FACTORIZATION AND HAAGERUP TYPE NORMS ON OPERATOR SPACES

群馬大学・教育学部 伊藤 隆 (Takashi Itoh) Dept.of Math., Fac. of Edu., Gunma University

This is joint work with M.Nagisa (Chiba Univ.). The problem of the factorization through a Hilbert space for a bounded linear map was considered in Banach space theory and its study was started by Grothendieck [7]. Let X and Y be Banach spaces. It is called that $T: X \longrightarrow Y$ factors through a Hilbert space if there exist a Hilbert space \mathcal{H} and bounded linear maps $a: X \longrightarrow \mathcal{H}$, $b: \mathcal{H} \longrightarrow Y$ such that T = ba.

We note that given $T: X \longrightarrow Y$, if $T: X \longrightarrow Y^{**}$ factors though a Hilbert space \mathcal{H} then T itself factors through a Hilbert space which is a closed subspace of \mathcal{H} . So it is essential to consider the problem in case that Y is a dual space.

Grothendieck introduced the norm $|| ||_H$ on the algebraic tensor product $X \otimes Y$ in [7] by

$$||u||_H = \inf\{\sup\{(\sum_{i=1}^n |f(x_i)|^2)^{\frac{1}{2}}(\sum_{i=1}^n |g(y_i)|^2)^{\frac{1}{2}}\}\}$$

where the supremum is taken over all $f \in X^*, g \in Y^*$ with $||f||, ||g|| \le 1$ and the infimum is taken over all representation $u = \sum_{i=1}^n x_i \otimes y_i \in X \otimes Y$. In this note, we denote by $X \otimes_{\alpha} Y$ the completion of $X \otimes Y$ by the norm $|| ||_{\alpha}$, and denote by $|| ||_{\alpha^*}$ the norm of the dual space $(X \otimes_{\alpha} Y)^*$. He showed that $T: X \longrightarrow Y^*$ factors through a Hilbert space if and only if $T \in (X \otimes_H Y)^*$ by the natural identification $\langle T(x), y \rangle = T(x \otimes y)$ for $x \in X, y \in Y$, moreover inf $\{||b|| ||a|| \mid T = ba\} = ||T||_{H^*}$.

In [15], Lindenstrauss and Pelczynski studied a bounded linear map $T: X \longrightarrow Y$ with the condition:

given any n and $n \times n$ matrices $[a_{ij}] \in \mathbb{M}(\mathbb{C})$ with $||[a_{ij}]|| \leq 1$, then

$$\sum_{i=1}^n \| \sum_{j=1}^n a_{ij} T(x_j) \| \le C \sum_{j=1}^n \| x_j \|^2 \quad \text{for any } x_1, \cdots, x_n.$$

We consider $T \otimes \alpha : X \otimes \ell_n^2 \longrightarrow Y \otimes \ell_n^2$ for $T : X \longrightarrow Y$ and define a norm $\|\sum_{i=1}^n x_i \otimes e_i\|^2 = \sum_{i=1}^n \|x_i\|^2$. Then the above condition is equivalent to $\|T \otimes \alpha\| \leq C \|\alpha\|$ for all $\alpha : \ell_n^2 \longrightarrow \ell_n^2$.

Their theorems are summarized for a bounded linear map $T: X \longrightarrow Y^*$ as follows:

The following are equivalent:

- (1) $||T \otimes \alpha|| \le ||\alpha||$ for all $\alpha : \ell_n^2 \longrightarrow \ell_n^2$ and $n \in \mathbb{N}$.
- $(2) ||T||_{H^*} \leq 1.$
- (3) T factors through a Hilbert space \mathcal{K} by bounded linear maps $a: X \longrightarrow \mathcal{K}$ and $b: \mathcal{K} \longrightarrow Y^*$ such that

i.e.,
$$T = ba$$
 with $||a|| ||b|| \le 1$.

In C^* -algebra theory and operator space theory, many important factorization theorems have been proved.

Theorem 1. (Haagerup, [8]) Suppose that A and B are C*-algebras, and $T: A \longrightarrow B^*$ is a bounded linear map. Then T factors through a Hilbert space such that T = ba with $||T|| \le 2||b|| ||a||$.

We recall the column (resp. row) Hilbert space $\mathcal{H}_c(\text{resp. }\mathcal{H}_r)$ for a Hilbert space \mathcal{H} . If $\xi = [\xi_{ij}] \in M_n(\mathcal{H})$, then we define a map $C_n(\xi)$ by

$$C_n(\xi):\mathbb{C}^n
i [\lambda_1,\ldots,\lambda_n]\longmapsto [\sum_{j=1}^n\lambda_j\xi_{ij}]_i\in\mathcal{H}^n$$

and denote the column matrix norm by $\|\xi\|_c = \|C_n(\xi)\|$. This operator space structure on \mathcal{H} is called the column Hilbert space and denoted by \mathcal{H}_c .

To consider the row Hilbert space, let $\overline{\mathcal{H}}$ be the conjugate Hilbert space for \mathcal{H} . We define a map $R_n(\xi)$ by

$$R_n(\xi): \overline{\mathcal{H}}^n \ni [\overline{\eta}_1, \dots, \overline{\eta}_n] \longmapsto [\sum_{i=1}^n (\xi_{ij}|\eta_j)]_i \in \mathbb{C}^n$$

and the row matrix norm by $\|\xi\|_r = \|R_n(\xi)\|$. This operator space structure on \mathcal{H} is called the row Hilbert space and denoted by \mathcal{H}_r .

Let A and B be operator spaces. The Haagerup norm [4] on $A\otimes B$ is defined by

$$||u||_h = \inf\{||[x_1,\ldots,x_n]|||[y_1,\ldots,y_n]^t|| \mid u = \sum_{i=1}^n x_i \otimes y_i\},$$

where $[x_1, \ldots, x_n] \in M_{1,n}(A)$ and $[y_1, \ldots, y_n]^t \in M_{n,1}(B)$.

Theorem 2. (Effros-Ruan, [5]) Suppose that A and B are operator spaces, and $T: A \longrightarrow B^*$ is a completely bounded map. Then T factors through a row Hilbert space \mathcal{H}_r if and only if $T \in (A \otimes_h B)^*$ with $||T||_{h^*} = \inf\{||b||_{cb}||a||_{cb} \mid T = ba\}$.

Theorem 3. (Pisier-Shlyakhtenko, [21]) Suppose that A and B are C^* -algebras, and $T: A \longrightarrow B^*$ is a completely bounded map. If one of the algebras A, B is exact, then T factors though $\mathcal{H}_c \oplus \mathcal{K}_r$ the direct sum of the column and row Hilbert spaces.

These factorizations form that

On the other hand, in [12], it has been shown that the following factorization of a linear map T from ℓ^1 to ℓ^{∞} in connection with a Schur multiplier:

$$\begin{array}{ccc}
\ell^1 & \xrightarrow{T} & \ell^{\infty} \\
\downarrow a & & \uparrow a^t \\
\ell^2 & \xrightarrow{b} & \ell^{2^*}
\end{array}$$

where a^t is the transposed map of a.

Motivated by this factorization, the aim of this note is to explain a square factorization theorem of a bounded linear map through a pair of Hilbert spaces \mathcal{H} between an operator space and its dual space [13].

More precisely, let us suppose that A and B are operator spaces in $\mathbb{B}(\mathcal{H})$ and denote by $C^*(A)$ the C^* -albebra in $\mathbb{B}(\mathcal{H})$ generated by A. We define the **numerical radius Haagerup norm** of an element $u \in A \otimes B$ by

$$||u||_{wh} = \inf\{\frac{1}{2}||[x_1,\ldots,x_n,y_1^*,\ldots,y_n^*]||^2 \mid u = \sum_{i=1}^n x_i \otimes y_i\}.$$

By the identity

$$\inf_{\lambda > 0} \frac{\lambda \alpha + \lambda^{-1} \beta}{2} = \sqrt{\alpha \beta} \tag{*}$$

for positive real numbers $\alpha, \beta \geq 0$, the Haagerup norm can be rewritten as

$$||u||_h = \inf\{\frac{1}{2}(||[x_1,\ldots,x_n]||^2 + ||[y_1^*,\ldots,y_n^*]||^2) \mid u = \sum_{i=1}^n x_i \otimes y_i\}.$$

Then it is easy to check that

$$\frac{1}{2}||u||_h \le ||u||_{wh} \le ||u||_h$$

and $||u||_{wh}$ is a norm.

We also define a norm of an element $u \in C^*(A) \otimes C^*(A)$ by

$$||u||_{Wh} = \inf\{||[x_1,\ldots,x_n]^t||^2 w(\alpha) \mid u = \sum x_i^* \alpha_{ij} \otimes x_j\},$$

where $w(\alpha)$ is the numerical radius norm of $\alpha = [\alpha_{ij}]$ in $M_n(\mathbb{C})$. $A \otimes_{Wh} A$ is defined as the closure of $A \otimes A$ in $C^*(A) \otimes_{Wh} C^*(A)$.

Theorem 4. Let A be an operator space in $\mathbb{B}(\mathcal{H})$. Then $A \otimes_{wh} A = A \otimes_{Wh} A$.

Let $a: C^*(A) \longrightarrow \mathcal{H}_c$ be a completely bounded map. We define a map $d: C^*(A) \longrightarrow \overline{\mathcal{H}}$ by $d(x) = \overline{a(x^*)}$. It is not hard to check that $d: C^*(A) \longrightarrow \overline{\mathcal{H}}_r$ is completely bounded and $||a||_{cb} = ||d||_{cb}$ when we introduce the row Hilbert space structure to $\overline{\mathcal{H}}$. In this paper, we define the adjoint map a^* of a by the transposed map of d, that is, $d^t: ((\overline{\mathcal{H}})_r)^* = (\mathcal{H}^*)_r)^* = (\mathcal{H}^{**})_c = \mathcal{H}_c \longrightarrow C^*(A)^*$ (c.f. [5]). More precisely, we define

$$\langle a^*(\eta), x \rangle = \langle \eta, d(x) \rangle = (\eta | a(x^*))$$
 for $\eta \in \mathcal{H}, x \in C^*(A)$.

Now we can state a square factorization theorem.

Theorem 5. Suppose that A is an operator space in $\mathbb{B}(\mathcal{H})$, and that $T: A \times A \longrightarrow \mathbb{C}$ is bilinear. Then the following are equivalent:

- $(1) ||T||_{wh^*} \le 1.$
- (2) There exists a state p_0 on $C^*(A)$ such

$$|T(x,y)| \le p_0(xx^*)^{\frac{1}{2}}p_0(y^*y)^{\frac{1}{2}}$$
 for $x, y \in A$.

(3) There exist a *-representation $\pi: C^*(A) \longrightarrow \mathbb{B}(\mathcal{K})$, a unit vector $\xi \in \mathcal{K}$ and a contraction $b \in \mathbb{B}(\mathcal{K})$ such that

$$T(x,y) = (\pi(x)b\pi(y)\xi \mid \xi)$$
 for $x,y \in A$.

(4) There exist an extension $T': C^*(A) \longrightarrow C^*(A)^*$ of T and completely bounded maps $a: C^*(A) \longrightarrow \mathcal{K}_c$, $b: \mathcal{K}_c \longrightarrow \mathcal{K}_c$ such that

$$C^*(A) \xrightarrow{T'} C^*(A)^*$$

$$\downarrow a \qquad \qquad \uparrow a^*$$

$$\mathcal{K}_c \longrightarrow \mathcal{K}_c$$

i.e., $T' = a^*ba$ with $||a||_{cb}^2 ||b||_{cb} \le 1$.

Remark 6. (i) If we replace the linear map $\langle T(x), y \rangle = T(x, y)$ with $\langle x, T(y) \rangle = T(x, y)$, then we have a factorization of T through a pair of the row Hilbert spaces \mathcal{H}_r . More precisely, the following condition (4)' is equivalent to the above conditions.

(4)' There exist an extension $T': C^*(A) \longrightarrow C^*(A)^*$ of T and completely bounded maps $a: C^*(A) \longrightarrow \mathcal{K}_r$, $b: \mathcal{K}_r \longrightarrow \mathcal{K}_r$ such that

$$C^*(A) \xrightarrow{T'} C^*(A)^*$$

$$\downarrow \qquad \qquad \uparrow_{a^*}$$

$$\kappa_r \xrightarrow{b} \kappa_r$$
i.e., $T' = a^*ba$ with $||a||_{cb}^2 ||b||_{cb} \leq 1$.

(ii) Let ℓ_n^2 be an n-dimensional Hilbert space with the canonical basis $\{e_1,\ldots,e_n\}$. Given $\alpha:\ell_n^2\longrightarrow\ell_n^2$ with $\alpha(e_j)=\sum_i\alpha_{ij}e_i$, we set the map $\dot{\alpha}:\ell_n^2\longrightarrow\ell_n^2$ by $\dot{\alpha}(e_j)=\sum_i\alpha_{ij}\bar{e}_i$ where $\{\bar{e}_i\}$ is the dual basis. For notational convenience, we shall also denote $\dot{\alpha}$ by α . For $\sum_{i=1}^n x_i\otimes e_i\in C^*(A)\otimes\ell_n^2$, we define a norm by $\|\sum_{i=1}^n x_i\otimes e_i\|=\|[x_1,\ldots,x_n]^t\|$. Let $T:C^*(A)\longrightarrow C^*(A)^*$ be a bounded linear map. Consider $T\otimes\alpha:C^*(A)\otimes\ell_n^2\longrightarrow C^*(A)^*\otimes\ell_n^2^*$ with a numerical radius type norm $w(\cdot)$ given by

$$w(T \otimes \alpha) = \sup\{|\langle \sum x_i^* \otimes e_i, T \otimes \alpha(\sum x_i \otimes e_i)\rangle| \mid \|\sum x_i \otimes e_i\| \leq 1\}.$$

Then we have

$$\sup\{\frac{w(T\otimes\alpha)}{w(\alpha)}\mid\alpha:\ell_n^2\longrightarrow\ell_n^2,\ n\in\mathbb{N}\}=\|T\|_{wh^*},$$

since $T(\sum x_i^* \alpha_{ij} \otimes x_j) = \langle \sum x_i^* \otimes e_i, T \otimes \alpha(\sum x_i \otimes e_i) \rangle$.

(iii) Let $u = \sum x_i \otimes y_i \in C^*(A) \otimes C^*(A)$. It is straightforward from Theorem 2.3 that

$$||u||_{wh} = \sup w(\sum \varphi(x_i)b\varphi(y_i))$$

where the supremum is taken over all *- preserving completely contractions φ and contractions b.

We also define a variant of the numerical radius Haagerup norm of an element $u \in A \otimes B$ by

$$||u||_{wh'} = \inf\{\frac{1}{2}||[x_1,\ldots,x_n,y_1,\ldots,y_n]^t||^2 \mid u = \sum_{i=1}^n x_i \otimes y_i\},$$

where $[x_1, \ldots, x_n, y_1, \ldots, y_n]^t \in M_{2n,1}(A+B)$, and denote by $A \otimes_{wh'} B$ the completion of $A \otimes B$ with the norm $\| \cdot \|_{wh'}$.

We remark that $\| \|_{wh}$ and $\| \|_{wh'}$ are not equivalent, since $\| \|_{h}$ in [10] is equivalent to $\| \|_{wh'}$ and $\| \|_{h}$ and $\| \|_{h}$ are not equivalent [10], [14].

In the next theorem, we use the transposed map $a^t: (\mathcal{K}_c)^* \longrightarrow C^*(A)^*$ of $a: C^*(A)^* \longrightarrow \mathcal{K}_c$ instead of $a^*: \mathcal{K}_c \longrightarrow C^*(A)^*$. We note that $(\mathcal{K}_c)^* = (\overline{\mathcal{K}})_r$ and the relation a and a^t is given by

$$\langle a^t(\bar{\eta}), x \rangle = \langle \bar{\eta}, a(x) \rangle = (\bar{\eta} | \overline{a(x)})_{\overline{\mathcal{K}}} \quad \text{ for } \bar{\eta} \in \overline{\mathcal{K}}, x \in C^*(A).$$

Theorem 7. Suppose that A is an operator space in $\mathbb{B}(\mathcal{H})$, and that $T: A \times A \longrightarrow \mathbb{C}$ is bilinear. Then the following are quivalent:

- $(1) ||T||_{wh'^*} \le 1.$
- (2) There exists a state p_0 on $C^*(A)$ such that

$$|T(x,y)| \leq p_0(x^*x)^{\frac{1}{2}}p_0(y^*y)^{\frac{1}{2}} \quad \text{ for } x,y \in A.$$

(3) There exist a *-representation $\pi: C^*(A) \longrightarrow \mathbb{B}(\mathcal{K})$, a unit vector $\xi \in \mathcal{K}$ and a contraction $b: \mathcal{K} \longrightarrow \overline{\mathcal{K}}$ such that

$$T(x,y) = (b\pi(y)\xi \mid \overline{\pi(x)\xi})_{\overline{K}} \quad \text{for } x,y \in A.$$

(4) There exist a completely bounded map $a: A \longrightarrow \mathcal{K}_c$ and a bounded map $b: \mathcal{K}_c \longrightarrow (\mathcal{K}_c)^*$ such that

$$A \stackrel{T}{\longrightarrow} A^*$$
 $\downarrow \qquad \qquad \uparrow_{a^t}$
 $\mathcal{K}_c \stackrel{D}{\longrightarrow} (\mathcal{K}_c)^*$
 $\downarrow i.e., \quad T = a^tba \quad with \quad ||a||_{cb}^2 ||b|| \leq 1.$

Now we can describe the above theorems in terms of Banach space theory.

Let X be a Banach space. Recall that the minimal quantization $\operatorname{Min}(X)$ of X. Let Ω_X be the unit ball of X^* , that is, $\Omega_X = \{f \in X^* | \|f\| \leq 1\}$. For $[x_{ij}] \in M_n(X)$, $\|[x_{ij}]\|_{\min}$ is defined by

$$||[x_{ij}]||_{\min} = \sup\{||[f(x_{ij})]|| \mid f \in \Omega_X\}.$$

Then $\operatorname{Min}(X)$ can be regarded as a subspace in the C^* -algebra $C(\Omega_X)$ of all continuous functions on the compact Hausdorff space Ω_X . Here we define a norm of an element $u \in X \otimes X$ by

$$||u||_{wH} = \inf\{\sup\{(\sum_{i=1}^{n} |f(x_i)|^2)^{\frac{1}{2}}(\sum_{i=1}^{n} |f(y_i)|^2)^{\frac{1}{2}}\}\},$$

where the supremum is taken over all $f \in X^*$ with $||f|| \le 1$ and the infimum is taken over all representation $u = \sum_{i=1}^n x_i \otimes y_i$.

Let $T: X \longrightarrow X^*$ be a bounded linear map. We consider the map $T \otimes \alpha: X \otimes \ell_n^2 \longrightarrow X^* \otimes \ell_n^{2^*}$ and define a norm for $\sum x_i \otimes e_i \in X \otimes \ell_n^2$ by

$$\|\sum x_i \otimes e_i\| = \sup\{(\sum |f(x_i)|^2)^{\frac{1}{2}} \mid f \in \Omega_X\}.$$

We note that, given $x \in X$, x^* is regarded as $\langle x^*, f \rangle = \overline{f(x)}$ for $f \in X^*$ in the definition of $w(T \otimes \alpha)$, that is,

$$w(T\otimes\alpha)=\sup\{|\langle\sum x_i^*\otimes e_i,T\otimes\alpha(\sum x_i\otimes e_i)\rangle|\mid\|\sum x_i\otimes e_i\|\leq 1\}.$$

Finally we can state the following result which can be seen as a numerical radius norm version of Grothendieck, Lindenstrauss-Pelczynski's.

Corollary 8. Suppose that X is a Banach space, and that $T: X \longrightarrow X^*$ is a bounded linear map. Then the following are quivalent:

- (1) $w(T \otimes \alpha) \leq w(\alpha)$ for all $\alpha : \ell_n^2 \longrightarrow \ell_n^2$ and $n \in \mathbb{N}$.
- $(2) ||T||_{wH^*} \le 1.$
- (3) T factors through a Hilbert space K and its dual space K^* by bounded linear maps $a: X \longrightarrow K$ and $b: K \longrightarrow K^*$ as follows:

$$\begin{array}{ccc} X & \xrightarrow{T} & X^* \\ a \downarrow & & \uparrow a^t \\ \mathcal{K} & \xrightarrow{b} & \mathcal{K}^* \end{array}$$

i.e.,
$$T = a^t ba$$
 with $||a||^2 ||b|| \le 1$.

(4) T has an extention $T': C(\Omega_X) \longrightarrow C(\Omega_X)^*$ which factors through a pair of Hilbert spaces K by bounded linear maps $a: C(\Omega_X) \longrightarrow K$ and $b: K \longrightarrow K$ as follows:

$$C(\Omega_X) \stackrel{T'}{\longrightarrow} C(\Omega_X)^*$$
 $\downarrow \qquad \qquad \uparrow_{a^*}$
 $\mathcal{K} \stackrel{}{\longrightarrow} \mathcal{K}$
 $i.e., \quad T' = a^*ba \quad with \quad \|a\|^2 \|b\| \leq 1.$

REFERENCES

- [1] T. Ando, On the structure of operators with numerical radius one, Acta Sci. Math. (Szeged) 34 (1973), 11-15.
- [2] T. Ando and K. Okubo, *Induced norms of the Schur multiplier operator*, Linear Algebra Appl. 147 (1991), 181–199.
- [3] D. Blecher and V. Paulsen, Tensor products of operator spaces, J. Funct. Anal. 99 (1991), 262-292.
- [4] E. Effros and A. Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiana Univ. Math. J. 36 (1987), 257–276.
- [5] E. Effros and Z. J. Ruan, Self-duality for the Haagerup tensor product and Hilbert space factorization, J. Funct. Anal. 100 (1991), 257-284.
- [6] E. Effros and Z. J. Ruan, *Operator spaces*, London Math. Soc. Mono. New series 23, Oxford Univ. Press, 2000.
- [7] A. Grothendieck, Résumé de la théorie métrique des produits tensoriels topologiques, Bol. Soc. Mat. São-Paulo 8 (1956), 1-79.
- [8] U. Haagerup, The Grothengieck inequality for bilinear forms on C*-algebras, Adv. in Math. 56 (1985), 93-116.
- [9] U. Haagerup and T. Itoh, Grothendieck type norms for bilinear forms on C*-algebras, J. Operator Theory 34 (1995), 263-283.
- [10] T. Itoh, The Haagerup type cross norm on C*-algebras, Proc. Amer. Math. Soc. 109 (1990), 689-695.

- [11] T. Itoh and M. Nagisa, Schur products and module maps on $B(\mathcal{H})$, Publ. RIMS Kyoto Univ. **36** (2000), 253–268.
- [12] T. Itoh and M. Nagisa, Numerical Radius Norm for Bounded Module Maps and Schur Multipliers, to appear in Acta Sci. Math. (Szeged).
- [13] T. Itoh and M. Nagisa, The numerical radius Haagerup norm and Hilbert space square factorizations, preprint.
- [14] A. Kumar and A. M. Sinclair, Equivalence of norms on operator space tensor products of C*-algebras, Trans. Amer. Mat. Soc. 350 (1998), 2033-2048.
- [15] J. Lindenstrauss and A. Pelczynski, Absolutely summing operators in L_p spaces and their applications, Studia Math. 29 (1968), 275–326.
- [16] V. Paulsen, Completely bounded maps and operator algebras, Cambridge Studies in Adv. Math. 78, Cambridge Univ. Press, 2002.
- [17] G. Pisier, Factorization of linear operators and the Geometry of Banach spaces, CBMS(Regional conferences of the A.M.S.) 60, (1986).
- [18] G. Pisier, The operator Hilbert space OH, complex interpolation and tensor norms, Memoirs Amer. Math. Soc. 122, No.585(1996).
- [19] G. Pisier, Similarity problems and completely bounded maps, 2nd. expanded edit., Lecture Notes in Math. 1618, Springer-Verlag 2001.
- [20] G. Pisier, *Introduction to operator space theory*, London Math.Soc. Lecture Note Series 294, Cambridge Univ. Press, 2003.
- [21] G. Pisier and D. Shlyakhtenko, Grothendieck's theorem for operator spaces, Invent. Math. 150(2002), 185-217.
- [22] C. Y. Suen, Induced completely bounded norms and inflated Schur product, Acta Sci. Math. (Szeged) 66 (2000), 273-286.