{\infty}G$ maps.

Our main result is the following.

Theorem 8 ([5]) Let X be an affine definable $C^{\infty}G$ manifold and M admits C^{∞} cell decomposition and exponential. If $0 \leq r < \infty$, then every strongly definable $C^{r}G$ vector bundle over X admits a unique strongly definable $C^{\infty}G$ vector bundle structure up to definable $C^{\infty}G$ vector bundle isomorphism.

References

- [1] L. van den Dries, *Tame topology and o-minimal structures*, Lecture notes series **248**, London Math. Soc. Cambridge Univ. Press (1998).
- [2] L. van den Dries, A. Macintyre, and D. Marker, The elementary theory of restricted analytic field with exponentiation, Ann. of Math. 140 (1994), 183–205.
- [3] L. van den Dries and C. Miller, Geometric categories and o-minimal structures, Duke Math. J. 84 (1996), 497-540.
- [4] L. van den Dries and P. Speissegger, The real field with convergent generalized power series, Trans. Amer. Math. Soc. 350, (1998), 4377–4421.
- [5] T. Kawakami, An affine definable C^rG manifold admits a unique affine definable $C^{\infty}G$ manifold structure, to appear.
- [6] T. Kawakami, Equivariant differential topology in an o-minimal expansion of the field of real numbers, Topology Appl. 123 (2002), 323-349.
- [7] T. Kawakami, Every definable C^r manifold is affine, Bull. Korean Math. Soc. 42 (2005), 165–167.
- [8] T. Kawakami, Imbedding of manifolds defined on an o-minimal structures on $(, +, \cdot, <)$, Bull. Korean Math. Soc. **36** (1999), 183–201.
- [9] T. Kawakami, Nash G manifold structures of compact or compactifiable C[∞]G manifolds, J. Math. Soc. Japan 48 (1996), 321–331.
- [10] D.H. Park and D.Y. Suh, Linear embeddings of semialgebraic G-spaces, Math. Z. 242, (2002), 725-742.
- [11] Y. Peterzil, A. Pillay and S. Starchenko, *Definably simple groups in o-minimal structures*, Trans. Amer. Math. Soc. **352** (2000), 4397–4419.
- [12] M. Shiota, Approximation theorems for Nash mappings and Nash manifolds, Trans. Amer. Math. Soc. 293 (1986), 319–337.
- [13] M. Shiota, Geometry of subanalyitc and semialgebraic sets, Progress in Math. 150 (1997), Birkhäuser.