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FACTORIZATION AND HAAGERUP TYPE NORMS
ON OPERATOR SPACES
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This is joint work with M.Nagisa (Chiba Univ.). The problem of
the factorization through a Hilbert space for a bounded linear map
was considered in Banach space theory and its study was started by
Grothendieck [7]. Let X and Y be Banach spaces. It is called that
T : X — Y factors through a Hilbert space if there exist a Hilbert
space H and bounded linear maps a: X — H, b: H — Y such that

T = ba.
T
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We note that given T : X — Y, if T : X — Y** factors though
a Hilbert space H then T itself factors through a Hilbert space which
is a closed subspace of H. So it is essential to consider the problem in
case that Y is a dual space.

Grothendieck introduced the norm || || on the algebraic tensor prod-
uct X ® Y in [7] by

Il = inf{smp {3 £ @) [0 )}

where the supremurn is taken over all f € X*, g € Y* with || f||, |lg]| < 1
and the infimum is taken over all representation u = Y & | T; ® ¥; €
X®Y. In this note, we denote by X®,Y the completion of X ®Y by the
norm || ||o, and denote by || ||o+ the norm of the dual space (X ®, Y)*.
He showed that T : X — Y™ factors through a Hilbert space if and
only if T € (X®gY)* by the natural identification (T'(z),y) = T(z®y)
for z € X,y € Y, moreover inf{||b|||la]| | T = ba} = ||T|| -

In [15], Lindenstrauss and Pelczynski studied a bounded linear map
T : X — Y with the condition:

X
a




given any n and n x n matrices [a;;] € M(C) with ||[a;;]|| < 1, then

DI aT@) < CY llasl* for any zy,--- 2
i=1 j=l1 j=1

We consider T® a: X ® 2 — Y ® £2 for T : X — Y and define
anorm || 30 7 ® ef|? = Y0, ||#i|>. Then the above condition is
equivalent to ||T ® ¢ < C||a| for all a : £2 —> £2.

Their theorems are summarized for a bounded linear map T : X —
Y™ as follows: ,

The following are equivalent:

(1) IT®«al < |le|| forall a: £2 — £2 and n € N,

(2) [|T||a- < 1.

(3) T factors through a Hilbert space K by bounded linear maps a :
X — K and b: K — Y™ such that

ie, T=ba with [all||b]<1.

In C*-algebra theory and operator space theory, many important
factorization theorems have been proved.

Theorem 1. (Haagerup, [8]) Suppose that A and B are C*-algebras,
and T : A — B* is a bounded linear map. Then T factors through a
Hilbert space such that T = ba with |T|| < 2||b|||la]|-

We recall the column (resp. row) Hilbert space #.(resp. H,) for a
Hilbert space 7. If £ = [£;] € M,.(H), then we define a map C,,(§) by

Ca€) 1 C* 3 [Ar,..., An) — D Aibili € H™
j=1

and denote the column matrix norm by ||| = ||Cn(£)|]. This operator
space structure on H is called the column Hilbert space and denoted
by H..

To consider the row Hilbert space, let H be the conjugate Hilbert
space for H. We define a map R, (¢) by

Ro(€):H 3 [y, 70) — [Z(&jlm‘)]i eC

and the row matrix norm by ||£||, = ||R.(§)||- This operator space
structure on # is called the row Hilbert space and denoted by ..
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Let A and B be operator spaces. The Haagerup norm [4] on A ® B
is defined by

o = el sl 0= D @),

where [21,...,2,] € Mi,(A) and [y, ..., yn)' € M, 1(B).

Theorem 2. ( Effros-Ruan, [5]) Suppose that A and B are operator
spaces, and T : A — B* is a completely bounded map. Then T
factors through a row Hilbert space H, if and only if T € (A ® B)*
with ||T||p« = inf{||b||esl|allee | T = ba}.

Theorem 3. ( Pisier-Shlyakhtenko, [21]) Suppose that A and B
are C*-algebras, and T : A — B* is a completely bounded map. If
one of the algebras A, B is ezact, then T factors though H. ® K, the
direct sum of the column and row Hilbert spaces.

These factorizations form that T

B*
\ / ;
K
On the other hand, in [12], it has been shown that the following

factorization of a linear map 7 from £#* to £* in connection with a
Schur multiplier:

A
a

el Taeoo

g —

where o' is the transposed map of a.

Motivated by this factorization, the aim of this note is to explain a
square factorization theorem of a bounded linear map through a pair
of Hilbert spaces H between an operator space and its dual space [13].

More precisely, let us suppose that A and B are operator spaces
in B(#) and denote by C*(A) the C*-albebra in B(#) generated by
A. We define the numerical radius Haagerup norm of an element
u€ AQ Bby

.ol _ =
lullun = inf{Z {21, 2n, 7, - wall? =D 2 ® i}

=1
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By the identity
-1
nf é_aj_zi_é — JaB (%)

A>0
for positive real numbers o, 8 > 0, the Haagerup norm can be rewritten
as

: 1 * * .
lulln = inf{S (s, -, 2allI* + M7 - -5 9217 Tu = Z_;w ® yi}.
Then it is easy to check that

1
sllulln < ljullwn < flulls

and ||u||yn is & norm.
We also define a norm of an element v € C*(A4) ® C*(A) by

lullwn = inf{||[z1, ..., @l IPw(e) | u =) o}os; ® 75},

where w(c) is the numerical radius norm of a = [a;] in M,(C).
A ®@wh A is defined as the closure of A® A in C*(A) @wr C*(A).

Theorem 4. Let A be an operator space in B(H). Then A ®yup A =
AQwy A.

Let a : C*(A) — H. be a completely bounded map. We define
a map d : C*(4) — H by d(z) = a(z*) . It is not hard to check
that d : C*(4) — H, is completely bounded and ||| = ||d||s when
we introduce the row Hilbert space structure to . In this paper, we
define the adjoint map a* of a by the transposed map of d, that is,
dt: (H)r)* = (H*)y)* = (H*). = H, — C*(A)* (cf. [5]). More
precisely, we define

(@*(n),z) = (n,d(z)) = (nla(z*))  for  neH,zeC(A).

Now we can state a square factorization theorem.

Theorem 5. Suppose that A is an operator sp‘ace in B(H), and that
T:Ax A— C is bilinear. Then the following are equivalent:

(1) [|T]|wnx < 1.

(2) There ezists a state py on C*(A) such

IT(2,)| < po(zz*)3po(y*y)? for z,y € A.
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(3) There exist a x-representation 7 : C*(A) — B(K), a unit vector
£ € K and a contraction b € B(K) such that

T(z,y) = (r(z)bn(y)§ |€)  forz,y € A.

(4) There ezist an exstension T' : C*(A) — C*(A)* of T and com-
pletely bounded maps a : C*(A) — K., b: K. — K. such that

C*(4) ——.C*(A)*

K. -—b—) Ke

i.e., T' = a*ba with ||a||%||b]ls < 1.

Remark 6. (i) If we replace the linear map (T'(z),y) = T(z,y) with
(z,T(y)) = T(z,y), then we have a factorization of 7' through a pair
of the row Hilbert spaces H,. More precisely, the following condition
(4)' is equivalent to the above conditions.

(4)' There exist an extension T' : C*(A) — C*(A)* of T and com-
pletely bounded maps a : C*(4) — K,, b : K, — K, such
that |

C*(4) —Z C*(A)*

LT

’Cr -—b—) IC,-
ie, T'=da%ba with [a|3]blle <1.

(ii) Let £2 be an n-dimensional Hilbert space with the canonical
basis {ei1,...,es}. Given a: £2 — 2 with a(e;) = D ; aijei, we set
the map & : £2 — £2" by é(e;) = Y, oi;€; where {&} is the dual
basis. For notational convenience, we shall also denote & by a. For
ST ®e € C*(A) ® £, we define a norm by || 371, 2; ® &l =
llz1,...,zn]t||- Let T : C*(A) — C*(A)* be a bounded linear map.
Consider T @ o : C*(A) ® £2 — C*(A)* ® £2* with a numerical radius
type norm w(:) given by

wT®a)=sup{|(d zi®e,T@® D z:®e)) || )z @el <1}



Then we have
w(T ® o) l
w(e)
since T(Q_zioy; ®z;) = O zi ®e, T® a(d 7 Qey)).
(iii) Let u = Y z; ® y; € C*(A) ® C*(A). It is straightfoward from
Theorem 2.3 that

sup{———" | a: &2 — £, n €N} = [|Tlur,

l|w/lwh = sup w(z o(:)be(yi))

where the supremum is taken over all *- preserving completely contrac-
tions ¢ and contractions b.

We also define a variant of the numerical radius Haagerup norm of
an element u € A® B by

ol - ~
lellue = inf{Z @1, -+ 2 Yo vl P =Dz @ i},

where [Z1,...,Zn, Y1,.-.,Un]" € My, 1(A+ B), and denote by A ®yn B
the completion of A ® B with the norm || ||wa-

We remark that || ||,5 and || ||wa are not equivalent, since || || in
[10] is equivalent to || ||wn and || ||» and || ||» are not equivalent [10],
[14].

In the next theorem, we use the transposed map a* : (K.)* —
C*(A)* of a : C*(A)* — K. instead of a* : K. —> C*(A)*. We note
that (K.)* = (K), and the relation o and a® is given by

(a"(7), ) = (7, a(2)) = (Ala(z))x  for 7j € K,z € C*(4).

Theorem 7. Suppose that A is an operator space in B(H), and that
T:Ax A—> C is bilinear. Then the following are quivalent:

(1) ([T {fwnr+ < 1.
(2) There exists a state py on C*(A) such that

IT(z,9)| < polz*z)7po(y’y)?  for z,y € A.

(3) There exist a x-representation 7 : C*(A) — B(K), a unit vector
£ € K and a contraction b : K — K such that

T(s,y) = (br(y)¢ | 7@ forz,y € A
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(4) There ezist a completely bounded map a : A — K, and a bounded
map b: K. — (K.)* such that

A —Z, A

]Cc —b> (]Cc)*

ie., T=a'ba with |a|3]b]<1.

Now we can describe the above theorems in terms of Banach space
theory.

Let X be a Banach space. Recall that the minimal quantization
Min(X) of X. Let Qx be the unit ball of X*, that is, Qx = {f €
X*| |fl] < 1}. For [zi;] € Mp(X), ||[%ij]||min is defined by

lziilllmin = sup{||Lf (zis)]ll | f € Qx}-

Then Min(X) can be regarded as a subspace in the C*-algebra C({Qx)
of all continuous functions on the compact Hausdorff space {2x. Here
we define a norm of an element u € X ® X by

n n

lullor = inf{sup{(3_1F @)D (Y If @)},

=1 =1

where the supremum is taken over all f € X* with ||f|] < 1 and the
infimum is taken over all representation v =) | z; ® ¥;.

Let T : X — X* be a bounded linear map. We consider the map
TRa: XQL — X*®£" and define a norm for 3"z, @e; € X ® £2
by

1Yz @ el =sup{(}_ I£(z:)")7 | f € Qx}.

We note that, given z € X, z* is regarded as (z*, f) = f(z) for f € X*
in the definition of w(T ® «), that is,

wT®a)=sup{|(d z®e;TR®x) z:®e))||[|D z®e| <1}

Finally we can state the following result which can be seen as a numer-
ical radius norm version of Grothendieck, Lindenstrauss-Pelczynski’s.



Corollary 8. Suppose that X is a Banach space, and that T : X —
X* 15 a bounded linear map. Then the following are quivalent:
(1) wT®a) <w(a) foralla: 2 — L2 andn € N,
(2) |T]}wrr < 1.
(3) T factors through a Hilbert space K and its dual space K* by
bounded linear maps a: X — K and b: K — K* as follows:

X—T—->X*

K — K*
b
i.e., T=a'ba with |a]?|p] <1

(4) T has an eztention T' : C(Qx) — C(Qx)* which factors through
a pair of Hilbert spaces IC by bounded linear mapsa : C(Qx) — K
and b: K — K as follows:

C(%) == Cx)*

L

ie, T'=a*ba with |al?b]| <1

REFERENCES

(1] T. Ando, On the structure of operators with numerical radius one, Acta Sci.
Math. (Szeged) 34 (1973), 11-15.

[2] T. Ando and K. Okubo, Induced norms of the Schur multiplier operator, Linear
Algebra Appl. 147 (1991), 181-199.

(3] D. Blecher and V. Paulsen, Tensor products of operator spaces, J. Funct. Anal.
99 (1991), 262-292.

[4] E. Effros and A. Kishimoto, Module maps and Hochschild-Johnson cohomology,
Indiana Univ. Math. J. 36 (1987), 257-276.

[5] E. Effros and Z. J. Ruan, Self-duality for the Haagerup tensor product and
Hilbert space factorization, J. Funct. Anal. 100 (1991), 257-284.

[6] E. Effros and Z. J. Ruan, Operator spaces, London Math. Soc. Mono. New
series 23, Oxford Univ. Press, 2000.

[7] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels
topologiques, Bol. Soc. Mat. Sdo-Paulo 8 (1956), 1-79.

(8] U. Haagerup, The Grothengieck inequality for bilinear forms on C*-algebras,
Adv. in Math. 56 (1985), 93-116.

(9] U. Haagerup and T. Itoh, Grothendieck type norms for bilinear forms on C*-
algebras, J. Operator Theory 34 (1995), 263-283.

[10] T. Itoh, The Haagerup type cross norm on C*-algebras, Proc. Amer. Math.

Soc. 109 (1990), 689-695.

27



28

[11] T. Itoh and M. Nagisa, Schur products and module maps on B(H), Publ. RIMS
Kyoto Univ. 36 (2000), 253-268.

[12] T. Itoh and M. Nagisa, Numerical Radius Norm for Bounded Module Maps
and Schur Multipliers, to appear in Acta Sci. Math. (Szeged).

[13] T. Itoh and M. Nagisa, The numerical radius Haagerup norm and Hilbert space
square factorizations, preprint.

[14] A. Kumar and A. M. Sinclair, Equivalence of norms on operator space tensor
products of C*-algebras, Trans. Amer. Mat. Soc. 350 (1998), 2033-2048.

[15] J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in L, spaces
and their applications, Studia Math. 29 (1968), 275-326.

[16] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Stud-
ies in Adv. Math. 78, Cambridge Univ. Press, 2002.

[17] G. Pisier, Factorization of linear operators and the Geometry of Banach spaces,
CBMS(Regional conferences of the A.M.S.) 60, (1986).

[18] G. Pisier, The operator Hilbert space OH, complez interpolation and tensor
norms, Memoirs Amer. Math. Soc. 122, No.585(1996).

[19] G. Pisier, Similarity problems and completely bounded maps, 2nd. expanded
edit., Lecture Notes in Math. 1618, Springer-Verlag 2001.

[20] G. Pisier, Introduction to operator space theory, London Math.Soc. Lecture
Note Series 294, Cambridge Univ. Press, 2003.

[21] G. Pisier and D. Shlyakhtenko, Grothendieck’s theorem for operator spaces,
Invent. Math. 150(2002), 185-217.

[22] C. Y. Suen, Induced completely dbounded norms and inflated Schur product,
Acta Sci. Math. (Szeged) 66 (2000), 273-286.



