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A survey of undecidability problems of rings of
totally real algebraic integers

Kenji Fukuzaki *

Abstract Let Z' be the ring of all totally real algebraic integers in C. We consider
(un)decidability of its subrings of infinite degree over Q. Julia Robinson [Ro] proved
that 7Z is first order definable (without parameters) in Z", thus showed that it is
undecidable. Moreover she showed undecidability of the rings of (algebraic) integers
of any subfield of Q({y/p | p prime}) also by showing the definability of Z in those
rings. From her remark in [Ro], it seems that we may conjecture that all subrings of
Z' are undecidable. We survey recent progress on this problem. We note that rings
of algebraic integers of finite degree over QQ are undecidable. This fact is also proved
in [Ro].

1 A method of Julia Robinson

Let R C Z' be a ring of totally real integers. To a formula ¢(z,7) (where § =
(Y1,-.-,Y,)) in the ring language L we can define a family {¢(z,7) |7 € R"} of
subsets R where p(z,7) = {s € R| R |= ¢(s,7}. In her 1962 paper On the decision
problem for algebraic rings [Ro], she proved the following.

Proposition 1. Let R C Z' be a ring and suppose that there is a family as above
containing finite sets of arbitrary large size. Then 7 is first order definable (without
parameters) in R.

For details see [Ro] and [JV].
In order to define such family, she used the following Siegel’s theorem.

For an algebraic number z, x is totally positive iff x is a sum of four squares in Q(z).

An algebraic number is said to be totally positive if each conjugate of z is positive.

Corollary 2. Let R C Z' be a ring and suppose that there is a smallest interval
(0, ), s real or oo, which contains infinitely many sets f conjugates of integers of R.
Then Z is definable in R, hence R is undecidable.

She applied this corollary to the following cases.

For R = Z' she put 0 < y17 < y2 as ¢(z,y1,y2) where
T <y Ituvw 2t (y— o) =u*+ 0P +w+ 22 At £0)].

This means that y — x is totally non-negative, which is first order definable in R by
the Siegel’s result. It follows from a theorem of Kronecker that the interval (0,4)
contains infinitely many sets of conjugates of totally real algebraic integers and no
sub-intervals does. We can take positive integers yi, y2 so that ya/y; is as close as we
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like to but less than 4. Then this family contains finite sets of arbitrary large size.
Thus Z is first order definable (without parameters) in R = Z'".

For the rings of integers R of any subfield of Q({,/p |p prime}) she put 0 < = < y
as ¢(z,y). It can be shown that this family contains finite sets of arbitrary large size.
Thus Z is definable in R.

2 Julia Robinson number

We noticed that intervals Julia Robinson used are (0,4) and (0, +00). In [Ro], after
Corollary 2, she remarked ”This condition may in fact hold for all totally real algebraic
integer rings”.

Unfortunately, up to 2015, no rings R C Z' satisfying this condition with the
intervals (0, s), s # 4, +0o are known.

Vidaux and Videla [VV] defined Julia Robinson number of R.

For r € R and a,b € RU{£oo}, let a < r < b mean that r and all its conjugates
are strictly between a and b. For ¢t € R positive, write

Ri={reR|0<r <t}
They define the Julia Robinson number of R to be
JR(R) = infA(R),

where
A(R) = {t € RU {+o0} | R, is infinite}.

We notice that A(R) is either the singleton {+0c0} or an interval: A(Z") is the interval
[4,+00) and A(Ry) = 400 where Ry is the ring of integers of Q({,/p | p prime}).
R is said to have the Julia Robinson Property if JR(R) € A(R), that is, if A(R) is a
closed interval [JR(R),+00) or {4+o00}. Thus JR(Z") =4 and JR(R,) = +o0.

If a ring R C Z' has the Julia Robinson Property, then we can prove that Z is
definable by the arguments of Julia Robinson.

Vidaiux and Videla, in their 2015 paper Definability of the natural numbers in
totally real towers of nested square roots [VV], constructed an infinite family of sub-
rings of such rings for which JR number is strictly between 4 and +o0, thus they are
undecidable.

Remark.

1. Also in 2015, they [VV2] proved that the compositum of all totally real abelian
extensions of QQ of bounded degree d is undecidable, showing that its JR number
Is +o0.

2. In 2008, Jarden and Videla [JV] proved that certain families of subrings of Z"
are undecidable showing that the theory of finite graphs is interpretable in those
rings. (The theory of finite graph is undecidable.)
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