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Abstract. Let G C Aut(A) be a discrete group which is exact, that is, admits an
amenable action on some compact space. Then the entropy of an automorphism of
the algebra A does not change by the canonical extension to the crossed product
A x G. This is shown for the topological entropy of an exact C*-algebra A and for
the dynamical entropy of an AFD von Neumann algebra A. These have applications

to the case of transformations on Lebesgue spaces.

1. INTRODUCTION

The notion of the Kolmogoroff-Sinai entropy in the ergodic theory was brought
into the theory of finite von Neumann algebras by Connes-Stgrmer ([10]), as a non-
commutative extension. Replacing the finite trace to a state ¢, it was extended to
general von Neumann algebras and to C*-algebras by Connes-Narnhofer-Thirring
([91). In this paper we call the Connes-Stgrmer enfropy the CS-entropy and the
Connes-Narnhofer-Thirring entropy the CNT-entropy. We denote by H(-) the CS-
entropy and the by hy(-) the CNT-entropy.

In the ergodic theory, we are given a probability space (X, u) together with a mea-
sure preserving nonsingular transformation T' of X. Then we have the abelian von
Neumann algebra L™ (X, ) with the trace 7, induced by u and the automorphism
ar of L%(X, u) induced by 7. In this setting, the Connes-Stgrmer entropy H(ar)
with respect to the trace 7, is nothing but the Kolmogoroff-Sinai entropy h(T).



The noncommutative algebra M is given from this dynamical ststem (X, u,T) by
taking the crossed product M = L*®(X, ) Xq Z. The automorphism a7 is extended
"naturally to the automorphism @r of M, and it preserves the natural extension 7

of 7,. As a logical consequence, the following question was suggested by Stgrmer in
([17]) : Do we have H(at) = h(T) ?
The first positive answer is due to Voiculescu. He showed that
H(at) = h(T) = logn

for the ergodic measure preserving Bernoulli transformation T on the space (X, u),
where X is the product space {1,--- , n}z and the measure u is the product measure

u®Z. Here py, is the equal weights probability measure on the set {1,--- ,n}.

It was an application of the result on his topological entropy ht(-) introduced in
the paper ([20]) for automorphisms of nuclear C*-algebras. After then, Brown [3]
extended the notion to automorphisms of more large class of C*-algebras, that is,

exact C*-algebras.

Let us replace the integer group Z to a discrete group G, and let us replace the
abelian von Neumann algebra L*(X, 4) to a general von Neumann algebra M with a
state u, or a C*-algebra A. Then we have the von Neumann crossed product M XoG

with respect to an action a of G on M with
poag=uy, forall geG

and also we have the C*- crossed product A X, G with respect to an action o of G
on A.

In the case of von Neumann algebras, the state y has the natural extension j to

M x, G which is @-invariant. If an automorphism 6 of M satisfies that
as0 =00y, forallgeG
and
pof=up,

then 8 can be canonically extended to the automorphism 8 of M x4 G, and the

following problem naturally arises :

hu(6) = htz(8) 7



Similarly in the case of C*-algebras, if an automorphism 8 of A satisfies oy = Oy
for all g € G, then it is canonically extended to the automorphism 8 of A x4 G, and

the following problem naturally arises :

ht(6) = ht(@) ?

When G is amenable, known results for these two problems are as follows :

Theorem. [6, 11, 13]. Assume that G is an amenable discrete countable group.
(1) [6, 11]. Let A be a unital ezact C*-algebra and o an action of G on A. If 6 is
an automorphism of A such that a 0 = 0ay for all g € G, then

he(8) = h3(8).

(2) [13]. Let M be an approzimately finite-dimensional von Neumann algebra with
a normal state ¢ and a an action of G on M with ¢ -0y = ¢ for all g € G.

If 8 is an automorphism of M such that ¢ o 0 = ¢ and a0 = Oay for all g € G,
then |

hg(6) = h3(6),
where @ is the canonical extension of ¢ to M X, G.

There are a large class of interesting non amenable discrete groups such as free
groups Fy,,n > 2 and discrete subgroups of connected Lie groups, etc.. . However
each of these nonamenable groups has an amenable action on some compact space
([1, 2, 15]).

A discrete group G has an amenable action on some compact space if and only
if G is ezact in the sense of Kirchberg and Wassermann ([14]), that is, its reduced
group C*-algebra C*(G) is exact. This is first proved by Ozawa in [15].

Here, we report our results which show that the amenability of G is not always
necessary and it is replaced to more large class of groups, that is, exact groups.
2. BASIC NOTATIONS AND TERMINOLOGIES.

Proofs of the main results are given using partly some methods in [4, 5, 6, 7, 13].

Here we only denote some basic notations and terminologies.



2.1. Approximation property and exactness. Here our C*-—algebras are all
separable. Let M be a von Neumann algebra (resp. unital C*-algebra). Then M is
called approzimately finite dimensional if there exists an increasing sequence (N)x
of finite dimensional subalgebras such that U N}, is weakly (resp. norm) dense in
M.

This approximation property is extended in the case of C*-algebras in [14, 21] as

exactness.

A C*-algebra is ezact if there exists a representation 7 of A on a Hilbert space H

and triplets (¢,, B,,¥,), of finite dimensional algebras B,, conpletely positive maps
¢.:A— B, 4, :B, ~ B(H)

such that
| m(a) — %.- @.(a) |0
for alla € A. —

A discrete group G is called ezact if the C*-algebra C;(G) generated by the left

regular representation is exact.

2.2. Entropy. Topological entropy ht(#) is defined for an automorphism 6 of an
exact C*-algebra. CS-entropy H(c) is defined for an automorphism a of a finite von
Neumanh algebra M with a finite trace 7 such that 7-o = 7 and CNT-entropy hy(6)
is defined for an a.utombrphism 0 of a unital C*-algebra A with a state ¢ such that
¢-0=¢. They are both called dynamiéal entropies. CS-entropy H(a) depends on
a finite trace 7 such that 7 - @ = 7 and CNT-entropy h4(8) also depends on a state
¢ such that ¢ - = ¢. Let M be the von Neumann algebra generated by the GNS
representation 74(A). Then such a 6 as ¢ - 6 = ¢ is extended to the automorphism
Gof M na.tﬁrally . If ¢ is a tracial state, then the natural extension ¢ is a trace of

a finite von Neumann algebra M and
H(B) = hy(8).

If -0 = ¢, then t0pological entropy ht(9) and CNT-entropy hy(6) has the following
relation :

he(6) < ht(6).



We refer these [3, 10, 9, 20]

2.2.1. Topological entropy. We refer [3, 20] for definitions and notations about the
topological entropy.

2.2.2. Dynamical entropy. We refer [10, 9] for definitions and notations about the
topological entropy.

2.3. Crossed product. Let A be a unutal C*-algebra (resp. von Neumann al-
gebra), G a discrete countable group and o be an action of G on A, that is a
homomorphism from G to the automorphism group Aut(A) of A. We may assume
that A is acting on a Hilbert space H faithfully. The crossed product A X, G is the
C*-subalgebra (resp. von Neumann subalgebra) of

B(%(G,H)) = B(I*(G)) ® B(H)
generated by m4(A) and Ag, where

Ta(0)€(9) = ag-1(a)é(9), (a € A,g € G,£ €1*(G,H))
and
Aé(h) =€(97"h), (a € Ag€G,Ecl’G H).
Essentially, we use the following representation as in [3, 4, 6, 7, 13, 19] :

Wa(a)Ay = Zet,g‘lt ® at_l(a)a (a€ A, g€@G),
teG

where {€,}stec is the standard matrix units in B(I2(G)).

Since G is discrete, there exists always the conditional expectation F of A xo G
onto 7, (A) such that

E(M\) =0

for all g € G except the unit. If ¢ is a state of A with goay =¢ forall g € G, we
denote the state ¢ o E by ¢ and call it the canonical extension of ¢ to A X, G.

If & € Aut(A) commutes with o, for all ¢ € G, then there exists always an
automorphism 8 € Aut(4 x4 G) such that

6(ma(a)Ag) = ma(8(a)) A, (a € A gei)

We call the 8 the canonical extension of 6.



2.4. Amenability. The notion of amenablity for groups is generalized to amenabil-
ity of actions of groups, that is, a group admits an amenable action on some compact
space (cf. [1, 2, 5, 14]).

For example, the discriptions in [1] and [5] are as follows :

2.4.1. Amenable action. ([5]) :
Let G be a countable discrete group, and let o€ be the action : G = Aut(I®°(G))
given by '

ag (z)(h) =2(g7"h), (c €1°(G), 9,h € ).

Let I1(G,1®°(G)) be the closure of the linear space of finitely supported functions
T : G = I*®(G) with respect to the norm

1Tl =11 IT@)] i (6)-
9

Let us put
s.T(g) = of(T(s7'g)), (s,9 € G).

The action af is amenable if there exist functions T}, € I*(G,1°°(G)) such that
(1) Ty, is nonnegative (i.e. T,(g9) > 0, (g9 € G)),
(2) finitely supported,
(3) £, Ta(9) = Lim(g) and
(4) ||8. T = Tpl|l1 = O for all s € G.

2.4.2. Amenable at infinity. ([1]) : '
A group G is amenable at inﬁnity if and only if there exists a sequence (gn)n>1 of
nonnegative functions on G x G with support in a tube such that
a) for each n and each s,

> gnls,t) =1,
t

b) uniformly on tubes,

lim ) gn(s, u) - gn(t,u)| = 0.
ucG

Here, a tube means the set {(s,t) : s~!t € F} for some finite suset F of G.



2.4.3. Eguivalence. These two notions of 3.4.1 and 3.4.2 are equivalent. In fact, let
(Ta(t)(s) = gn(s7",5711)
for all 5,t € G, then conditions in one side are implied by the other side.

A group G is exact if G admits an amenable action on a compact space ([15])
which is equivalent to that G is amenable at infinity ([1]) and also it is equivalent

to that o€ is amenable.

2.4.4. Typical exzamples of eract groups.
(1) Amenable groups.
(2) Free groups.
(8) Discrete subgroups of connected Lie groups.
(4) Subgroups, extensions, free products of the above groups.

(5) Quotients by classical amenable groups

3. MAIN RESULTS

Our results are followings :

3.1. Theorem. Let A be a unital ezact C*-algebra, G an ezact discrete countable

group, and a an action of G on A.
If B € Aul(A xq G) satisfies B(Ag) = Ag for all g € G and B(74(A)) = ma(A),
then
hb(8) = ht (B, (a)).
Here m, is the representation of A and X is the unitary representation of G such
that A xo G is generated by {n(A), A\g}.

3.2. Remark. We have more general result on the topological entropy. In fact, by
replacing the condition that

B(g) =Xy forall ge@G

to the condition that
B(Xg) = Aa
we have a similar result in [7]. This gives an application to the proof of the main

theorem in [12].



3.3. Theorem. Let M be an approrimately finite-dimensional von Neumann alge-
bra with a normal state ¢, G an ezact discrete countable group, and o an action of
G on M with

p-ag=¢ forall geG.

If 0 is an automorphism of M such that ¢ 00 = ¢ and
agd =0a, forall gegG,

then
he(8) = hy(8),
where ¢ is the canonical extension of ¢ to M x, G.

3.4. Proof. Proofs for these results are in [8]. In [8], we adopt as exactness of the

group G the amenability of the canonical action o€ in [5]. a
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