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A Proof of Hales‐Jewett Theorem

using a Non‐Standard Method

Akito Tsuboi

University of Tsukuba

Shelah’s proof of Hales‐Jewett theorem was explained in [1]. Following
the ideas explained there, I give a proof using a nonstandard method.

Theorem 1. For all n,   n_{c}\in\omega , we can find   N=N_{n,n_{c}}\in\omega with the following
property: For a given coloring  c :  n^{N}arrow n_{c} there  i\mathcal{S} a word   w(x)\in(n\cup
 \{x\})^{N}\backslash n^{N} such that  \{w(i) : i\in n\} is  c‐monochromatic.

Proof. Throughout  n_{c} is fixed. We prove the theorem by induction on  n . So
we assume that the theorem is true for  n . Let  N=N_{n,n_{c}} . Now we work in

 a (sufficiently saturated) nonstandard model  M\succ(\omega, 0,1, +, \cdot, <, \ldots) . Let
  a\in M\backslash \omega and let

 c^{*}:(n+1)^{a}arrow n_{c}

be given. We can assume, by coding method,  c^{*} lives in  M . We want to find
a  c^{*}‐monochromatic line in  (n+1)^{a} First fix an indiscernible sequence

 d_{0}<d_{1}<. . .  <d_{i}<. . .  <a

over  c^{*} For numbers  s\leq t\leq u\leq v and  x , let

 C(s, t, u, v;x)=(n)_{t-s}\wedge(x)_{u-t}\wedge(0)_{v-u}=\{n_{\check{t-s}}n,
x_{\check{u-t}}x_{\vee}0_{v-u}0\}.
Then, for  \overline{e}=e_{0} , . . . ,  e_{N-1}\in(n+1)^{N},  f(\overline{e}) is the sequence

 (n)_{d_{0}^{\wedge}}C(d_{0,1,2,3};e_{0})^{\wedge}C(d_{3,4,5,6};e_{1})^{\wedge}. .  .\wedge C(d_{3N-3,3N-2,3N-1,3N};e_{N-1})^{\wedge}(0)_{a-d_{3N}},

of length  a , where  d_{i,j,k,\iota} denotes the sequence  d_{i},  d_{j},  d_{k},  d_{l} . For  \overline{e}\in(n+1)^{N},
let ê be the sequence obtained from  \overline{e} by replacing every term  e_{i}=n with  0.

For example, if  \overline{e}=\{n, n-1, n, 1, . . . \} , then ê  =  \langle 0,  n-1,0,1 , . . . }. ê belongs
to  n^{N}
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Claim A. c
 *

(f(e))  = c
 *

(f(ê)).

We assume  e_{k}=n . Then the following equations are true.

 c^{*}(f(\overline{e}))=c^{*}(. . . \wedge C(d_{3k,3k+1,3k+2,3k+3};n)^{\wedge} .
. . ))
 =c^{*} (. . . \wedge C(d_{3k,3k+2,3k+2,3k+3};n)^{\wedge} . . . )) (1)

 =c^{*} (. . . \wedge C(d_{3k,3k+1,3k+1,3k+3};n)^{\wedge} . . . )) (2)
 =c^{*} (. . . \wedge C(d_{3k,3k+1,3k+2,3k+3};0)^{\wedge} . . .)) (3)
 =c^{*}(f(,\overline{e}^{I})) .

The equality (1) holds because the two cells  C(d_{3k,3k+1,3k+2,3k+3};n) and
 C(d_{3k,3k+2,3k+2,3k+3};n) are the same. The equality (2) holds because of the
indiscernibility of  \overline{d} over  c^{*} The equlality (3) holds because the two cells
 C(d_{3k,3k+1,3k+1,3k+3\}}n) and  C(d_{3k,3k+1,3k+2,3k+3};0) are the same. (End of Proof
of Claim)

Now we consider the coloring  c' :  (n+1)^{N}arrow n_{c} defined by  c'(\overline{e})=
 c^{*}(f(\overline{e})) . By our choice of  N , if  c' is restricted to the domain  n^{N} , there is a
word  w(x)\in(n\cup\{x\})^{N}\backslash n^{N} such that  \{w(i) : i\in n\} is  c'‐monochromatic.

By Claim A and the choice of  w(x),  \{w(i) : i\in n+1\} is also monochromatic.
Let  w^{*}(x) denote the word  f(w(x)) . It is a sequence in  ((n+1)\cup\{x\})^{N^{*}}\backslash 
 (n+1)^{N^{*}} and the following claim clearly holds.

Claim B.  \{w^{*}(i) : i\in n+1\} is  c^{*} ‐monochromatic.

Now we have shown that the following statement holds in  M :

 \exists a,  \forall c^{*} :  (n+1)^{a}arrow n_{c)}\exists w^{*}(x) s.t.  \{w^{*}(i) : i\in n+1\} is a singleton.

Since  \omega is an elementary substructure of  M , the same statement holds in  \omega.

This provides the induction step of our proof.  \square 
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