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1 Introduction

The notion of quantum Markov states was first introduced by Accardi and
Frigerio ([1], [3]), and was further discussed from a somewhat different view-
point by Fannes, Nachtergaele and Werner ([5]). A Markov state by Accardi
and Frigerio is defined on a UHF algebra and is determined by an initial
state and a family of completely positive quasi-conditional expectations How-
ever, thanks to [2|, [3] and also [6], conditional expectations can be used in
place of quasi-conditional expectations. Although Accardi and Frigerio de-
fined their Markov states without translation-invariance, we restrict ourselves
to translation-invariant ones and clarify their fine structure.

In [4] it was implicitly stated that any translation-invariant Markov state
in the sense of [3] is determined by a single conditional expectation (so that
it is u C*-finitely correlated state in [5]), and an explicit form of translation-
invar:ant Markov states was given. In Section 2 we make the relation between
two notions of quantum Markov states more precise and consider the question
concerning the commutativity of local density matrices of a Markov state. In
Section 3 we see explicit form of quantum Markov states due to 4].

2 Characterization of translation-invariant Markov
states

Let A; = My = My(C), the d x d complex matrix algebra, for ¢ € N and
2 be the infinite C*-tensor product @);>, ;. We denote Ay = @), . An for
arbitrary subset A C N. The translation 7 is the right shift on 2A. We write
@1,n) for the localization ¢|21,), and in particular ¢; for n = 1. The following
definition is from [3] with a slight modification.

Definition 2.1 A state ¢ on 2 is called a (quantum) Markov state if for each
n € N there exists a conditional expectation E, from ®4; n41) into 2j; » such
that E,(A1,n+1) D Ajp,n-1 80d @1,n11] = Pj1,0) © En. A Markov state is said to
be translation-invariant if ¢ oy = ¢.



Although the above definition is a bit different from the original one of
Accardi and Frigerio in [3], it is known that both definition are equivalent ([2],
[3] and also [6]).

We assume that ¢ is locally faithful, i.e. ¢, is faithful for all n € N. The
next theorem was implicitly stated in [4]; we here give a proof.

Theorem 2.2 Let ¢ be a state on A. Then the following are equivalent.

(i) ¢ is a translation-invariant Markov state,

(i) There ezists a conditional ezpectation E from Mg ® My into My such
that ¢; o E(I ® A) = ¢1(A) for all A € M, and

P(A1® @A) =(E(AIRE(A® - @ E(An-1® Apn)--+)))
forall Ay,... , A, € My.

Proof. (i) = (i). Assume (ii), and define conditional expectation E, :
Aj1n+1) = A, n €N, by

E.(X® A) = X ® E(A)
for X € Yp1n—1) and A € Ajp n11j- Then for Ay, ..., A, € My,

P(A R ®A,) = ¢10E(ARE(A® Q@ E(An-1®A4,) )
P(A1®  ® Anz ® E(An_1 ® Ay))
= ¢goE, 1(A1® - ® A,)

and

PI®A®  -®A) = ¢oEIRE(ARE(A;® - ®E(A-1®A4,) )
_ = ¢10E(A1®E(A2®---®E(A,,_1®A,,,)---)

= ¢(A1®  ® Ay).
So ¢ is a translation-invariant Markov state.

(i) = (ii). We fix n € N, and define F,_; = v~ ! o E, 0~. This is well
defined. Indeed, for any A € 2j; .1 and B € ¥,

E.I®A)-BRI®'=E,(B®A) =B®I® . E,(I® A).

Hence, E,(I ® A) € Upn. Similarly, we define F; = vy~ o E, o 4"
(1<i<n-—1). Thenfor 1 <i<mnandA,...,A €M, we have

F(A1® - ®4Ay1) = (A® @A 0% FI®*'®A® A1)
= A® - ®A_1®Fi(A®A).
Now, let ¥, denote the set of all conditional expectations F': My ® Mg — My

such that if we define Fj(4; ® --- ® Aip1) = A1 ® -+ @ Ai1 @ F(A; ® Aita),
for Ay,...,Aiy1 € My, then ¢p 0 F; = @i for each 1 < i < n. Then the
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above argument guarantees the non-emptyness of ¥,. Since §,’s are compact
and §; D §3 -, it follows that (), .y~ is not empty. Choose F € Mpen Sn
and define

E(Ai® ®An1) =410 @ A1 ® E(A, ® Ant1)
for Ay, ..., An1 € My Then

¢(A1®---®A,.) — ¢10E10...0E"(A1®...®An)
= ¢1oE(A1®E(4; @ - @ E(As-1® 4,) ),

and |
$p10 E(I® A) = ¢(I @ A) = ¢1(A)
for A € M,. a
The following definition is from [5].

Definition 2.3 A state ¢ on 2 is called a C*-finitely correlated state if there
exist a finite dimensional C*-algebra B, a completely positive map E : My &
B — B and a state p on B such that
p(E(1s® B)) = p(B)
for all B € B and
$A1® ®A,) =p(E(A1®E(A:® - @ E(A, @ I)---)))
for all A,,... ,A, € M,.

Let ¢ be a translation-invariant Markov state, and E be as in (ii) of Theorem
2.2. Weset B = E(M; ® M;) and E = E|M; ® B. Then ¢ is a C*-finitely
correlated state with a triple (B, £, ¢|%B). Hence any translation-invariant
Markov state becomes a C*-finitely correlated state.

Now, let g1, ... , g be minimal central projections of 9B, so that Bg; = M,,
for some d; € N. Let m; be the multiplicity of My, in My. Then

B = @mq, @Mdi

=1

Moreover, we set
k
¢ =P My, ® My,
=1

and let Eg :-My — € be the pinching A — Y5 ¢;Ag;.
The next proposition is included in [4].



Proposition 2.4 There exist positive linear functionals p;; on M., @ My, 1<
i,j < k) such that

k

E = (P idu, ® pij)(Ee ® idm).

i,j=1

We remark that the unitality of E is equivalent to the condition that
@;;1 pij 18 a state on M,,,, ® B for each 1 < i < k. Furthermore, the condition

that ¢, 0o E(I ® B) = ¢1(B) for all B € B is equivalent to the condition that
for B; € My, (1<j<k),

k
Z Yi(@)pi; (Im; ® B;) = ¢5(B;), (1)

where ¢/ = @F, ¥i. Set m; = pij(Im, ® ¢;) and o = ;(g); then the
equation (1) says

Tt o Tk
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The unitality of £ means that the matrix [m;;] is a stochastic matrix. The
faithfullness of E guarantees m;; > 0 for all 1 < 4,5 < k. Hence, {a;} is
uniquely determined by {m;;} from the Perron-Frobenius theorem. So, by (1),
{#:} is also uniquely determined by {p;;}.

By Proposition 2.4, we get the next coroliary.

Corollary 2.5 Let S; and T;; be the density matrices of v; and p;;, respec-
tively. Then the density matriz D, of ¢|21n—1) ® B is

@ Sil ®Ti1i2 ®--- ®ﬂn—1in'

i1, sin

In the above the density matrix D, is taken with respect to the usual trace
on Ay n-1) ® B, ie. the trace having the value 1 for each rank one projection.
If all summands of 8 are of multiplicity one, then the density in the above
corollary is actually the density matrix D, of ¢, .. Hence, the densities D,
are all commuting in this case (see [6]).

Consider the case d = 2. Subalgebras B of M, are M or C®Cor C. If B
is M, or C, any translation-invariant Markov state relative to B is a product
state. If B is C @ C, all summands of B are of multiplicity one. Hence, the
density matrices D,,’s are commuting in this case (see [3]).

The following is the simplest example where the densities {D,} are non-
commuting.

n
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Example 2.6 We set d = 3 and B = C @& C = C(e1; + ea2) + Ceas, where ¢e;;
(1 <i,j < 38) are the matrix unit of M3. Assume that the density matrix of
@f,j::lpij BT OT1a®T01 DTy =A1 DA Bci Dy € Mo M, CeC,
where Al,Ag c Mg, Al,Az 2 0, ’I‘I'(Al + Az) = 1, and Ci, Cy € R+, cp+cy = 1.
We define
4] Tl‘(AQ)
Pi(en + exn) = o + TY(Ay)’ Pa(ess) = & FTE(A7)’

then it is easily seen that the condition (1) is satisfied. In this case, the density
matrix D, of 2}, is

@ Sil ® n1i2 ® v ® 7-'iﬂ—z'l‘-n-—-l ® (:Z-"':n—l1 ® (A1 + A2) @ Tin-12 ® (C]_ + 62))-

ila--- yin—l

So, D,’s are non-commuting if so are A; and A,.

3 Disintegration of quantum Markov states

In this section, we survey the explicit form of Markov states due to [4]. Let ¢ be
a translation-invariant Markov state as in Section 2. We put Q,, = {1,...k},

Q:HQ,,

neN

and
(1,22, .-+ yZn) = {(¥1,Y2,---) € Q| ys = ;5,1 <1 < n}.
We define the mesure v on §2 by
v((z1, %2, 1 n)) = B(de; ® Gy @ o)

n—1
= Qg l I Meiziy -
i=1

Then v is a probability mesure on Q. For an arbitraly element w = (w;,ws,...) €
Q, we set '

%““:del ®me1 ®Md‘,2"'
and the state 1, on B, by
. oo
¢w - 'l/’w; ® ® ﬁw,-w.-.,.u
=1

where ¢; = ¢ /o and pi; = pij/mi;. Let E, : 2 — B, be a completely positive
map defined by

Ew(Al A R---® An) - qw;-AIle Q- ® q“’nA”"q“""
for any A;,...,A, € My, and ¢, = ¥, 0 E,,.



13

Theorem 3.1 Define 2, v and ¢, as above. Then
6= [ duvta).

Proof. Ifw,w' € (zi,...,2,), then

P(AI® - @ An_1)

= Y,(¢z; A1z, ® - @ ¢z, An—14z..)
1 n—1

) : (wf‘l ® ®pxizi+1)(qzxA1qz1 ®: - ® qwn—1Aﬂ—1q=vn—1)

i=1

v((z1,-.. ,Zn)
= ¢u(A® L ®A _.1)

for any Alh, ..., An_1 € My. Therefore,
HA® - QA1) =00 Ee(A1 @ ® Apn-y)

n-1
= Z (¢x1 ® ® pmi$i+1)(Qm1A1(Im1 ®:-® an-lAn—qun-l),

E1yeee 4Ty i=]

= z v((z1,...,2Zn)) - ¢W(zl,...,zn)(A1 ® QA1)

Z1,...,Tp

L¢w(A1 ®: - An-—l)”(dw)a

I

where w(z, ... z,) is an arbitraly element in (z1, ..., Z.). 0O
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