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We present an explicit high order accurate method to solve the dynamics of metal

materials numerically. The governing equations for the dynamics consist of two

parts. The first part is the conservation law of mass, momentum and energy. The

second is the equation of state and Hook’s law. For those equations we apply

the method of retroactive characteristics [1] to establish high order accurate

Godunov method. We finally verify our method through a few computational

examples. The method gives rather good resolution for elastic and plastic waves.

1 Introduction

Godunov method [4] is a finite volume method mainly used in numerical simulation of

conservation laws. In finite volume methods, we divide the space into small finite volumes
(cells) and approximate the flux that passes the contacts between each pair of neighboring

cells by some numerical flux. In Godunov method the numerical flux is estimated through

the exact solution to the Riemann problem that is determined ffom the two states of

neighboring cells that intersect at the contact. If an approximate solution to the Riemann

solution is used instead of the exact solution, the algorithm is called Godunov type method.

The big advantage of Godunov method is a theoretical background derived from the

exact Riemann solver, even though the convergence of method is still open in many cases.
Especially when the nonlinearity is strong, like the compressible gas, Godunov method is
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rather reliable. But the order of accuracy is still of the first order.

We have already established high order accurate Godunov method for the compressible

Euler equations using the retroactive characteristics method and the switching of accuracy

based on parabolic spline criterion [1]. The retroactive characteristics method gives precise

information on the region of independence at each contact of cells. As well known, the

high order accuracy gives side effect of numerical oscilation where the spatial change of

gradient of numerical data is large. We employ the swithing of accuracy based on parabolic

spline criterion to suppress the inconvenience. The idea of this switching is rather natural

and easy. It does not any harm with the accuracy in the region where the data is smooth.

We also emphasize that in the practical coding our algorithm is almost like a 3-stencil

shceme like Godunov method, while many high order accurate methods require us to treat

5 or more stencils in a complicated procedure. In brief, the methods employed are rather

successful in the case of compressible Euler equations.

We here extend the methodology into the problems of elastic-plastic flow in solid con-

tinuum to develop a methodology to calculate the numerical solution for strong impact

problems, where a piece of material collides with another at a very high speed or a fast and

strong shockwave in fluid collides with some solid material etc. In the case, instead of the

primitive variables, the Riemann invariants are interpolated by the method of retroactive

characteristics. When we calculate the numerical flux, only the elastic part of Hook’s law

is taken into account. The plastic behavior of the material is included in the corrector

step. Finally we show some numerical results to verify our methodology.

2 Equation Modeling Elasticity and Plasticity

The governing equations are wrriten in the following form with independent variables $x_{i}$

$(i=1,2,3)$ and $t$ for space and time coordinates, respectively. While many different ways

are proposed to model the plasticity, which is closely related with property of material, we
employ the concept of so called ideal plasticity determined by von Mises criterion.

$\frac{\partial\rho}{\partial t}+\sum_{j}\frac{\partial}{\partial x_{j}}(\mathrm{p}_{j})$ $=0,$ (1)

$\frac{\partial(\rho u_{i})}{\partial t}+\sum_{j}\frac{\partial}{\partial x_{j}}(\rho u_{i}u_{j}-\sigma_{ij})=0$, $i=1,$ 2, 3 (2)
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$\frac{\partial e}{\partial t}+\sum_{j}\frac{\partial}{\partial x_{j}}(eu_{j}-\sum_{i}u_{i}\sigma_{ij})=0$ (3)

$\frac{D}{Dt}\mathrm{S}_{i}$,$\cdot+\lambda S_{ij}=\mu e_{ij}$ , $i$ , $)$ $=1,2,3$ (4)

$\epsilon=\epsilon(p, \rho)$ , (5)

where $\rho$ : density (mass per unit volume)
$u_{i}$ : the velocity component in the direction of $x_{i^{\wedge}}\dot{\mathrm{m}}\mathrm{s}$

$e$ : total energy per unit volume.
(specific energy and kinetic energy)

$\epsilon$ : specific enerygy per unit volume
$(\sigma_{\dot{l}j})$ : stress tensor
$\mu$ : shear modulus
$\frac{D}{Dt}$ : Jaumann derivative.

We need some additional explanation. The stress tensor (hj) is symmetric and devided

into two parts, the part from pressure and that from deviatoric stress.

$\sigma_{ij}=$ -p6l\dot j $+S_{\dot{|}j}$ , $p=- \frac{1}{3}\sum_{i}$ )
$i\mathrm{i}$ , (6)

where $\delta_{\dot{\iota}j}$ is so called the Kronrcker’s delta;

$\delta_{\dot{\iota}j}=\{$

1, $i=j$
0, $i\neq j.$

(7)

The tensor $(e_{\dot{\iota}j})$ is determined by

$e_{ij}= \frac{1}{2}(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}})-\frac{1}{3}(\sum_{k}\frac{\partial u_{k}}{\partial x_{k}}$) $\delta_{i}$,. (8)

The Jaumann detivative $\frac{D}{Dt}$ is determined by

$\frac{D}{Dt}(S_{\dot{|}\mathrm{j}})=\frac{\partial S_{ij}}{\theta t}+\sum_{k}\{u_{k}\frac{\partial}{\partial x_{k}}S_{ij}-S_{\dot{l}k}\omega_{jk}-S_{jk}\omega_{\dot{l}k}\}$, (9)

where $\omega_{ij}=\frac{1}{2}$

$(_{\mathrm{v}\mathrm{i}\mathrm{a}\mathrm{b}1\mathrm{e}} \frac{\partial u_{i}}{\partial x_{j},\mathrm{a}\mathrm{r}},-\mathrm{i})_{0}\{\mathrm{r}\mathrm{n}_{\mathrm{a}\mathrm{n}\mathrm{s}}^{\mathrm{h}\mathrm{e}}\mathrm{i}_{\mathrm{t}}^{\mathrm{a}}\mathrm{i}_{\mathrm{o}\mathrm{n}\mathrm{f}\mathrm{f}\mathrm{o}\mathrm{m}\mathrm{e}1\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{i}\mathrm{t}\mathrm{y}\mathrm{t}\mathrm{o}\mathrm{p}1\mathrm{a}\mathrm{s}\mathrm{t}\mathrm{i}_{\mathrm{C}}\mathrm{i}_{\mathrm{t}\mathrm{y}\mathrm{v}\mathrm{o}\mathrm{n}\mathrm{M}\mathrm{i}\mathrm{s}\mathrm{e}\mathrm{s}\mathrm{c}}}^{\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{d}\mathrm{e}\mathrm{r}}\mathrm{v}\mathrm{a}\mathrm{t}\mathrm{e}\mathrm{i}\mathrm{s}\mathrm{f}\mathrm{r}\mathrm{a}\mathrm{e}\mathrm{f}\mathrm{f}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{o}\mathrm{t}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}$oritserriosnstensor in Euler

is assumed; if $\sum_{\dot{1},j}S_{ij}S_{ij}\geq\frac{2}{3}\sigma_{s}^{2}$ , the property changes to be plastic ffom elastic, where

$\sigma_{s}$ is the yield point of material that is subject to uniaxial dilatation-compresson. Then

the components of the deviatoric stress are corrected by projecting themselves onto the
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yield surface, $i$ . $e$ . multiplying them by $\frac{1}{\sqrt{\lambda}}.1$ The parameter characterizes the procedure

associated with plastic deformation and is calculated by

$\lambda=\frac{3}{2}\frac{\sum_{ij}S_{ij}S_{ij}}{\sigma_{s}^{2}}$ . (10)

About the governing equations, especially the modeling of ideal plasticity. See [6].

3 Numerical Algorithm

As written in the beginning of previous section, there are many different modelings of

plasticity, while the modeling of elastisity given in the governing equations is rather general.

Therefore, we separate the discretized temporal evolution into two parts. The first part is

the discretized temporal evolution governed by the equations $(1)-(5)$ with $\mathrm{X}=0$ in (4). It

is the temporal evolution governed by the elasticity. The second is that governed by the

equation
$\frac{D}{Dt}S_{\dot{\iota}j}+\lambda S_{\dot{l}j}=0,$ (11)

where we take the evolution caused by plasticity into account. In other words, in the

predictor step we only take the machinery of elasticity into account and the plasticity is

included only in the corrector step.

In the cases of our interest the experience shows that the accuracy of calculation depends

much more on the accuracy of the estimate of numerical flux in the first part than on the

treatment of viscosity in the second part. The treatment of plasticity in the second part

is free from the construction of numerical flux in the first part, and it means that many

different modeling of plasticity can be used. Because of the reason above it is reasonable

to divide the discretized temporal evolution into the two parts. Also in [6], they treat the

discretized temporal evolution dividing them into the two parts.

3.1 Construction of Second Order Accurate Numerical Flux

Then we apply the idea to improve the accuracy of scheme by retroactive characteristics

to the first part. We restrict ourselves into the two dimensional case with usual Descartes

lfrhe (hyper) surface determined by
$\sum_{\mathrm{j}}.S*\cdot j\mathrm{S}.\cdot \mathrm{j}$

$= \frac{2}{3}\sigma_{\theta}^{2}$ i $\mathrm{n}$ the $S_{ij}$-space, which is 3 or 6 dimensional, is

called von Mises surface. It is possible to understand that the plasticity works when the tensor (Sij) grows
to reach the surface. If $\mathrm{X}=0$ in the equation (4), the governing equations $(1)-(5)$ represent only the elastic
motion.
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coordinate $(x, y)$ . The equations $(1)-(5)$ with A $=0$ in (4) is written in the form of conser-
vation law

$U_{t}+F_{x}+G_{y}=0$ , $U=\{$

$p$

$\rho$

$u$

$v$

$S_{xx}$

$S_{yy}$

$S_{xy}$

(12)

and linearized into the following form.

$U_{t}+AU_{x}+BU_{y}=0$ (13)

The matrix $A$ is given as follows.

$A=\{$

$u$ 0 $\rho c^{2}-fS_{y}y$ $-f$Sxy 0 0 0
0 $u$ $\rho$ 0 0 0 0
$\frac{1}{\rho}$ 0 $u$ 0 $- \frac{1}{\rho}$ 0 0
000 $u$ 0 0 $- \frac{1}{\rho}$

00 $- \frac{4}{3}\mu$ $S_{xy}$ $u$ 0 0
00 $\frac{2}{3}\mu$ $-S_{xy}$ 0 $u$ 0
000 $\mathrm{i}(S_{yy}-S_{xx})-\mu 0$ 0 $u$

. (14)

$\mathrm{t}_{\mathrm{o}\mathrm{a}\mathrm{s}\mathrm{s}\mathrm{u}\mathrm{m}\mathrm{e}f=}\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{r}\mathrm{e}f\mathrm{i}\mathrm{s}\mathrm{d}\mathrm{e}\mathrm{t}\mathrm{e}\mathrm{m}^{\mathrm{m}\mathrm{e}\mathrm{d}\mathrm{b}\mathrm{y}f=}\mathrm{i}_{\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{x}}\zeta_{\mathrm{i}\mathrm{s}\mathrm{v}\mathrm{e}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{a}\mathrm{s}\mathrm{i}\mathrm{m}\mathrm{i}\mathrm{l}\mathrm{a}\mathrm{r}\mathrm{m}\mathrm{a}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}}\rho(\frac{\partial\epsilon}{\partial p,\mathrm{g}\mathrm{i}’})_{\rho}\}^{-1},\mathrm{b}\mathrm{u}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{c}\mathrm{a}\mathrm{s}\mathrm{e}.\mathrm{o}\mathrm{f}$

metal material it is enough

We come to the stage to discuss the construction of numerical flux. We assume struc-

tured mesh for the computation. Each cell (finite volume) is numbered $(i,j)$ by a pair of

integers $i$ and $j$ . Each contact is naturally numbered like $(i+ \frac{1}{2},j)$ or $(i,j+2)$ . The contact
$(i+ \frac{1}{2},j)$ is the boundary of neighboring cells $(i,j)$ and $(i+1,j)$ , $(i,j+ \frac{1}{2})$ is that of $(i,j)$

and $(i,j+ 1)$ . To estimate the numerical flux at the contact $(i+ \frac{1}{2},j)$ , we may assume that

the contact is perpendicular to $x$-axis without the loss of generality.

Let $UQ_{j}$ and $U_{+1,j}^{n}\dot{.}$ b$\mathrm{e}$ numerical data of $U$ over a pair of finite volumes $(i,j)$ and

$(i+1,j)$ at the time step $n$ . The size of finite volumes in $x$-direction is $\Delta x_{i}^{n}$ and $\Delta x\mathrm{K}+1$ ,

respectively. To construct the numerical flux $\overline{F}_{i+\frac{1}{2},j}^{n}$ at the contact $(i+ \frac{1}{2},j)$ we consider

the initial value problem

$U_{t}+AU_{x}=0,$ (15)

$U(x, 0)=U_{i}^{n}+ \frac{U_{\dot{l}+1}^{n}-U_{i}^{n}}{(\frac{\Delta_{\mathrm{Z}}+\Delta_{\mathfrak{B}+1}}{2})}(x+\frac{1}{2}\Delta x_{i})$
(16)
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Then we determine $U_{i+\frac{1}{2},j}^{n+\frac{1}{2}}$ by $U_{i+\frac{1}{2},j}^{n+\frac{1}{2}}=U( \frac{w}{2}\Delta t^{n}, \frac{1}{2}\Delta t^{n})$ , using the exact solution to the

initial value problem above, where $w$ is the moving speed in $x$-direction of the contact2
and $\Delta t^{n}$ is the time increment between the time steps $n$ and $n+$ l. Finally $\overline{F}_{i+\frac{1}{2},j}^{n}$ is given

by
$\overline{F}$7 $\frac{1}{2},ji+\frac{1}{2},j=F(\overline{U}^{n+\frac{1}{2}})$ . (17)

Because the problem (15), (16) is linear, we obtain $U_{i+\frac{1}{2},j}^{n+\frac{1}{2}}$ by the following procedure.

The characteristic speeds of the linearized system (15) are equal to the eigenvalues of

matrix $A;c_{1}=u-a$ , $c_{2}=u-b$ , $c_{3}=u$ , $c_{4}=u,$ $c_{5}=u$ , $c_{6}=u+b$, $c_{7}=u+a,$ where $u$ , $a$ ,

$b$ are the $x$-component of velocity of material itself, the longitudinal sound wave, the shear

sound wave, respectively. $A$ is diagonalizable. Then we decompose (15) into the form;

$(\alpha_{i})\iota+$ $\mathrm{c}\cdot(0_{i})_{\mathrm{i}\mathrm{r}}$ $=0$ , $i=1,2,3,4,5,6,7$, (18)

where each $\alpha_{i}$ is a function of $(x, t);\alpha_{i}=\alpha_{i}(x, t)$ , so that $U$ is a linear combination of

some set of linearly independent seven vectors $r_{i}$ , $i=1,2,3$ , 4, 5, 6, 7;

$U=5$ $\alpha_{i}r_{i}$ . (19)
$i$

Then we obtain $U_{i+\frac{1}{2},j}^{n+\frac{1}{2}}$ by

$U^{n+\frac{1}{2}}.= \sum_{i}|+\frac{1}{2},j\alpha_{\dot{l}}(0, \frac{1}{2}(w-)_{i})\Delta t)$
. $r_{i}$ , (20)

where the “initial value” $\alpha_{i}(0, *)$ is naturally given by the initial value of $U$ given by (16).

We easily observe that the conservative difference scheme with the numerical flux de

termined above is of the second order accuracy.

3.2 Switching between Second and First Order Accuracy

If we apply the second order accurate numerical flux given by (15)-(20) everywehere, the

numerical oscilation occurs where the spatial change of gradient of numerical data is large.

To avoid the inconvenience, we have to go down to the first order accuracy at such excep

tional points. Various algorithms to switch the accuracy are proposed. We here apply the

method based on the monotonicity of parabolic spline, which is already discussed in [1].

(See also [2].)

$2\mathrm{W}\mathrm{e}$ assume that the change of normal of the contact is small enough even if the contact moves.
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The discussion is given in the case of numerical flux in $x$ (or i)-direction. The case of

that in $y$ (or $\dot{\mathrm{y}}$)-direction is similar.

Let numerical data of $S_{xx}-p$ be $(S_{xx}-p)_{i-1}^{n}$ ,j’ $(S_{xx}-p)_{i,j}^{n}$ , $(S_{xx}-p)_{i+1,j}^{n}$ , $(S_{xx}-p)_{i+2,j}^{n}$

for each finite volumes $(i-1, j)$ , $(i, /)$ , $(i+1,j)$ , $(i+2,7)$ , respectively. Also assume the size

of finite vlumes are $\Delta x_{i-1}^{n}$ , $\Delta x_{i}^{n}$ , $\Delta x_{i+1}^{n}$ , $\Delta x\mathrm{r}_{+2}$ , respectively. Then we take two parabolic

splines

$p\pm(x)=a\pm x^{2}+b_{\pm}x+c_{\pm}$

satisfying

$\{$

$\{p-(-\frac{1}{-2}(,\Delta x_{i-1}^{n}+\Delta x_{i}^{n}))=(S_{xx}-p)_{i-1}^{n}p-(0)-(S_{xx}-p)_{i}^{n}p-()=(S_{xx}-p)_{i+1_{\prime}j}^{n},j$

$p+(- \frac{1}{2}(\Delta x_{i}^{n}+\Delta x\mathrm{r}_{+1}))=(S_{xx}-p)_{i,j}^{n}$

$p_{+}(0)=(S_{xx}-p)_{i+1,j}^{n}$

$p+( \frac{1}{2}(\Delta x_{i+1}^{n}+\Delta x_{i+2}^{n}))=(S_{xx}-p)_{\dot{\mathrm{a}}+2,j}^{n}$ .

If the both parabolic splines $p_{-}(x)$ , - $\mathrm{M}(\Delta x_{i-1}^{n}+\Delta x\mathrm{p})$ $<x< \frac{1}{2}(\Delta x_{i}^{n}+\Delta x_{\dot{\iota}+1}^{n})$ and $p_{+}(x)$ ,
$- \frac{1}{2}(\Delta x_{i}^{n}+’ x\mathrm{r}_{+1})<x<\frac{1}{2}(\Delta x_{i+1}^{n}+\Delta x_{i+2}^{n})$ are monotone, we take the second order accurate

numerical flux. Otherwise, we go down to the first order accuracy. The first order accurate

numerical flux is given by the same procedure as the second order accurate one. But the

initial condition (16) is replaced by the following.

$U(x, 0)=\{$
$U_{\dot{\iota},j}^{n}$ , $x<0$
$U_{i+1}^{n}$ ,j’ $x>0.$

(21)

The advantage of method is that the decision which accuracy should be taken is very
simple. Just observing the data distribution over the four finite volumes around the contact

concerned, we decide the formula to obtain the numerical flux. It means that we do not

have to include the data from outer stencils $i-$ $1$ , $i+2$ in the main part to calculate the

numerical flux applying the initial value problem (15), (16) or (15), (21). The complexity

of the program coding is almost the same as that in the case of usual first order accurate

Godunov method.

Finally we mention that from theoretical viewpoint we whould have to take the pr0-

cedure to examine the monotonicity of parabolic splines for the seven variables $p$ , $\rho$ , $u$ ,
$v$ , $S_{xx}$ , $S_{yy}$ , $S_{xy}$ . But, from the experience of practical computation, it seems enough to

examine it only for the numerical data of $S_{xx}-p.$
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4 Examples of Computation.

“Wilkins’s flying plate problem” [6] is simulated by our method. In the problem, a $5\mathrm{m}\mathrm{m}$

thick alminium plate (A) that is assumed infinitely wide impacts from the left to another

piece of alminium (B) that is sumed to occupy a half space to the right.

$.5\ldots \mathrm{A}\ldots$

$|_{-}$

$\mathrm{B}$

$..\cdot\cdot$

.

$.\cdot\cdot$

. . .. .

Both the elasticity and plasticity work in the phenomenon. As soon as the collision occurs,

the shockwave is made and propagates from the contact to the left and right. The left

boundary of (A) reflects shockwave changing it into rarefaction wave. The material of

alminium is modeled as follows. The pressure $p=p( \rho)=73.0*(1-\frac{\rho_{0}}{\rho})$ is a function of

the density $\rho$ , where $p$ is measured in GPa and $\rho_{0}=2700\mathrm{k}\mathrm{g}/\mathrm{m}^{3}$ . The sheer modulus $\mu=$

$24.8\mathrm{G}\mathrm{P}\mathrm{a}$. The constant for von Mises criterion is $\sigma_{s}=$ 0.2976GPa. 500(in $x$-direction) $\mathrm{x}$

$10$ (in $y$-direction) cells of the size 0.lmm0.lmm are used in the computation. In x-

direction 50 cells are in the $5\mathrm{m}\mathrm{m}$ thick plate (A) and 450 cells in the half space (B).

The left boundary is treated with the free boundary condition with O.lMPa. The right

boundary treatment is done in the outflow manner, but it has no importance until the

shockwave arrives there. The upper and bottom boudaries are just virtual. At the both

we assume the reflecting boundary condition.

In Fig.l, we show the density in the case of initial collision speed $2\mathrm{k}\mathrm{m}/\mathrm{s}\mathrm{e}\mathrm{c}$ . In the

figure, we compare the first and second order methods. The second order method is what

is introduced in the article. The first order method is usual Godunov scheme, which is

given by numerical flux (17) with (15) and (21). We observe that the second order method

gives separation of two sound waves, the longitudinal and shear, rather well.

5 Concluding Remarks

While the retroactive characteristics are used to construct a modified Riemann problem

whose exact solution gives the numerical flux in the case of compressible Euler flow, they

are rather directly used to determine the numerical flux via $U^{n+\frac{1}{2}}$

$i+ \frac{1}{2},j$

in the case of elastic-

plaetic flow. But the methodology still works well because the nonlinearity is not so

complicated as in the case of compressible Euler equations. It implies that the combination

of retroactive characteristics may be widely applied together with the accuracy switching
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based on parabolic spline criterion.

Beside what is already mentioned in section 3, we mention that numerical boundary

treatment is rather easy in this method, because we are still based on the idea of Godunov

method that are rather physical $i.e$ . that are based on the exact solution to Riemann

solver.
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