
21

Formal Proofs of Theorems of Programs
with an SMT Solver

Shusei Komatsu, Geoffrey Baudelet, Keishi Okamoto

Abstract

In this paper, we give a formal proof of a theorem in [1] with an SMT
solver Z3[2]. We develop a domain specific language, which is an extension
of Z3.py[3] , to describe proofs based on the formulation of programs in
[1]. Moreover, with the domain specific ıanguage, we also give verification
examples that the refinement relation holds for pairs of programs.

1 Introduction

In this section, first, we introduce formal methods and stepwise refinement. A

product developed in the way of stepwise refinement is correct by construction.
But verifying correctness of refinement is a difficult task. Next, we briefly in‐
troduce SMT which is a satisfiability problem. We use an SMT solver, which
is a tool to solve an SMT, to give a formal proof. Finally, we introduce a
formalization of programs and specifications introduced in [1].

1.1 Formal Methods and Stepwise Refinement

Formal methods are promising software development methods which are based
on mathematics and computer science. Formal methods have strict syntax to
describe specifications and programs, and verification methods to show their
correctness. In [1], specifications and programs are formalized in a uniform way.
Thus, in this paper, we treat a program as a specification and vice versa.

Formal specification is one of formal methods. VDM++[4] and Event‐B[5]
are formal specification methods. Some descriptions in these formal specification
methods are based on first‐order logic(FOL).

Event‐B adopts a way of software development called stepwise refinement.
In stepwise refinement, we first describe an abstract specification and then refine
it to more concrete specification step by step.

We show an example of a pair of an abstract specification Sl and a concrete
specification S2. An abstract specification Sl is that if given input is positive
then all implementation of the Sl returns an output which is a square root of
the input. A specification can be a relation which defines pairs of inputs and
outputs. Then Sl is a relation \{(x, \sqrt{x}), (x, -\sqrt{x})\} . A concrete specification
S2 is that if given input is positive then all implementation of the S2 returns

21

22

the output which is the positive square root of the input. Then S2 is a relation
 \{(x, \sqrt{x})\}.

At each step, we verify that the concrete specification is a refinement of the
abstract specification. We verify refinement relations with theorem proving and
other verification methods. But the verification often requires manual tasks
with expertise in mathematics.

1.2 SMT Solver

We use an SMT solver to give a formal proof. Satisfiability Modulo Theories
(SMT) is a satisfiability problem for a first‐order formula with free variables[6].
When we give an input first‐order formula with free variables to an SMT solver,
the SMT solver returns an output “sat” and a witness if the input is satisfiable,
and an output “unsat” otherwise. For instance, if we give an input x=y+1
to an SMT solver then the solver returns and output “sat” and a witness x=

 1, y=0.

1.3 Theory of Programs

Many formalization of specifications and programs have been proposed. Meyer
proposed a formalization of specifications and programs[l].

In [1], programs and specifications are uniformly formalized based on set
theory. A program is formalized as a triple (Set, Precondition, Postcondition)
where Set is an underlying set for variables, Precondition is a required condition
for inputs and Postcondition is a relation of inputs and outputs. For example,
a condition x\geq 0(x^{2}=y) is a precondition (respectively a postcondition) of a
program which returns a square root y(\in R) of a given real number x.

In [1], many properties of programs are manually proved but manual proof
may include errors. We will check proofs in [1] by giving formal proofs with an
SMT solver. A theorem of the form ’‘for any program p , if p satisfies a condition
 C_{1} then p satisfies a condition C_{2} ” can be formalized as a first‐order(FO) for‐
mula \forall pC_{1}(p)arrow C_{2}(p) . This formula is logically equivalent to an FO formula
 \exists pC_{1}(p)\wedge\neg C_{2}(p) that represents a satisfiability problem. Hence we can prove
theorems of the form with an SMT solver.

Moreover, in [1], a formalization of refinement relation of a pair of programs
are proposed. We refine an abstract program p_{x} to a more concrete program

 p_{\dot{i}+1} again and again in a way of stepwise refinement, i.e., we develop a sequence
of programs p_{1},p_{2} , . . . , p_{i},p_{i+{\imath}} , . . . , p_{n} such that (p_{i},p_{i+1}) is a refinement rela‐
tion. Then the resulting program p_{n} is correct by construction. Rodin, which
is an develòpment tool based on Event‐B, helps development based on stepwise
refinement. Rodin automatically verify whether a pair of programs is a refine‐
ment relation. But size of verification is becoming larger and larger. Thus it is
important to develop a powerful tool to verify a refinement relation automati‐
cally.

In Section 2, we give a formal proof of a theorem in [1] with an SMT solver

22

23

Z3[2]. In Section 3, we give verification examples that the refinement relation
holds for pairs of specifications. In Section 4, we conclude this paper.

2 Formal Proof of a Theorem Pll

In this section, we give a formal proof of the theorem Pll in [1]. First, we
introduce the theorem Pll. Second, we introduce definitions used in Pll. Then
we give a formal proof of Pll. But the original Pll does not hold, thus we
propose a modification of Pll.

Theorem 1 ([1]) Pll q ; (pl \cup p2) = (q ; pl) \cup(q; p2) where pl, p2, q are pro‐
grams.

We prepare definitions and notations to give a formal proof of Pll.

Definition 2 ([1]) For a given set S , a program p is a triple (Set_{p}, Pre_{p}, Post_{p})
where

 e State Set: Set_{p}\subseteq S (S is a universe set)

 \bullet Precondition: Pre_{p}\subseteq Set_{p}

 e Postcondition: Post_{p}\in Set_{p}\cross Set_{p}

Definition 3 ([1]) Programs pl and p2 are equivalent ĩf

 \bullet Pre_{p1}=Pre_{p2} and

 \bullet post_{p1}/Pre_{p1}=post_{p2}/Pre_{p2}.

We write p1=p2 when pl and p2 are equivalent.

We define a choice operator \cup and a composition operator; for programs.

Definition 4 ([1]) For programs pl and p2, the choice p1\cup p2 and the compo‐
sition pl; p2 of pl and p2 are defined as follows:

 \bullet p1\cup p2 :=(Set_{p1}\cup Set_{p2}, Pre_{p1}\cup Pre_{p2}, Post_{p1}\cup Post_{p2}) ,

 e pl; p2 :=(Set_{p1}\cup Set_{p2}, Pre_{p1}\cap Post^{-1}(Pre_{p2}), Post_{p2}
o(Post_{p1}\backslash Pre_{p2})) .

Intended meaning of p1\cup p2 is that either pl or p2 is executed. And intended
meaning of pl; p2 is that p2 is executed after pl is executed.

We prove theorems in [1] with an SMT solver Z3. First, we express a the‐
orem in [1] as a FO‐formula. Theorem is of the form that, for any program
 p , if p satisfies a premise then p satisfies a conclusion. Then the negation of a
theorem is a satisfiability problem. Thus, if the resulting satisfiability problem
is unsatisfiable, then the theorem holds. On the other hand, if the resulting sat‐
isfiability problem is satisfiable, then there is a counter‐example of the theorem,
namely the theorem does not hold.

23

24

We use an SMT solver Z3[3] and its Python API Z3.py[4J . Since Z3.py has
only basic constructs, the size of description of a theorem tends to long, and it
is difficult to give a correct description of a theorem. Thus we define a domain‐
specific language based on Z3.py. List 1 is a description of theorem Pll in the
domain‐specific languages.

 \# Generate an instance of a solver

 s= Solver ()

title = “Pll q ; (pl \cup p2) = (q ;pl) \cup (q ; p2)”
 \# Generate instances of programs
 q , pl, p2 = progs (s , ’ q pl p2’)
 \# The statement of Theorem Pll

theorem =q\wedge (pl | p2) == (q\wedge pl) 1 (q\wedge p2)
 \# Verify the theorem
conclude (s , theorem, title)

List 1: Theorem Pll

Z3 generates an output “sat” and a counter‐example of the theorem Pll.
We try to correct the theorem Pll according to the counter‐example. Analysis
of the counter‐example shows that q;(p1\cup p2) admits an unintended execution
whose input is of pl and output is of p2.

Since intended meaning of q ; (pl \cup p2) is (q ; pl) \cup(q; p2) , we modify the
definition of the union operator as follows:

 Post_{p1\cup p2}=(Post_{p1}/Pre_{p1})\cup(Post_{p2}/Pre_{p2}) .

We verify the theorem Pll with this modified definition. Then the result
shows that this modified definition of the union operator does not admit the
above unintended execution, namely modified Pll holds.

3 Examples: Verifying Refinement Relations

In this section, we show verification examples of refinement relations in the
domain‐specific language. Naive formalization, in which variables ranges over
integer domain, results in “unknown” by limitation of Z3. Thus we adopt a
strong assumption that variables ranges over a finite domain, and then we suc‐
ceed to verify that the refinement relation holds for the case.

We prepare definitions in a concept of a contracted program.

Definition 5 ([1]) A program p is feasible if Pre_{p}\subseteq dom(Post_{p}). A program
p2 is a contracted program of pl if p2 is a refinement of pl (p2 \subseteq p1) and p2
is feasible.

Thus, if a program p2 is a contracted program of pl then p2 is a refinement of
pl.

We show an example in which a program p2 is a contracted program of a
program pl.

24

25

title = “‘doublel”’

pl, p2 = progs (s, 1\prime p1 p2”’)
 s . add (+p1, +p2)\# Assume that pl, p2 are feasible
 s . add(pl. set () == p2. set () ,

pl. pre () == p2. pre ())
 x,y= Ints (xy')
 s . add(ForAl1([x, y] , pl. post(x , y) ==

 (2*x==y)))
 s . add(ForAl1([x, y] , p2. post (x , y) ---

0r (And(x==1, y==2), And(x==2, y==4))))
conclude (s , contracts(p2, pl), title)

List 2: Verification Example (Integer Domain)

In this example, pl is an abstract program and p2 is a concrete program whose
input and output range over integers. For an input x and an output y , pl
requires that \forall x\forall y2*x=y , and p2 requires that \forall x\forall y[(x=1\wedge y=2)\vee(x=
 2\wedge y=4)] . Then the second requirement logically implies the first requirement.

Z3 returns (unknown” for the satisfiability problem in this example. The
quantifiers in pl and p2 may cause a problem since Z3 checks the satisfiability
problem over integers. But the satisfiability problem should be “unsat” since
p2 is a contracted program of pl.

We modify the requirement for p2 as follows:

 s . add(ForAl1([x, y] , p2. post (x , y) ==

Or(And (x==1, y==3), And(x==2, y==4))))

to detect the case that p2 is not a contracted program of pl. Since 2*x=y
does not hold for x=1 and y=3 , the modified p2 is not a contracted program
of pl. Then Z3 returns “sat” which means that there is a counter‐example to
that p2 is a contracted program of pl.

Next, we show another example in which a program p4 is a contracted pro‐
gram of a program p3. In this example, the range of variables are restricted to a
finite domain {nl, n2, n3, n4, n5, n6, n7, n8}. In the following list, the intended
meaning of an element ni is the integer i and a “double” function returns 2*i

for a given input i.

title = “‘ double2”’

p3, p4 = progs (s, 1\prime p3p4^{\prime 1})
 s . add(eq‐set (p3, p4), eq‐pre (p3, p4), +p3, +p4)
 x,y= consts (xy ’ , U)
double = Function(’double ‘ , U , U)
 s.add([double (i) ==j for i, j in

 [(n1, n2), (n2, n4), (n3, n6), (n4, n8)]])
 s . add(ForAll ([x, y] , p3. post (x , y) ==(y== double (x))))
 s . add(ForAl1([x, y] , p4. post (x , y) == Or(
[And(x==i, y== j) for i, j in [(n1 , n2), (n2, n4)]])))
conclude (s , contracts (p4, p3), title)

25

26

List 3: Verification Example (Finite Domain)

p3 is a program which returns 2*i for a given input i where i=n1 , n2, . . . , n8.
Then p3 is a restriction of pl to a finite domain {nl, n2, , n8}. p4 is a program
which returns n2 for the input nl and n4 for the input n2. Then p4 is the same
program as p2.

The result of the satisfiability problem in List 3 is :_{unsat'}\prime , which means that
p4 is a contracted program of p3.

We modify the requirement for p4 in List 3 as follows:

 s . add(ForAl1([x, y] , p4. post (x , y) == Or(
[And(x==i, y== j) for i, j in [(n1 , n2), (n2, n5)]])))

Since y=double(x) , whose intended meaning is that y=2*x , does not hold
for x=n2 and y=n5 , the modified p4 is not a contracted program of p3. Then
Z3 returns “sat” which means that there is a counter‐example to that p4 is a
contracted program of p3.

4 Concluding Remarks

In this paper, we give a formal proof of the theorem Pll in [1]. Moreover, we
give formal proofs of other 44 theorems in [1]. Besides, we also try to give a
formal proof of refinement relations. Naive formalization, in which variables
range over integers, implies that Z3 returns “unknown” Then, we adopt an
assumption that variables range over a finite domain. With this assumption, Z3
returns “unsat” But more feasible assumption is preferable.

References

[1] Theory of Programs, Bertrand Meyer, 2015

[2] Z3 Prover, https://github.com/Z3Prover/z3

[3] Z3API in Python, URL:www.cs.tau.ac.il/msagiv/courses/asv/z3py/guide‐
examples.htm

[4] Validated Designs for Object‐Oriented Systems, John Fitzgerald et al.,
Springer‐Verlag, 2005

[5] Modeling in Event‐B system and software Engineering, Jean Raymond
Abrial, CAMBRIDGE, 2010

[6] Handbook of Satisfiability, Armin Biere, Marijn Heule, Hans Van Maaren,
Toby Walsh (Ed.), IOS Press, 2009

26

