IRRATIONALITY EXPONENTS OF NUMBERS RELATED WITH CAHEN'S CONSTANT

IEKATA SHIOKAWA

This is a report on recent results of myself jointly with Duverney [7] on irrationality exponents of numbers related with Cahen's constant.

For a real number α , the irrationality exponent $\mu(\alpha)$ is defined by the greatest lower bound of the set of numbers μ for which the inequality

$$\left|\alpha - \frac{p}{q}\right| < \frac{1}{q^{\mu}}$$

has only finitely many rational solutions p/q, or equivalently the least upper bound of the set of numbers μ for which the inequality (0.1) has infinitely many solutions. If α is irrational, then $\mu(\alpha) \geq 2$. If α is a real algebraic irrationality, then $\mu(\alpha) = 2$ by Roth's theorem. If $\mu(\alpha) = \infty$, then α is called a Liouville number.

The main theorem of this paper, [7] stated below gives lower and upper bounds for the irrationality exponents of continued fractions.

We employ the usual notations for continued fractions:

bloy the usual notations for continued fractions:
$$b_0 + \frac{a_1}{b_1} + \frac{a_2}{b_2} + \dots + \frac{a_n}{b_n} = b_0 + \frac{a_1}{b_1 + \frac{a_2}{b_2 + \dots}} = \frac{A_n}{B_n},$$

$$\vdots \cdot + \frac{a_n}{b_n}$$

and

$$b_0 + \frac{a_1}{b_1} + \frac{a_2}{b_2} + \frac{a_3}{b_3} + \dots = \lim_{n \to +\infty} \frac{A_n}{B_n},$$

where $\{A_n\}$ and $\{B_n\}$ are defined by

(0.2)
$$\begin{cases} A_{-1} = 1, & A_0 = b_0, & B_{-1} = 0, & B_0 = 1, \\ A_n = b_n A_{n-1} + a_n A_{n-2} & (n \ge 1) \\ B_n = b_n B_{n-1} + a_n B_{n-2} & (n \ge 1) \end{cases}$$

Theorem 1. Let an infinite continued fraction

(0.3)
$$\alpha = \frac{a_1}{b_1} + \frac{a_2}{b_2} + \frac{a_3}{b_3} + \cdots$$

be convergent, where a_n , b_n $(n \ge 1)$ are non zero rational integers. Assume that

$$(0.4) \qquad \sum_{n=1}^{+\infty} \left| \frac{a_{n+1}}{b_n b_{n+1}} \right| < \infty,$$

and

(0.5)
$$\lim_{n \to +\infty} \left| \frac{a_1 a_2 \cdots a_n}{b_1 b_2 \cdots b_n} \right| = 0.$$

²⁰¹⁰ Mathematics Subject Classification. Primary 11J82; Secondary 11J70.

Key words and phrases. Irrationality exponent, Cahen's constant, Continued fractions, Sylvester sequence, Sierpinski sequence.

Then α is irrational and its irrationality exponent $\mu(\alpha)$ satisfies

$$(0.6) 2 + \sigma \le \mu(\alpha) \le 2 + \max(\tau_1, \tau_2),$$

where

(0.7)
$$\sigma = \limsup_{n \to +\infty} \frac{\log |b_{n+1}| - \log |a_1 a_2 \cdots a_{n+1}|}{\log |b_1 b_2 \cdots b_n|},$$

(0.8)
$$\tau_1 = \limsup_{n \to +\infty} \frac{\log |a_1 a_2 \cdots a_{n+1}|}{\log |b_1 b_2 \cdots b_n| - \log |a_1 a_2 \cdots a_n|},$$

and

$$\tau_2 = \limsup_{n \to +\infty} \frac{\log|b_{n+1}| - \log|a_1 a_2 \cdots a_{n+1}| + 2\log(A_n, B_n)}{\log|b_1 b_2 \cdots b_n| - \log|a_1 a_2 \cdots a_n|}$$

with (A_n, B_n) the greatest common divisor of A_n and B_n .

We apply Theorem 1 to continued fractions representing numbers related to Cahen's constant and deduce their transcendence from the obtained lower bounds of their irrationality exponents.

In 1880 Sylvester [11] proved that any real number 0 < x < 1 can be expanded uniquely in the series

$$x = \sum_{n=0}^{+\infty} \frac{1}{t_n},$$

where the t_n are integers satisfying the condition $t_0 \ge 2$, $t_{n+1} \ge t_n^2 - t_n + 1$ $(n \ge 0)$, and furthermore that x is irrational if and only if the equality holds for all large n. He examined some of the properties of the (Sylvester) sequence $\{S_n\}_{n\ge 0}$ defined by

(0.9)
$$S_0 = 2, \quad S_{n+1} = S_n^2 - S_n + 1 \quad (n \ge 0),$$

which satisfies

$$\sum_{n=0}^{+\infty} \frac{1}{S_n} = 1.$$

Cahen [2] and Sierpinski [9] independently obtained similar results for alternating series; namely, any irrational number 0 < x < 1 can be uniquely written in the form

$$x = \sum_{n=0}^{+\infty} \frac{\left(-1\right)^n}{u_n},$$

where the u_n are integers satisfying $u_0 \ge 1$, $u_{n+1} \ge u_n^2 + u_n$ $(n \ge 0)$. As an example, Cahen [2] mentioned that (Cahen's constant)

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{u_n} = \frac{1}{1} - \frac{1}{2} + \frac{1}{6} - \frac{1}{42} + \frac{1}{1806} - \frac{1}{3263442} + \cdots$$

is an irrational number, where $u_0=1$, $u_{n+1}=u_n^2+u_n$ $(n\geq 0)$, and hence $u_n=S_n-1$ $(n\geq 0)$. We note that the sequence $\{s_n\}_{n\geq 0}$ defined by

$$(0.10) s_0 = 2, s_{n+1} = s_n^2 + s_n - 1 (n \ge 0)$$

satisfies

$$\sum_{n=0}^{+\infty} \frac{(-1)^n}{s_n} = \frac{1}{3}.$$

In 1991 Davison and Shallit [4] proved the transcendence of Cahen's constant. Becker [1] generalized the result by Mahler's method.

In this paper we generalize the sequences S_n and s_n defined in (0.9) and (0.10) by introducing the sequences $u_n = u_n(\varepsilon)$ satisfying $u_0 \in \mathbb{N}$, $u_0 > \max(1, \varepsilon)$, and the recurrence

$$(0.11) u_{n+1} = u_n^2 - \varepsilon u_n + \varepsilon (n \ge 0),$$

where ε is a non-zero integer given arbitrary. Next, we define the numbers $\gamma_{l,\varepsilon} = \gamma_{l,\varepsilon}(u_0)$ by

(0.12)
$$\gamma_{l,\varepsilon} = \sum_{n=0}^{+\infty} (-1)^n \left(\frac{\varepsilon^n}{u_n - \varepsilon} \right)^l \quad (l = 1, 2, 3, \dots).$$

We expand the numbers $\gamma_{l,\varepsilon}$ in continued fractions whose partial numerators a_n and denominators b_n satisfy the assumptions in Theorem 1. Applying Theorem 1, we obtain the following

Theorem 2. Let $\gamma_{l,\varepsilon}$ be the numbers defined by (0.12). Assume that u_0 and ε are coprime. Then $\mu(\gamma_{1,\varepsilon}) = 3$ and

$$(0.13) 2 + \frac{2}{3l-1} \le \mu(\gamma_{l,\varepsilon}) \le 2 + \frac{6(l-1)}{3l+1} (l=2,3,4,\cdots).$$

Corollary 1. For every positive integer l, $\gamma_{l,\varepsilon}$ is a non-Liouville transcendental number.

We give some examples of the numbers $\gamma_{l,\varepsilon}$.

Example 1. When $\varepsilon = 1$ and $u_0 = 2$, we have

$$\gamma_{l,1}(2) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(S_n - 1)^l} \quad (l = 1, 2, 3, \dots).$$

In particular, $\gamma_{1,1}$ (2) is Cahen's constant.

Example 2. When $\varepsilon = -1$ and $u_0 = 2$, we obtain

$$\gamma_{l,-1}(2) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{(s_n+1)^l} \quad (l=2,4,6,\cdots),$$

$$\gamma_{l,-1}(2) = \sum_{n=0}^{+\infty} \frac{1}{(s_n+1)^l} \quad (l=1,3,5,\cdots).$$

Example 3. When $\varepsilon = 2$ and $u_0 = 3$, u_n is the *n*-th Fermat number:

$$u_n = F_n = 2^{2^n} + 1.$$

Therefore we have

$$\gamma_{l,2}(3) = \sum_{n=0}^{+\infty} (-1)^n \left(\frac{2^n}{F_n - 2}\right)^l = \sum_{n=0}^{+\infty} (-1)^n \left(\frac{2^n}{2^{2^n} - 1}\right)^l \quad (l = 1, 2, 3, \dots).$$

It should be noted that the irrationality exponent of the sum of the reciprocals of Fermat numbers is equal to 2 (see [3]).

Example 4. Denote by L_n the sequence of Lucas numbers. Define

$$v_n = L_{2^{n+1}} = \Phi^{2^{n+1}} + \Phi^{-2^{n+1}},$$

where $\Phi = \frac{1}{2} (1 + \sqrt{5})$ is the Golden number. Then clearly $v_{n+1} = v_n^2 - 2$. If we put $u_n = v_n + 2$, we see that $u_0 = 5$ and

$$u_{n+1} = u_n^2 - 4u_n + 4$$

for every $n \geq 0$. Therefore

$$\gamma_{l,4}(5) = \sum_{n=0}^{+\infty} (-1)^n \left(\frac{4^n}{L_{2^{n+1}}-2}\right)^l \quad (l=1,2,3,\cdots).$$

As for transcendence, much more general results are obtained by Duverney, Kurosawa, and Shiokawa [6]. They discussed transcendence of the values of the series

$$\sum_{n=0}^{\infty} \frac{a^n}{q(p^n(z))}$$

at algebraic points, where $a \in \overline{\mathbb{Q}}, p(z), q(z) \in \overline{\mathbb{Q}}[z]$ with $\deg p(z) \geq 2$ and $\deg q(z) \geq 1$. For example, [6, Example 1.5] states that, if $a \neq 0$ and γ with $S_n \neq \gamma$ for all $n \geq 0$ are algebraic numbers, then

$$\sum_{n=0}^{\infty} \frac{a^n}{(S_n - \gamma)^l},$$

where l is any positive integers, is algebraic if and only if a = l = 1 and $\gamma = 0$.

References

- P.-G. Becker, Algebraic independence of the values of certain series by Mahler's method, Mh. Math. 114 (1992), 183-198.
- [2] E. Cahen, Note sur un développement des quantités numériques, qui présente quelque analogie avec celui en fraction continue, Nouv. Ann. Math. 10 (1891), 508-514.
- [3] M. Coons, On the rational approximation of the sum of the reciprocals of the Fermat numbers, Ramanujan J. 30, No1 (2013), 39-65; addendum ibid. 37, No1 (2015), 109-111.
- [4] J. L. Davison and J. O. Shallit, Continued fractions for some alternating series, Mh. Math. 111 (1991), 119-126.
- [5] D. Duverney, Number Theory: an elementary introduction through diophantine problems, Monographs in Number Theory 4, World Scientific, 2010.
- [6] D. Duverney, T. Kurosawa, and I. Shiokawa, Transcendence of numbers related with Cahen's constant, to appear in Moscow J. of Cobinatrics and Number Theory.
- [7] D. Duverney and I. Shiokawa, Irrationality exponents of numbers related with Cahen's constant, submitted, Monographs in Number Theory 4, World Scientific, 2010.
- [8] W. B. Jones and W. J. Thron, Continued Fractions: analytic theory and applications, Encyclopedia of Math. and its applications 11, Addison-Wesley, 1980.
- [9] W. Sierpinski, Sur un algorithme pour développer les nombres réels en séries rapidement convergentes, Bull. Intern. Acad. Sci. Cracovie (1911), 508-514.
- [10] J. Sondow, Irrationality measures, irrationality bases and a theorem of Jarník, https://arxiv.org/abs/math/0406300v1 (2004).
- [11] J. J. Sylvester, On a point in the theory of vulgar functions, Amer. J. Math. 3 (1880), 332-335.

IEKATA SHIOKAWA,

 $E ext{-}mail\ address: shiokawa@beige.ocn.ne.jp}$