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Asymptotics for differentiated product
demand/supply systems with many markets
in the presence of national micro moments

Yuichiro KANAZAWA [*†]
International Christian University

1 Introduction

Industrial organization literature is concerned with the structure of industries in the econ‐
omy and the behavior of firms and individuals in these industries. A dramatic shift in
the 1980s toward what Bresnahan (1989) coined the “New Empirical Industrial Organi‐
zation (NEIO),”which tries to takes advantage of the fact that individual industries are
sufficiently distinct, and industry details are sufficiently important.

In the NEIO, products are regarded as bundles of characteristics, and preferences are
defined on those characteristics, so each consumer chooses a bundle that maximizes its
utility. Consumers have different preferences for different characteristics, and hence make
different choices, however. In other words, consumers are heterogeneous.

Simulation is used to obtain aggregate demand from the heterogeneous consumers’
choices in the following manner: first we draw vectors of consumer characteristics from
the distribution of those characteristics; second we determine the choice probability that
each of the drawn consumers would make for a given value of the parameter; now we
aggregate those choice probabilities into a prediction for aggregate demand conditional
on the parameter vector; finally we employ a search routine that finds the value of that
parameter which makes these aggregate probabilities as close as possible to the observed
market shares.

The theoretical and econometric groundwork for product characteristic based de‐
mand systems dates back to the work of Lancaster (1971) [9] and McFadden (1974,
1981) [10],[11]. Applications of the Lancaster/McFadden framework, however, increased
significantly after Berry, Levinsohn, and Pakes (1995, henceforth BLP(1995) [2]) showed
how to circumvent a problem that had made it difficult to apply the early generation of
characteristic‐based models in I.O. contexts.
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The early generation of models did not allow for unobserved product characteris‐
tics. Consumer goods typically are differentiated in many ways. As a result even if the
econometricians measured all the relevant characteristics, they could not expect to obtain
precise estimates of their impacts. One solution proposed in Berry (1994) [ı] is to put in
the ‘ important’ differentiating characteristics and an unobservable, say  \xi , which picks
up the aggregate effect of the multitude of characteristics that are being omitted.

Often the econometricians find that there is not enough information in product level
demand data to estimate the entire distribution of preferences with sufficient precision.
This should not be surprising given that they are trying to estimate a whole distribution of
preferences from just aggregate choice probabilities. The literature has added information
in two ways: One is to add an equilibrium assumption and work out its implications for
the estimation of demand parameters, the other is to add more data.

It is not surprising that when the pricing system is added to the demand system, the
precision of the demand parameters estimates tends to improve (see, BLP (1995) [2]).
Almost all of it has assumed static or myopic profit maximization, and that one side of
the transaction has the power to set prices while the other can only decide whether and
what to buy conditional on those prices. However, models in marketing science started
looking one period ahead (see, Che, et al. (2007) [6], Kamai and Kanazawa (2016) [8])
with interactions between manufacturers and a retailer factored in.

On adding more data, there are a number of types of micro data that might be avail‐
able: Surveys that match individual characteristics to a product chosen by the individual
(point‐of‐sales data); Surveys providing information on the proprietary consumer ’  s sec‐
ond choice (Berry, Levinsohn, and Pakes (2004) [3]); Alternatively, the econometricians
may have access to summary statistics that provide information on the joint distribu‐
tion of consumer and product characteristics (Petrin 2002 [17]). Petrin (2002) proposes
a technique for obtaining more precise estimates of demand and supply curves when
the econometricians are constrained to market‐level data. The technique allows them
to augment market share data with information relating the average demographics of
consumers to the observable characteristics‐Myojo and Kanazawa (2012) called “discrim‐
inating attributes”’‐of products they purchase that determines a subset of products in
the market. Petrin (2002) states that “  [t]his extra information plays the same role as
consumer‐level data (p.705, [17]).

Berry, Linton, and Pakes (2004) [4] provides asymptotic theory of the estimate of the
demand system objective function as the number of products increases in one (national)
market. The paper shows that, provided one accounts for simulation and sampling error
in the estimate of the objective function, standard approximations to the limit distribu‐
tion work (see, for e.g. Pakes and Pollard, 1989 [16]). Myojo and Kanazawa (2012) [12]
provides a sharper asymptotic variance‐ covariance of the estimate of the demand than
Berry, Linton, and Pakes (2004) by adding the pricing equation and micro moment ob‐
jective functions as the number of products increases in one (national) market.

For durable goods like automobiles, the number of models increased from somewhere
in the  150 ’s in  1980s to in the  260 ’s in 2018. Asymptotic theories of Berry, Linton, and
Pakes (2004) and Myojo and Kanazawa (2012) presuppose such a market. On the other
hand, for many non‐durable consumer good products, the number of product offering is
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limited because of the limited shelf space at the retail outlets. In Nevo (2001), for example,
there are 1124 markets and 24 products.1) Therefore a different type of asymptotics, the
one in the number of markets, is needed.

Freyberger (2015) [7] provides asymptotically normal biased parameter estimate (that
depends on the number  m of markets, the fixed number  R of simulation draws from the
distribution of consumers to calculate the observed market share of the demand system
objective function) for a fixed number of products as the number of markets increases.
It also provides how the leading asymptotic bias terms can be eliminated by using an
analytic bias correction method.

Asymptotic bias is generated because, for each market, its participating households
are self‐selected and unique in its own way. As a result simply increasing the number
of such markets will not do. One general estimation idea when you have estimates in
many comparable but heterogeneous subgroups within a population is to combine the
individual estimates, each unbiased, to manufacture an overall unbiased estimate, using
the local variances and overall variance between subgroup means to select the best linear
estimator. An approach for the current problem along this idea is to alter the number
of simulation draws from the fixed  R in Freyberger (2015) to market‐dependent  R_{m} to
reflect the population. This approach should work in theory, but a proper choice of  R_{m}
presupposes we know the market‐by‐market variation of the consumer preferences, the
exact knowledge we are trying to estimate. In reality, different portions of the population
may still be over‐ or under‐represented as we increase the number  m of markets.

If we wish to have a data‐driven method as an alternative to analytic (asymptotic) bias
correction proposed by Freyberger (2015), however, there is another idea we can employ
(for non‐durable product markets with a limited number of product offering), however.
That is, for these markets, information that encompasses many regions are available, and
we can take advantage of such information to adjust the bias. In this manuscript, we show
that we can pursue the second idea, namely, we can achieve the data‐driven asymptotic
bias correction by incorporating 1) the pricing (profit maximizing) equation for national
suppliers and 2) the national micro moment regarding consumers as the number  m of
markets increases.

2 Method

We assume the same finite set of products,  j=1,  J , is available in each regional
market.2) We also assume each consumer only participates in one market and chooses one
product including “outside”good that maximizes  his/her utility within that market. The
price and the unobserved product characteristic of the same product may as well vary
from one market to the other because of the differences in demographics among markets.

ı  ) We study non‐durable goods such as ready‐to‐eat cereals because serious policy implications abound
for markets of such non‐durable goods: For instance, Nevo(2001) [14] claims that “Previous researchers
have concluded that the ready‐to‐eat cereal industry is a classic example of an industry with nearly
collusive pricing behavior and intense non‐price competition” (p.307).

 2)_{This} simplifying assumption can be relaxed so that the set of products available can differ somewhat
by region.
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2.1 Data

We suppose the following information is available: 1) observed exogenous product char‐
acteristics  x_{j}=(x_{2j}, \ldots, x_{Kj})^{T},  (K-1)\cross 1 vector, other than price and the market‐by‐
market price  p_{j}^{m} of products  j,  j=1 , ,  J;2 ) observed market‐by‐market share vector
 s_{j}^{m,n_{m}} , of products  j,  j=1,  J,  m= ı,  M , in market  m estimated from a sample
of size  n_{m} , independent with respect to  m;3 ) An estimate  \eta_{kq}^{N} of k‐th,  k=1,  K , ob‐
served demographic characteristic of consumers who choose q‐th discriminating attribute.
This estimate is constructed from a national sample of  N consumers, independent of the
sample of size  n_{m}^{3)}

We also suppose there is a national database (e.g. the aforementioned CE‐PUMD,
for instance) of consumer  i,  i=1,  I with their  K\cross 1 observed demographics  v_{i}^{m}=
 (\nu_{i1}^{m}, \ldots, \nu_{iK}^{m})^{T}\in\Re^{K} whose true distribution is  P^{0} . This national database, we suppose,
identifies the market each consumer participates by  his/herregion/market indicator  m,

 m=1,  M . We can draw  T consumers to match the  \eta_{kq}^{N} above. With this national

database with region indicator, we can construct region‐by‐region databases indexed by
 m . We can randomly draw  R_{m} demographics4) from this regional database to match
the  s_{j}^{m,n_{m}} whose observed demographics are now indexed by  m so that  K\cross 1 observed
demographics  \nu_{i}^{m}=(\nu_{i1}^{m}, \ldots, \nu_{iK}^{m})^{T}\in\Re^{K} whose true distribution  P^{0m}.

2.2 Demand side

Reflecting the heterogeneity of consumers, we define the model calculated probability  \sigma_{ij}^{m}
of consumer  i choosing product  j in market  m to be obtained from the random coefficient
utility of consumer  i with observed demographics  \nu_{i}^{m} in market  m for product  j as

 U_{ij}^{m} = x_{j}^{mT} \cdot\beta+\sum_{k=1}^{K}\pi_{k}x_{jk}\nu_{ik}^{m}+\xi_
{j}^{m}+\epsilon_{ij}^{m} , (1)

with the observed  K\cross 1 product characteristics vector  x_{j}^{m}=(p_{j}^{m}, x_{j}^{T})^{T} that may in‐
clude a constant or product dummies, the demand‐side  K\cross 1 parameter vector  \beta=
 (\beta_{1}, \ldots, \beta_{K}) associated with the observed product characteristics,  K\cross 1 parameter vec‐
tor  \Pi=(\pi_{1}, \ldots, \pi_{K}) associated with the observed demographics, unobservable  \xi_{j}^{m} likely
to be correlated with price  p_{j}^{m} , and with unobservable idiosyncratic taste  \epsilon_{ij}^{m} assumed to
be i.i.  d . type‐I extreme value.

The conditional probability  \sigma_{ij}^{m} of choosing product  j in market  m obtained from (1)

  \sigma_{ij}^{m}=\frac{\exp(x_{j}^{mT}\cdot\beta+.\sum_{k=1}^{K}\pi_{k}x_{jk}
\nu_{ik}+\xi_{j}^{m})}{1+\sum_{j=1}\exp(x_{j}^{mT}\beta+\sum_{k=1}^{K}\pi_{k}
x_{jk}\nu_{ik}+\xi_{j}^{m})} (2)

 3)We do not believe that the independent‐source requirement is so restrictive or unrealistic. We could
sample individuals from the Consumer Expenditure Survey Public‐Use Microdata (CE‐PUMD) to sim‐
ulate market shares of products, whereas the additional micro moment could be obtained from publicly
available sources independent of the CE‐PUMD because what we require is the aggregate estimates and
not the sample itself—most ıikely to be proprietary—from which these aggregate estimates are computed.

 4) These two draws  T and are  R_{m} are assumed independent.
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is a map from consumer  i ’s tastes  v_{i}^{m} , a demand‐side parameter  2K\cross 1 vector  \theta_{d}=
 (\beta^{T}, \Pi^{T})^{T}\in\Re^{2K} , and the set of characteristics of all products  p^{m}=(p_{1}^{m}, \ldots,p_{J}^{m})^{T},  a

 J\cross 1 vector,  X=(x_{1}, \ldots, x_{J}),  a(K-1)\cross J matrix,  \xi^{m}=(\xi_{{\imath}}^{m}, \ldots, \xi_{J}^{m})^{T}, a  J\cross 1 vector,
and is thus denoted as  \sigma_{ij}^{m}(p^{m}, X, \xi^{m}, v_{i}^{m}, \theta_{d}) .

The BLP framework generates the vector of the model‐calculated  J\cross 1 market share
vector  \sigma^{m}=(\sigma_{1}^{m}, \ldots, \sigma_{J}^{m})^{T} in market  m by aggregating over the individual choice prob‐
ability in (2) with the true distribution  P^{0m} of the consumer tastes  \nu_{i}^{m} as

  \sigma_{j}^{m}(p^{m}, X, \xi^{m}, \theta_{d}, P^{0m})=\int\frac{\exp(x_{j}
^{mT}\cdot\sqrt{}+.\Sigma_{k=1}^{K}\pi_{k}x_{jk}\nu_{ik}+\xi_{j}^{m})}{1+\Sigma_
{j=1}\exp(x_{j}^{mT}\sqrt{}+\Sigma_{k=1}^{K}\pi_{k}x_{jk}\nu_{ik}+\xi_{j}^{m})}
dP^{0m} . (3)

We assume the set of exogenous product characteristics  x_{j}=  (x_{2j} , x_{Kj})^{T},  j=
 1 , ,  J , is a random sample from the underlying population of product characteristics.
We also assume that, given  x_{j}' s,  \xi_{j}^{m},  j=1,  J are a random sample of unobserved
characteristics from the portion of the population representing market  m . Thus,  x_{j}
are assumed independent across  j , and  \xi_{j}^{m} are independent conditionally on  x_{j} , while
 p^{m}=(p_{1}^{m}, \ldots,p_{J}^{m})^{T} are not, in general, independent across  j since they are endogenously
determined in market  m as functions of others’ and its own product characteristics.

Note that these market shares are still random variables due to the stochastic nature

of the product characteristics  X and  \xi^{m} . If we evaluate  \sigma_{j}^{m}(p^{m}, X, \xi^{m}, \theta_{d}, P^{0m}) at  \theta_{d}^{0},
where  \theta_{d}^{0} is the true parameter value, we have the “conditionally true”market shares  s_{j}^{m0}
given the product characteristics  (p^{m}, X, \xi^{m}) in the portion of the population representing
market  m , i.e.,

 \sigma^{m}(p^{m}, X, \xi^{m}, \theta_{d}^{0}, P^{0m})\equiv s^{0^{m}} (4)

BLP (1995) [2] provides general conditions under which there is a unique solution for the
 \xi^{m} for the equation

 \sigma^{m}(p^{m}, X, \xi^{m}, \theta_{d}, P^{m})=s^{m} (5)

for every  (p^{m}, X, \theta_{d}, P^{m}) . If we solve (5), at any  (\theta_{d}, s^{m}, P^{m})\neq(\theta_{d}^{0}, s^{0^{m}}, P^{m0}) , the in‐
dependence assumption for the resulting  \xi_{j}(X, \theta_{d}, s^{m}, P^{m}) no longer holds. On the other
hand, if we solve the identity in (4) with respect to  \xi^{m} under the conditions to guarantee
the uniqueness of the  \xi^{m} in (5), we are able to retrieve the original  \xi_{j}^{m}(X, \theta_{d}^{0}, s^{0}, P^{m0}) ,
which we assume are conditionally independent across  j given  x=(x_{2j}, \ldots, x_{Kj})^{T}.

Since the econometrician do not have access to  P^{m0} nor  s^{0^{m}},  he/she must use the

 R_{m} random draws from  P^{m0} and the observed share  s^{m,n_{m}}=(s_{1}^{m,n_{m}}, \ldots, s_{J}^{m,n_{m}}) which is

usually estimated from a random sample of size  n_{m} . The  R_{m} random draws are assumed
independent of the sample of size  n_{m} above. The observed market share  s_{j}^{m,n_{m}} of product
 j in market  m is thus matched with the model‐calculated market share  \sigma_{j}^{m} of consumer
 i choosing product  j in market  m from m‐th reginal database as

 s_{j}^{m,n_{m}}= \frac{1}{R_{m}}\sum_{i=1}^{R_{m}}\sigma_{ij}^{m}(p^{m}, X,\xi^
{m}, \theta_{d}, P^{R_{m},m}) , (6)
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where  P^{R_{m},m} is the empirical measure that signifies a random sample of  R_{m} is taken from
the database indexed by the market index  m . We denote the  \xi as a solution to the  J si‐
multaneous equations (4) with  J unknown  \xi_{j},  j=1,  J as  \xi(\theta_{d},p^{m}, X, s^{m,n_{m}}, P^{R_{m},m}) .

We assume the mean independent conditions to hold for each market  m=1,  m as

 E(\xi_{j}^{m}|X)=0 , (7)

with probability 1 and to have a finite conditional variance

  \sup_{1\leq m\leq M}\max_{1\leq j\leq J}E((\xi_{j}^{m})^{2}|x_{j})<\infty,
with probability 1.

We assume there is a   J\cross Mı matrix demand‐side instruments  Z_{d}=(z_{1}^{d}, \ldots, z_{J}^{d})^{T}
whose j‐th component  z_{j}^{d} can be written further as  z_{j}^{d}(x_{1}, \ldots, x_{J})\in\Re^{M_{1}} , where  z_{j}^{d}(\cdot) :
 \Re^{(K-1)\cross J}arrow\Re^{M_{1}} , for  j=1,  J such that its the resulting  M_{1}\cross 1 vector

 E(Z_{d}^{T}\xi^{m}(\theta_{d}^{0},p^{m}, X, s^{0^{m}}, P^{m0}))=0 , (8)

in view of (7), where  0 is a  M_{1}\cross 1 vector of zeroes, if we assume, for moment, that we
know the underlying taste distribution of  P^{m0} and we are able to observe the true market
share  s^{0^{m}} The expectation in (8) is taken with respect  \xi conditionally on  X , and then
with respect to  X.

It should be noted that the demand side instruments  z_{j}^{d} for product  j are assumed
to be a function of the exogenous characteristics not only of its own, but of the other
products in the market. This is because the instruments by definition must correlate with
the product characteristics  p_{j}^{m} , and these endogenous price are determined by both its
own and its competitors’ product characteristics.

Then the sample counterpart of this condition employing the solution to (6) is the
following  M_{1}\cross 1 vector

 G_{M}^{d}( \theta_{d}, \{s^{m}\}, \{P^{R_{m}}\})=\frac{1}{M}\sum_{m=1}^{M}Z_{d}
^{T}\xi_{j}^{m}(\theta_{d},p^{m}, X, s^{m,n_{m}}, P^{R_{m},m}) . (9)

2.3 Supply side

The supply side model formulates the pricing equations for the  J products marketed.
We assume an oıigopolistic market where a finite number of suppliers provide multiple
products to all  M markets. Suppliers  (m=1, \ldots, F) producing  \mathcal{J}_{f} are maximizers of
profit from the combination of products they offer.

A profit function of supplier  f in market  m is given for by

 PR_{f}^{m}= \sum_{j=1}^{J}(p_{j}^{m}-mc_{j}^{m})\sigma_{j}^{m}(p^{m}, X, 
\xi^{m}, \theta_{d}, P^{m})\cdot I^{m} (10)

where  j\in \mathcal{J}_{f} and  mc_{j}^{m} is the marginal cost of product  j in market  m and  I_{m} is the size
of population in market  m . Then, the total profit of the firm  f is  \Sigma_{m=1}^{M}PR_{f}^{m}.
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Since consumer only participates in  his/her home market, maximizing the profit func‐
tion in each regional market  m separateıy leads to maximizing the total profit for each
firm.

Assuming BertrandNash pricing provides the first‐order condition for the product  j of
the manufacturer  m as

  \sigma_{j}^{m}(p^{m}, X, \xi^{m}, \theta_{d}, P^{m})+\sum_{h\in \mathcal{J}
_{f}}(p_{h}^{m}-mc_{h}^{m})\frac{\delta\sigma_{h}^{m}(p^{m},X,\xi^{m},\theta_{d}
,P^{m})}{\delta p_{j}^{m}} , (11)

This equation can be expressed in matrix form as

 \sigma^{m}(p^{m}, X,\xi^{m}, \theta_{d}, P^{m})+\triangle^{m}(p^{m}-mc^{m})=0 , (12)

where  \Delta^{m} is the  J\cross J non‐singuıar matrix whose  (j, h) element is defined as

 \triangle_{jh}^{m}=\{\begin{array}{ll}
\delta\sigma_{h}^{m}(p^{m}, X, \xi^{m}, \theta_{d}, P^{m})/\delta p_{j}^{m}   if
the products j and h are produced by the same firm;
0,   otherwise
\end{array}
We solve (12) with respect to  mc^{m} as

 mc^{m}=p^{m}+(\Delta^{m})^{-1}\sigma^{m}(p^{m}, X, \xi^{m}, \theta_{d}, P^{m}) . (13)

Suppose that the observed cost shifters  w_{j} consist of exogenous  w_{1j}\in\Re^{L_{1}} as well as
endogenous  w_{2j}\in\Re^{L_{2}} , and thus we write  w_{j}=(w_{1j}^{T}, W_{2j}^{T})^{T},  a(L_{1}+L_{2})\cross 1 vector, and
 W=(w_{1}, \ldots, W_{J})^{T}, a  J\cross(L_{1}+L_{2}) matrix. The exogenous cost shifters include not
only the cost variables determined outside the market under consideration (e.g., factor
price), but also the product design characteristics suppliers cannot immediately change
in response to fluctuation in demand.

The cost variables determined by the market equilibrium (e.g., production scale) are
treated as endogenous cost shifters. As in the formulation of  x_{j} on the demand side, we
assume that the set of exogenous cost shifters  w_{1j},  j=1,  J , is a random sample from
the underlying population of cost shifters. We also assume as in the formulation of  \xi_{j}^{m},
given  w_{1j}' s,  \omega_{j}^{m},  j=1,  J , is a random sample of the unobserved cost shifter from
the portion of the population representing market  m . Thus,  w_{j} are assumed independent
across  j , and  \omega_{j}^{m} are  independent conditionally on  w_{j} , although  w_{2j} are, in general, not
independent across  j as they are determined in the market as functions of cost shifters of
other products.

We define the marginal cost  mc_{j}^{m} as an implicit function of the observed cost shifters
 w_{j} and the unobserved cost shifter  \omega_{j}^{m} in market  m as

 g(mc_{j}^{m})=w_{j}^{T}\theta_{c}+\omega_{j}^{m} , (14)

where  g() is a monotonic function and  \theta_{c}\in\Theta_{c} is a vector of cost parameters. Although the
choice of  g(\cdot) depends on the application, we assume that  g(\cdot) is continuously differentiable
with a finite derivative for all realizable values of cost. Define  g(x)\equiv(g(x_{1}), \ldots, g(x_{J}))^{T}.
Then the  J\cross 1 cost‐side unobserved cost shifter vector obtains as

 \omega^{m}(p^{m}, X, \xi^{m}, \theta_{d}, P^{m})=g(p^{m}+(\Delta^{m})^{-1}
\sigma^{m}(p^{m}, X,\xi^{m}, \theta_{d}, P^{m}))-W\theta_{c} . (15)
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Similar to the demand‐side unobservables, the unobserved cost shifter  \omega_{j}^{m} is assumed
to be mean independent of the exogenous cost shifters  W_{1}=(w_{11}, \ldots, w_{1J}) , and satisfy

 E(\omega_{j}^{m}|W_{1})=0 , (16)

with probability 1 and to have a finite conditional variance

  \sup_{1\leq m\leq M}\max_{1\leq j\leq J}E((\omega_{j}^{m})^{2}|w_{1j})<\infty,
with probability 1.

Similar to the demand side, we assume there is a  J\cross M_{2} matrix supply‐side instruments

 Z_{c}=(z_{1}^{c}, \ldots, z_{J}^{c})^{T} whose j‐th component  z_{j}^{c} can be written further as   z_{j}^{c}(w_{11}, \ldots, w_{1J})\in
 \Re^{M_{2}} , where  z_{j}^{c}(\cdot) :  \Re^{(L_{1})\cross J}arrow\Re^{M_{2}} , for  j=1,  J such that its the resulting  M_{2}\cross 1
vector

 E(Z_{c}^{T}\omega^{m}(\theta_{d}^{0},p^{m}, X, s^{0^{m}}, P^{m0}))=0 , (17)

in view of (16), where  0 is a  M_{2}\cross 1 vector of zeroes, if we assume, for moment, that we
know the underlying taste distribution of  P^{m0} and we are able to observe the true market
share  s^{0^{m}} The expectation in (17) is taken with respect  \omega conditionally on  W , and then
with respect to  W.

We also note that some of the exogenous product characteristics  x_{j} affect the price
of the product because they affect manufacturing cost. Thus, those  x_{j} may be included
among the exogenous cost shifters  w_{1j} if they are uncorrelated with the unobservable cost
shifter  \omega_{j}^{m} for  j=1,  J.

Then the sample counterpart of this condition is the following  M_{2}\cross 1 vector

 G_{M}^{c} ( \theta, \{s^{m}\}, \{P^{R_{m}}\})=\frac{1}{M}\sum_{m=1}^{M}Z_{c}
^{T}\omega_{j}^{m}(\theta,p^{m}, X, s^{m,n_{m}}, P^{R_{m},m}) , (18)

where  \theta=(\theta_{d}, \theta_{c}) .

2.4 Micro moments

Market summaries such as the average demographics of consumers who purchased a spe‐
cific type of product are publicly available, even if detailed individual‐level data such as
purchasing histories are not. A discriminating attribute is an observable product charac‐
teristic of products that determines a subset of products in the market, those products
that possess the attribute. We denote the set of products with discriminating attribute
 q as  Q_{q} , and the consumer’s choice as  C_{i} . We will write the event “consumer  i chooses
discriminating attribute  q” as  C_{i}\in Q_{q} . A consumer may choose multiple discriminat‐
ing attributes. We assume that there is a finite number of discriminating attributes
 q=1,  N_{p} , and the market share of each discriminating attribute is positive, i.e.,

 Pr\{C_{i}\in Q_{q}|X, \xi(\theta_{d}^{0},p^{m}, X, s^{0^{m}}, P^{m0})\}>0 for all  q in 1,  N_{p}.
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We assume that the joint density of demographics  \nu_{i}^{m} is of bounded support,  m=

 1,  M . In market  m , consumer  i's k‐th observed demographic  \nu_{ik}^{m},  k=1 , ,  K is
averaged over all consumers choosing discriminating attribute  q in the population to
obtain the conditional expectation  \eta_{kq}^{0^{m}}=E\{\nu_{ik}^{m}|C_{i}\in Q_{q}, X, \xi(\theta_{d}^{0},p^{m}, 
X, s^{0^{m}}, P^{m0})\}.
An example of this conditional expectation would be the expected value of family size
of consumers in the subpopulation  P^{m0} corresponding to the market  m who purchased a
box of ready‐to‐eat cereal with high sugar content. We assume that  \eta_{kq}^{0^{m}} has a finite mean

and variance for all  J , i.e.,   E_{X,\xi}\{\eta_{kq}^{0^{m}}\}<\infty and   V_{X,\xi}\{\eta_{kq}^{0^{m}}\}<\infty for  k=1,  K,  q=

 1,  N_{p} , m  = ı,  M.

It may be possible to match the the sample counterpart of  \eta_{kq}^{0^{m}} market‐by‐market with

the sample counterpart of  E\{\nu_{ik}^{m}|C_{i}\in Q_{q}, X, \xi(\theta_{d}^{0}, p^{m}, X, s^{0^{m}}, 
P^{m0})\} whenever a finer
data set of consumers’ market‐by‐market average choice of discriminating attribute  q is
available. If so, finite sample performance of the estimated parameter would be better.

If such a data set is not readily available as we assume here, however, we proceed as fol‐
lows: Notice, as   marrow\infty , we have the sample counterpart of   \sum_{m={\imath}}^{M}\eta_{kq}^{0^{m}}/M to converge in
probability to  \eta_{kq}^{0} for any  k and  g by virtue of the weak law of large numbers. Similarly the

sample counterpart of  \Sigma_{m=1}^{M}E\{\nu_{ik}^{m}|C_{i}\in Q_{q}, X, \xi(\theta_{d}^{0}, p^{m}, 
X, s^{0^{m}}, P^{m0})\}/M to converge

in probability to  E\{\nu_{ik}|C_{i}\in Q_{q}, X, \xi(\theta_{d}^{0},p, X, s^{0}, P^{0})\} where  p=(p^{1}, \ldots,p^{m}) .

Let  Pr\{d\nu_{ik}|C_{i}\in Q_{q}, X, \xi(\theta_{d}, p, X, s^{0}, P^{0})\} be the conditional density of consumer  i^{1}s

demographics  y_{ik} given  his/her choice of discriminating attribute  q and product charac‐
teristics  (p, X, \xi (\theta_{d},p, X, s^{0}, P0)) . Since the conditional expectation  \eta_{dq}^{0} can be written
as

 E\{\nu_{id}|C_{i}\in Q_{q}, X, \xi(\theta_{d},p, X, s^{0}, P^{0})\}
 =  \int\nu_{id}Pr\{dv_{id}|C_{i}\in Q_{q}, X, \xi(\theta_{d},p, X, s^{0}, P^{0}
)\}

 =  \frac{f\nu_{id}Pr\{C_{i}\in Q_{q}|X,\xi(\theta_{d},p,X,s^{0},P^{0}),\nu_{id}
\}P^{0}(d\nu_{id})}{P_{\Gamma}\{C_{i}\in Q_{q}|X,\xi(\theta_{d},p,X,s^{0},P^{0})
\}}
 =  \frac{\int\nu_{id}Pr\{C_{i}\in Q_{q}|X,\xi(\theta_{d},p,X,s^{0},P^{0}),
\nu_{i}\}P^{0}(d\nu_{i})}{Pr\{C_{i}\in \mathcal{Q}_{q}|X,\xi(\theta_{d},p,X,
s^{0},P^{0})\}}
 =   \int\nu_{id}\frac{\Sigma_{j\in Q_{q}}\sigma_{ij}(X,\xi(e_{d},}{\bullet_{j\in 
\mathcal{Q}_{q}}\sigma_{j}(X,\xi(\theta_{d}p,X,s^{00}\bullet),\theta_{d},P^{0})}
P^{0}(dv_{i}) ,

we can form an identity, which is the basis for additional moment conditions

  \eta_{dq}^{0}-\int\nu_{id}\frac{\Sigma_{j\in \mathcal{Q}_{q}}\sigma_{ij}(X,\xi
(\theta_{d}^{0},p,X,s^{0},P^{0}),\nu_{i};\theta_{d}^{0})}{\Sigma_{j\in 
\mathcal{Q}_{q}}\sigma_{j}(X,\xi(\theta_{d}^{0},p,X,s^{0},P^{0}),\theta_{d}^{0},
P^{0})}P^{0}(d\nu_{i})\equiv 0 (19)

for  q=1,  N_{p},  k=1 , ,  K.

Although  P^{0} is so far assumed known, we typically are not able to calculate the
second term on the left hand side of (20) analytically and will have to approximate it by
using the empirical distribution  P^{T} of i.i.  d . sample  v_{t},  t=1,  T from the underlying
distribution  P^{0} . The corresponding sample moments  G_{J,T}^{a}(\theta_{d}, p, X, s^{n}, P^{R}, \eta^{N}) , where  a
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on the shoulder stands for additional, are

 G_{J,T}^{a}( \theta_{d},p, X, s^{n}, P^{R}, \eta^{N})=\eta^{N}-\frac{1}{T}\sum_
{t=1}^{T}\nu_{t}\otimes\psi_{t}(\xi(\theta_{d},p, X, s^{n}, P^{R}), \theta_{d}, 
P^{R}) (20)

where

 \eta^{N}=(\eta_{11}^{N}, \ldots,\eta_{1N_{p}}^{N}, \ldots,\eta_{K1}^{N}, 
\ldots,\eta_{KN_{p}}^{N})^{T},\psi_{t}(\xi(\theta_{d},p, X, s^{n}, P^{R}),
\theta_{d},P^{R})=  (\begin{array}{l}
\frac{\sum_{J\in Q_{l}}\sigma_{tg(X,\xi,\nu_{t;}\theta_{d})}}{\sum_{J\in Q_{1}}
\sigma_{J}(X,\xi,\theta_{d},P^{R})}

\frac{\sum_{J\in Q_{N_{p}}}\sigma_{tg}(X,\xi,\nu_{t},\theta_{d})}{\sum_{J\in 
Q_{N_{p}}}\sigma_{J}(X,\xi,\theta_{d},P^{R})}
\end{array}) (21)

The symbol  \otimes denotes the Kronecker product. The quantity  \psi_{t}(\xi, \theta_{d}, P) is the consumer
 t ’s model‐calculated purchasing probability of products with discriminating attribute  q

relative to the model‐calculated market share of the same products. Note that these
additional moments are again conditional on product characteristics  (p, X, \xi(\theta_{d}, s^{n}, P^{R})) ,
and thus depend on the indices  J and  T.

As a result, the actual sample‐based objective function we minimize in the GMM
estimation is the sum of norm of  G_{M}^{d}  (\theta_{d} , {sm},  \{P^{R_{m}}\}) in (9),   G_{M}^{c}(\theta , {sm},  \{P^{R_{m}}\}) in
(18), and  G_{J,T}^{a}(\theta_{d}, s^{n}, P^{R}, \eta^{N}) in (20), that is, the norm of

 G_{J,T}(\theta, s^{n}, P^{R}, \eta^{N})=(G_{MT}^{a}(\theta_{d},p,X,s^{n},P\eta^
{N})G_{M}^{c\}_{\theta,\{s^{m}\},\{P^{R_{m}}\}}^{\theta_{d},\{s^{m}\},\{P^{R_{m}
}}J,)}G_{M}^{d},) , (22)

a  M_{1}+M_{2}+KN_{p}\cross 1 vector.

Notice that the first two moments  G_{M}^{d} and  G_{M}^{c} in (22) are the sample moments
averaged over products  m=1,  M , although the third moment  G_{M,T}^{a} is averaged over
consumers  t=1,  T.

3 Theoretical Results

Note that in the expression  G_{M,T}^{a}(\theta_{d},p, X, s^{n}, P^{R}, \eta^{N}) , there exist five distinct random‐
nesses: one from the draws of the product characteristics  (X, \xi_{j}, w_{1j}, \omega_{j}) , two from the
sampling processes of consumers for  s^{n} and  \eta^{N} (not controlled by the econometrician),
and two from the empirical distributions  \{P^{R_{m}}\} and  P^{T} (employed by the econometri‐
cian). The impact of these randomnesses on the estimate of  \theta are decided by the relative
sizes of the samples—J,  \{n_{m}\},  N,  \{R_{m}\} , and  T . Carefully operationalizing the sampling
and the simulation errors obtain the following result.

Theorem 1 (Consistency and Asymptotic Normality of  \theta=(\theta_{d}, \theta_{c}) ) The estima‐
tor  \theta that minimizes the objective function  G_{J,T}(\theta, s^{n}, P^{R}, \eta^{N})^{T}W_{m}G_{J,T}(\theta_{\mathcal{S}^{n}
}, P^{R}, \eta^{N})
is consistent, and asymptotically normal at the rate of  \sqrt{M} where  W_{m} is a weighting
matrix converging in probability to a positive definite matrix  W.

Due to the limitation of the space, we omit the proof.
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4 Simulation Results

Throughout below,

4.1 Demand side setting

The model calculated share  \sigma_{ij}^{m} is from random coefficient utility of consumer  i of demo‐
graphics  \nu_{i}^{m} in market  m for product  j as

 U_{ij}^{m}=-\alpha p_{j}^{m}+\beta_{0}x_{j}+\beta_{1}x_{j}\nu_{i}^{m}+\xi_{j}
^{m}+\epsilon_{ij}^{m} , (23)

with the observed product characteristics  x_{j}=(p_{j}^{m}, x_{j}) , the demand‐side parameters  \theta_{d}=

 (\alpha, \beta_{0}, \beta_{1}) , unobservable  \xi_{j}^{m} correlated with price  p_{j}^{m} and with unobservable idiosyncratic
taste  \epsilon_{ij}^{m} assumed to be i.i.  d . extreme value.

We assume there are  J=20 products available to consumers of any of  m markets.
The observed product characteristics  x_{j} and unobserved product characteristics  \xi_{j}^{m} are
random draws from  N(3,1) and  N(0,1) respectively. The consumer demographics  \nu_{i}^{m}
is random draws from  N(0,1) and consumerls idiosyncratic term  \epsilon_{ij}^{m} is assumed to be
i.i.  d . with type I extreme value to derive random‐coefficient logit model. The price  p_{j}^{m}
of product  j is endogenously determined in each regional market equilibrium and differs
from market to market. We set the true demand side parameters as  \alpha=1.0,  \beta_{0}=1.0 and
 \beta_{1}=0.5 . These parameter values are common to all the regional markets. We set the
total number of consumers in the national market as  I=10,000 and assume there exist

the same number  I/M of consumers in each regional market. We draw  R_{m} consumers
from these regional database to calculate  \xi_{j}^{m} using (9) for  j=1,  J . We use the
“conditionally true”market‐by‐market share  s^{0^{m}} using the population  I=10,000 instead
of the observed share  s^{n_{m}} to focus on the effect of supply side and micro moments.

4.2 Supply side setting

We assume there are  F=5 oligopolistic suppliers in a national market, each producing
the same  numberJ_{f}=4 of products. As stated above, the same set of products are sold
in all regional markets. These suppliers are assumed to have the same cost function of
product  j in market  m as

 mc_{j}^{m}=x_{j}\gamma+\omega_{j}^{m} , (24)

where the unobserved cost shifters  \omega_{j}^{m} are random draws from  N(0,1) . We set the cost

side parameter as  \gamma=1.5.
The true market share  s^{0^{m}} and the corresponding price  p^{m} are determined at the

equilibrium, and thus the values of  p^{m} are obtained by solving (13), that is, a system of
 J‐dimensional nonlinear simultaneous equations, which is solved by an iterative Newton‐
Raphson algorithm.
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 \overline{\overline{\#ofiternations\beta_{1}}}

  \frac{R_{m}=100(fixed)withoutm\dot{{\imath}}cromomentswithmicromoments(T=1,
000)}{MeanM=10.566090.565112}
 M=5 0.492358 0.496941

 M=10 0.524297 0.506038

 M=20 0.514595 0.494323

  \frac{M=400.5151110.498628}{S.E.M=10.5798770.239662}
 M=5 0.237166 0.0702588

 M=10 0.172493 0.0696279

 M=20 0.109436 0.0609522

 M=40 0.070198 0.0591414

Table ı: Mean and standard error of  \beta_{1} with micro moments

4.3 Instruments

We construct three instruments from  X for the product  j produced by  f:x_{j} itself, the
sum of  x_{k} within the firm  f except  x_{j} , and the sum of  x_{k} over the.firms other than  f , as
BLP (1995) proposed. We use these three instruments for demand‐ as well as supply‐side.

4.4 Micro moment setting

We assume that information is available on (a) the expected value of  \nu_{i}^{m} over con‐
sumers who choose products priced higher than the average national price and (b) the
expected value of  v_{i}^{m} over consumers who choose products with  x_{j} greater than the av‐
erage of  x_{j} . We draw  T consumers independent of  R_{m} from the national population
database to construct sample analogue of moment in (20). Since we use two discrimi‐
nating attribute—(a) and (b) above, we have  N_{p}=2 . Similarly we compare  two-p_{j}
and  x_{J}—product characteristics, so we have  K=2 . Also there are two instruments
on demand‐ as well as supply‐side,  M_{1}=M_{2}=2 . Therefore  G_{J,T}(\theta, s^{n}, P^{R}, \eta^{N}) is
 M_{1}+M_{2}+KN_{p}\cross 1=(2+2+2\cross 2)\cross 1=8\cross 1 vector. Since the objective function
we use is  G_{J,T}(\theta, s^{n}, P^{R}, \eta^{N})^{T}W_{m}G_{J,T}(\theta, s^{n}, P^{R}, 
\eta^{N}) , we need  8\cross 8 weight matrix  W.

For  W , we used  8\cross 8 identity matrix. Notice that the calculation may not be as efficient
relative to when we use the optimal weighting matrix. We set the true parameter values
to be our initial values.

We are most interested in the the consum.er heterogeneity (random coefficient) param‐
eter  \beta_{1} . For the parameter  \beta_{1} , see Table 1 and Figure 1. We observe the following: (1)
The finite sample estimates with micro moments seems asymptotically unbiased, while
the estimates without remain biased; (2) The finite sample estimates with micro moments
seems more accurate than the estimates without; (3) As expected, the effect of the micro
moments wanes as the number  m of markets grows. Due to the limitation of the space,
we omit the results for the other parameter estimates.
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Figure 1: Histogram of  \beta_{1} with the micro moments. Solid lines are density estimates and
dashed lines are normal curve with the estimated mean and standard error.
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5 Conclusion and Discussion

Overall, we found the following: Improvement in bias correction as expected, but slight
standard error improvement is surprising; National micro moments greatly helps us to
evaluate the heterogeneity of consumers when the number of market is small ( i.e. the
information is limited) both in terms of standard error and bias; Contribution from adding
micro moment decreases as the number of markets increases as expected. One note of
caution for practitioners: With a small sample size  T of demographics to construct micro
moments, the accuracy of estimates seems to suffer.
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