# On a maximizing problem of the Sobolev embedding related to the space of bounded variation

Michinori Ishiwata<sup>1</sup> and Hidemitsu Wadade<sup>2</sup>

### 1 Main theorem

We first recall the definition of the function space of bounded variation. Let  $N \geq 2$ . The total variation of  $u \in L^1(\mathbb{R}^N)$  is given by

$$V(u)(\mathbb{R}^N) := \sup \left\{ \int_{\mathbb{R}^N} u \operatorname{div} \psi \, \middle| \, \psi \in C_c^1(\mathbb{R}^N, \mathbb{R}^N), \, \|\psi\|_{L^{\infty}(\mathbb{R}^N, \mathbb{R}^N)} \le 1 \right\},$$

where  $\|\psi\|_{L^{\infty}(\mathbb{R}^N,\mathbb{R}^N)} := \max_{1 \leq i \leq N} \|\psi_i\|_{L^{\infty}(\mathbb{R}^N)}$  for  $\psi = (\psi_1, \dots, \psi_N) \in C_c^1(\mathbb{R}^N, \mathbb{R}^N)$ . We say  $u \in BV(\mathbb{R}^N)$  if  $u \in L^1(\mathbb{R}^N)$  and  $V(u)(\mathbb{R}^N) < +\infty$ .

Let  $1 < q \le N' (:= \frac{N}{N-1})$  and  $\alpha > 0$ . We consider the attainability of maximizing problems  $D_{\alpha,q}$  and  $\tilde{D}_{\alpha,q}$  defined by

$$D_{\alpha,q} := \sup_{u \in BV(\mathbb{R}^N), \ \|u\|_{L^{1}(\mathbb{R}^N)} + V(u)(\mathbb{R}^N) = 1} \left( \|u\|_{L^{1}(\mathbb{R}^N)} + \alpha \|u\|_{L^{q}(\mathbb{R}^N)}^{q} \right).$$

and

$$\tilde{D}_{\alpha,q} := \sup_{u \in W^{1,1}(\mathbb{R}^N), \ \|u\|_{L^1(\mathbb{R}^N)} + \|\nabla u\|_{L^1(\mathbb{R}^N)} = 1} \left( \|u\|_{L^1(\mathbb{R}^N)} + \alpha \|u\|_{L^q(\mathbb{R}^N)}^q \right).$$

Introduce the best-constant  $GN_q > 0$  of the Gagliardo-Nirenberg type inequality defined by

$$GN_q := \sup_{u \in BV(\mathbb{R}^N) \setminus \{0\}} GN_q(u) := \sup_{u \in BV(\mathbb{R}^N) \setminus \{0\}} \frac{\|u\|_{L^q(\mathbb{R}^N)}^q}{\|u\|_{L^1(\mathbb{R}^N)}^{q-(q-1)N} V(u)(\mathbb{R}^N)^{(q-1)N}}.$$

Also define  $\alpha_q^* \geq 0$  by

$$\alpha_q^* := \inf_{u \in BV(\mathbb{R}^N), \, \|u\|_{L^1(\mathbb{R}^N)} + V(u)(\mathbb{R}^N) = 1} \frac{1 - \|u\|_{L^1(\mathbb{R}^N)}}{\|u\|_{L^q(\mathbb{R}^N)}^q}.$$

**Theorem 1.1** (Sub-critical case). (i) When  $1 < q < \frac{N+1}{N}$ , there holds  $\alpha_q^* = 0$ , and  $D_{\alpha,q}$  is attained for all  $\alpha > 0$ . When  $\frac{N+1}{N} \le q < N'$ , there holds  $\alpha_q^* > 0$ , and  $D_{\alpha,q}$  is attained for all  $\alpha > \alpha_q^*$ , while  $D_{\alpha,q}$  is not attained for all  $\alpha < \alpha_q^*$ .

(ii) When 
$$q = \frac{N+1}{N}$$
,  $D_{\alpha_q^*,q}$  is not attained. When  $\frac{N+1}{N} < q < N'$ ,  $D_{\alpha_q^*,q}$  is attained.

<sup>&</sup>lt;sup>1</sup>Department of Systems Innovation, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 5608531, Japan

<sup>&</sup>lt;sup>2</sup> Faculty of Mechanical Engineering, Institute of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa 9201192, Japan

(iii) The values of  $\alpha_q^*$  are computed as

$$\alpha_q^* = \begin{cases} & 0 \quad \textit{when} \ 1 < q < \frac{N+1}{N}, \\ & \frac{1}{GN_q} \quad \textit{when} \ q = \frac{N+1}{N}, \\ & \frac{1}{GN_q} \frac{(q-1)^{q-1}}{(qN-(N+1))^{qN-(N+1)}(N-q(N-1))^{N-q(N-1)}}, \quad \textit{when} \ \frac{N+1}{N} < q < N'. \end{cases}$$

(iv) There holds  $GN_q = (\frac{1}{N^{N-1}\omega_{N-1}})^{q-1}$  for  $1 < q \le N'$ .

Theorem 1.2 (Critical case). There hold

$$\alpha_{N'}^* = \frac{1}{GN_{N'}} = N \omega_{N-1}^{\frac{1}{N-1}} \quad and \quad D_{\alpha,N'} = \max\{1, \alpha \, GN_{N'}\},$$

and  $D_{\alpha,N'}$  is not attained for all  $\alpha > 0$ .

**Theorem 1.3.** Let  $1 < q \le N'$ . Then there holds  $D_{\alpha,q} = \tilde{D}_{\alpha,q}$ , and  $\tilde{D}_{\alpha,q}$  is not attained for all  $\alpha > 0$ .

**Theorem 1.4.** Assume one of the following conditions

(i) 
$$1 < q < \frac{N+1}{N}$$
 and  $\alpha > 0$ , (ii)  $q = \frac{N+1}{N}$  and  $\alpha > \alpha_q^*$ , (iii)  $\frac{N+1}{N} < q < N'$  and  $\alpha \geq \alpha_q^*$ .

Then there exists R > 0 depending on N, q and  $\alpha$  such that the function

$$\frac{N}{\omega_{N-1}R^{N-1}(N+R)}\chi_{B_R(x_0)}$$
 (1.1)

is a maximizer of  $D_{\alpha,q}$  for all  $x_0 \in \mathbb{R}^N$ . Moreover, the function (1.1) is a unique maximizer of  $D_{\alpha,q}$  except for the translation.

## 2 Preliminaries

Let  $N \geq 2$  and  $1 < q \leq N'$ . Introduce the best-constants  $GN_q$  and  $\tilde{GN}_q$  of the Gagliardo-Nirenberg type inequalities based on  $BV(\mathbb{R}^N)$  and  $W^{1,1}(\mathbb{R}^N)$  respectively by

$$GN_q:=\sup_{u\in BV(\mathbb{R}^N)\backslash\{0\}}GN_q(u)\quad\text{and}\quad \tilde{GN}_q:=\sup_{u\in W^{1,1}(\mathbb{R}^N)\backslash\{0\}}\tilde{GN}_q(u),$$

where

$$GN_q(u) := \frac{\|u\|_q^q}{\|u\|_1^{q-(q-1)N} V(u)^{(q-1)N}} \quad \text{for } u \in BV(\mathbb{R}^N) \setminus \{0\}$$

and

$$\tilde{GN}_q(u) := \frac{\|u\|_q^q}{\|u\|_1^{q-(q-1)N} \|\nabla u\|_1^{(q-1)N}} \quad \text{for } u \in W^{1,1}(\mathbb{R}^N) \setminus \{0\}.$$

Our goal in this section is to prove the following proposition.

Proposition 2.1. Let 1 < q < N'.

- (i) There holds  $GN_q = \tilde{GN}_q = \left(\frac{1}{N^{N-1}\omega_{N-1}}\right)^{q-1}$ .
- (ii)  $GN_q$  is attained by functions of the form  $u = \lambda \chi_B \in BV(\mathbb{R}^N)$  for  $\lambda \in \mathbb{R} \setminus \{0\}$  and a ball  $B \subset \mathbb{R}^N$ . Moreover, the maximizer of  $GN_q$  necessarily has this form.
- (iii)  $\tilde{GN}_q$  is not attained in  $W^{1,1}(\mathbb{R}^N) \setminus \{0\}$ .

**Proof.** First, recall the facts that it holds  $GN_{N'} = \frac{1}{N\omega_{N-1}^{N-1}}$  and  $GN_{N'}$  is attained only by functions of the form  $u = \lambda \chi_B \in BV(\mathbb{R}^N)$  for  $\lambda \in \mathbb{R} \setminus \{0\}$  and a ball  $B \subset \mathbb{R}^N$ .

(i) By Hölder's inequality and Sobolev's inequality, we have for  $u \in BV(\mathbb{R}^N)$ 

 $||u||_q^q \le ||u||_1^{q-(q-1)N} ||u||_{N'}^{(q-1)N}$ 

$$\leq \|u\|_1^{q-(q-1)N} \left(\frac{1}{N^{\frac{N-1}{N}}\omega_{N-1}^{\frac{1}{N}}}V(u)\right)^{(q-1)N} = \left(\frac{1}{N^{N-1}\omega_{N-1}}\right)^{q-1} \|u\|_1^{q-(q-1)N}V(u)^{(q-1)N},$$

which implies  $GN_q \leq \left(\frac{1}{N^{N-1}\omega_{N-1}}\right)^{q-1}$ . Let  $u_0 = \chi_{B_1(0)} \in BV(\mathbb{R}^N)$ . Then we can compute  $\|u_0\|_1 = \|u_0\|_q^q = \frac{\omega_{N-1}}{N}$  and  $V(u_0) = \omega_{N-1}$ , and then we observe  $GN_q(u_0) = \left(\frac{1}{N^{N-1}\omega_{N-1}}\right)^{q-1}$ . Hence,  $u_0$  is a maximizer of  $GN_q$  and it follows  $GN_q = \left(\frac{1}{N^{N-1}\omega_{N-1}}\right)^{q-1}$ .

Next, we prove  $GN_q = \tilde{GN}_q$ . It is enough to show  $GN_q \leq \tilde{GN}_q$  since the converse inequality is obtained by the facts  $W^{1,1}(\mathbb{R}^N) \subset BV(\mathbb{R}^N)$  and  $\|\nabla u\|_1 = V(u)$  for  $u \in W^{1,1}(\mathbb{R}^N)$ . Let  $u_0 \in BV(\mathbb{R}^N) \setminus \{0\}$  be a maximizer of  $GN_q$ , where note that the existence of  $u_0$  is already seen as above. By an approximation argument, there exists a sequence  $\{u_n\}_{n=1}^\infty \subset BV(\mathbb{R}^N) \cap C^\infty(\mathbb{R}^N)$  such that  $u_n \to u_0$  in  $L^1(\mathbb{R}^N)$  and  $V(u_n) \to V(u_0)$ , and up to a subsequence,  $u_n \to u_0$  a.e. on  $\mathbb{R}^N$ . We observe that  $u_n \in W^{1,1}(\mathbb{R}^N)$  with  $V(u_n) = \|\nabla u_n\|_1$ . Indeed, by using the fact that there holds  $V(v)(\Omega) = \int_\Omega |\nabla v|$  for any  $v \in BV(\Omega) \cap C^\infty(\Omega)$  with a bounded domain having its sufficiently smooth boundary, we see

$$V(u_n) = \sup_{R>0} V(u_n)(B_R) = \sup_{R>0} \int_{B_R} |\nabla u_n| = \lim_{R\to\infty} \int_{B_R} |\nabla u_n| = \|\nabla u_n\|_1 < +\infty,$$

where the last equality is shown by Lebesgue's monotone convergence theorem. Then it holds  $u_n \neq 0$  in  $W^{1,1}(\mathbb{R}^N)$  for large  $n \in \mathbb{N}$  since  $\|\nabla u_n\|_1 = V(u_n) \to V(u_0) > 0$  as  $n \to \infty$ . Now we see by the convergences of  $u_n$  together with Fatou's lemma,

$$GN_q = GN_q(u_0) \leq \liminf_{n \to \infty} GN_q(u_n) \leq \limsup_{n \to \infty} GN_q(u_n) = \limsup_{n \to \infty} \tilde{GN}_q(u_n) \leq \tilde{GN}_q.$$

Thus the assertion (i) has been proved.

(ii) Let  $u_0 = \lambda \chi_B \in BV(\mathbb{R}^N)$  for  $\lambda \in \mathbb{R} \setminus \{0\}$  and a ball  $B = B_R(x_0)$  with a radius R > 0 centered at  $x_0 \in \mathbb{R}^N$ . Then we can compute

$$\|u_0\|_1 = |\lambda| R^N \frac{\omega_{N-1}}{N}, \quad \|u_0\|_q^q = |\lambda|^q R^N \frac{\omega_{N-1}}{N} \quad \text{and} \quad V(u_0) = |\lambda| R^{N-1} \omega_{N-1},$$

and thus these relations together with the assertion (i) show  $GN_q(u_0) = \left(\frac{1}{N^{N-1}\omega_{N-1}}\right)^{q-1} = GN_q$ . Hence,  $u_0$  is a maximizer of  $GN_q$ .

Next, assume that  $GN_q$  is attained by  $u_0 \in BV(\mathbb{R}^N) \setminus \{0\}$ . Then by Hölder's inequality, Sobolev inequality and the assertion (i), we have

$$\begin{split} &\left(\frac{1}{N^{N-1}\omega_{N-1}}\right)^{q-1} = GN_q = GN_q(u_0) \\ &\leq GN_{N'}(u_0)^{(q-1)(N-1)} \leq GN_{N'}^{(q-1)(N-1)} = \left(\frac{1}{N^{N-1}\omega_{N-1}}\right)^{q-1}, \end{split}$$

which shows that  $u_0$  is a maximizer of  $GN_{N'}$ . Hence,  $u_0 = \lambda \chi_B$  for some  $\lambda \in \mathbb{R} \setminus \{0\}$  and a ball  $B \subset \mathbb{R}^N$ . The assertion (ii) has been proved.

(iii) By contradiction, assume that  $\tilde{GN}_q$  is attained by  $u_0 \in W^{1,1}(\mathbb{R}^N) \setminus \{0\}$ . Then the assertion (i) and the facts  $W^{1,1}(\mathbb{R}^N) \subset BV(\mathbb{R}^N)$  and  $\|\nabla u\|_1 = V(u)$  for  $u \in W^{1,1}(\mathbb{R}^N)$ 

imply that  $u_0 \in BV(\mathbb{R}^N) \setminus \{0\}$  is a maximizer of  $GN_q$ . Then the assertion (ii) shows that  $u_0 = \lambda \chi_B$  for  $\lambda \in \mathbb{R} \setminus \{0\}$  and a ball  $B \subset \mathbb{R}^N$ , which is a contradiction to  $u_0 \in W^{1,1}(\mathbb{R}^N)$ . The assertion (iii) has been proved.

**Proposition 2.2.** Let  $1 < q \le N'$  and  $\alpha > 0$ . Then there hold

$$D_{\alpha,q} = \sup_{t>0} f_{\alpha}(t)$$
 and  $\alpha_q^* = \frac{1}{GN_q} \inf_{t>0} g(t),$ 

where

$$f_{\alpha}(t) := \frac{(1+t)^{q-1} + \alpha \, G N_q t^{(q-1)N}}{(1+t)^q} \quad and \quad g(t) := \frac{t(1+t)^{q-1}}{t^{(q-1)N}}$$

for t > 0. Furthermore, the values of  $\alpha_a^*$  are computed as

$$\alpha_q^* = \begin{cases} & 0 \quad \textit{when} \ 1 < q < \frac{N+1}{N}, \\ & \frac{1}{GN_q} \quad \textit{when} \ q = \frac{N+1}{N}, \\ & \frac{1}{GN_q} \frac{(q-1)^{q-1}}{(qN-(N+1))^{qN-(N+1)}(N-q(N-1))^{N-q(N-1)}} \quad \textit{when} \ \frac{N+1}{N} < q < N', \\ & \frac{1}{GN_q} \quad \textit{when} \ q = N'. \end{cases}$$

**Proof.** For  $u \in BV(\mathbb{R}^N)$  with  $||u||_1 + V(u) = 1$ , we see

$$\begin{split} &\|u\|_{1} + \alpha\|u\|_{q}^{q} \leq \|u\|_{1} + \alpha GN_{q}\|u\|_{1}^{q-(q-1)N}V(u)^{(q-1)N} \\ &= \frac{\|u\|_{1} \left(\|u\|_{1} + V(u)\right)^{q-1} + \alpha GN_{q}\|u\|_{1}^{q-(q-1)N}V(u)^{(q-1)N}}{\left(\|u\|_{1} + V(u)\right)^{q}} \\ &= \frac{\left(1 + \frac{V(u)}{\|u\|_{1}}\right)^{q-1} + \alpha GN_{q} \left(\frac{V(u)}{\|u\|_{1}}\right)^{(q-1)N}}{\left(1 + \frac{V(u)}{\|u\|_{1}}\right)^{q}} \\ &= f_{\alpha} \left(\frac{V(u)}{\|u\|_{1}}\right) \leq \sup_{t>0} f_{\alpha}(t), \end{split}$$

which implies  $D_{\alpha,q} \leq \sup_{t>0} f_{\alpha}(t)$ . On the other hand, let  $v \in BV(\mathbb{R}^N) \setminus \{0\}$  be a maximizer of  $GN_q$ , where the existence of v is guaranteed by Proposition 2.1 (ii). For any  $\lambda > 0$ , let  $v_{\lambda}(x) := \lambda v(\lambda^{\frac{1}{N}}x)$  and

$$w_{\lambda}(x):=\frac{v_{\lambda}(x)}{\|v_{\lambda}\|_1+V(v_{\lambda})}=\frac{\lambda v(\lambda^{\frac{1}{N}}x)}{\|v\|_1+\lambda^{\frac{1}{N}}V(v)}.$$

Then for any  $\lambda > 0$ ,

$$\begin{split} &D_{\alpha,q} \geq \|w_{\lambda}\|_{1} + \alpha\|w_{\lambda}\|_{q}^{q} \\ &= \frac{\|v\|_{1}}{\|v\|_{1} + \lambda^{\frac{1}{N}}V(v)} + \alpha \frac{\lambda^{q-1}\|v\|_{q}^{q}}{\left(\|v\|_{1} + \lambda^{\frac{1}{N}}V(v)\right)^{q}} \\ &= \frac{\left(1 + \lambda^{\frac{1}{N}}\frac{V(v)}{\|v\|_{1}}\right)^{q-1} + \alpha \, GN_{q} \left(\lambda^{\frac{1}{N}}\frac{V(v)}{\|v\|_{1}}\right)^{(q-1)N}}{\left(1 + \lambda^{\frac{1}{N}}\frac{V(v)}{\|v\|_{1}}\right)^{q}} \\ &= f_{\alpha} \left(\lambda^{\frac{1}{N}}\frac{V(v)}{\|v\|_{1}}\right), \end{split}$$

which implies

$$D_{\alpha,q} \ge \sup_{\lambda > 0} f_{\alpha} \left( \lambda^{\frac{1}{N}} \frac{V(v)}{\|v\|_{1}} \right) = \sup_{t > 0} f_{\alpha}(t).$$

Thus there holds  $D_{\alpha,q} = \sup_{t>0} f_{\alpha}(t)$ .

Next, for  $u \in BV(\mathbb{R}^N)$  with  $||u||_1 + V(u) = 1$ , we see

$$\begin{split} &\frac{1-\|u\|_1}{\|u\|_q^q} \geq \frac{1-\|u\|_1}{GN_q\|u\|_1^{q-(q-1)N}V(u)^{(q-1)N}} \\ &= \frac{1}{GN_q} \frac{\left(\frac{V(u)}{\|u\|_1}\right)\left(1+\frac{V(u)}{\|u\|_1}\right)^{q-1}}{\left(\frac{V(u)}{\|u\|_1}\right)^{(q-1)N}} = \frac{1}{GN_q} g\left(\frac{V(u)}{\|u\|_1}\right) \geq \frac{1}{GN_q} \inf_{t>0} g(t), \end{split}$$

which implies  $\alpha_q^* \ge \frac{1}{GN_q} \inf_{t>0} g(t)$ . On the other hand, let  $v \in BV(\mathbb{R}^N) \setminus \{0\}$  be a maximizer of  $GN_q$  and define  $w_\lambda$  for  $\lambda > 0$  as above. Then we see for  $\lambda > 0$ ,

$$\begin{split} &\alpha_q^* \leq \frac{1 - \|w_\lambda\|_1}{\|w_\lambda\|_q^q} = \frac{\lambda^{\frac{1}{N}} V(v) \left(\|v\|_1 + \lambda^{\frac{1}{N}} V(v)\right)^{q-1}}{\lambda^{q-1} \|v\|_q^q} \\ &= \frac{\lambda^{\frac{1}{N}} V(v) \left(\|v\|_1 + \lambda^{\frac{1}{N}} V(v)\right)^{q-1}}{\lambda^{q-1} G N_q \|v\|_1^{q-(q-1)N} V(v)^{(q-1)N}} \\ &= \frac{\lambda^{\frac{1}{N}} \frac{V(v)}{\|v\|_1} \left(1 + \lambda^{\frac{1}{N}} \frac{V(v)}{\|v\|_1}\right)^{q-1}}{G N_q \left(\lambda^{\frac{1}{N}} \frac{V(v)}{\|v\|_1}\right)^{(q-1)N}} = \frac{1}{G N_q} g \left(\lambda^{\frac{1}{N}} \frac{V(v)}{\|v\|_1}\right), \end{split}$$

which implies

$$\alpha_q^* \leq \frac{1}{GN_q} \inf_{\lambda > 0} g\left(\lambda^{\frac{1}{N}} \frac{V(v)}{\|v\|_1}\right) = \frac{1}{GN_q} \inf_{t > 0} g(t).$$

Thus there holds  $\alpha_q^* = \frac{1}{GN_q} \inf_{t>0} g(t)$ .

Next, we compute the values of  $\alpha_q^*$ . Since we have proved  $\alpha_q^* = \frac{1}{GN_q}\inf_{t>0}g(t)$ , it is enough to manipulate  $\inf_{t>0}g(t)$ . First, let  $1 < q < \frac{N+1}{N}$ . In this case, since (N+1)-qN>0, we see  $\inf_{t>0}g(t)=\inf_{t>0}t^{(N+1)-qN}(1+t)^{q-1}=0$ . Next, let  $q=\frac{N+1}{N}$ . In this case, since (N+1)-qN=0, we see  $\inf_{t>0}g(t)=\inf_{t>0}(1+t)^{q-1}=1$ . Next, let  $\frac{N+1}{N}< q < N'$ . In this case, we have  $g(t)=\frac{(1+t)^{q-1}}{t^{qN-(N+1)}}$  with qN-(N+1)>0 and

$$g'(t) = \frac{(1+t)^{q-2}}{t^{(q-1)N}} \left( \left(N-q(N-1)\right)t - \left(qN-(N+1)\right) \right).$$

Then letting  $t_0 := \frac{qN - (N+1)}{N - q(N-1)} > 0$ , we obtain

$$\inf_{t>0} g(t) = g(t_0) = \frac{(q-1)^{q-1}}{(qN - (N+1))^{qN - (N+1)} (N - q(N-1))^{N - q(N-1)}}.$$

Finally, let q=N'. In this case, we have  $g(t)=\frac{t(1+t)^{N'-1}}{t^{N'}}$  and  $g'(t)=-\frac{N'-1}{t^{N'}(1+t)^{2-N'}}<0$ . Hence, we obtain  $\inf_{t>0}g(t)=\lim_{t\to\infty}g(t)=1$ . The proof of Proposition 2.2 is complete.

## 3 Proof of main Theorems

Let  $N \geq 2$ . We start with the following lemma.

**Lemma 3.1.** Let 1 < q < N'.

- (i) Let  $\alpha > \alpha_q^*$ . Then  $D_{\alpha,q}$  is attained.
- (ii) Assume  $\alpha_q^* > 0$  and let  $0 < \alpha < \alpha_q^*$ . Then  $D_{\alpha,q}$  is not attained.

**Proof.** By Proposition 2.2, we see that  $D_{\alpha,q}$  is attained if and only if  $\sup_{t>0} f_{\alpha}(t)$  is attained.

- (i) Let  $\alpha > \alpha_q^*$ . Note that the condition q < N' shows  $\lim_{t \to \infty} f_{\alpha}(t) = 0$ . By the assumption  $\alpha > \alpha_q^*$  and Proposition 2.2, there exists  $t_0 > 0$  such that  $\alpha > \frac{1}{GN_q}g(t_0)$ , which implies  $f_{\alpha}(t_0) > 1 = \lim_{t \downarrow 0} f_{\alpha}(t)$ . Hence,  $\sup_{t > 0} f_{\alpha}(t)$  is attained.
- (ii) Assume  $\alpha_q^* > 0$  and let  $0 < \alpha < \alpha_q^*$ . By contradiction, assume that there exists  $t_0 > 0$  such that  $\sup_{t>0} f_{\alpha}(t) = f_{\alpha}(t_0)$ . First, note  $\sup_{t>0} f_{\alpha}(t) \geq \lim_{t\downarrow 0} f_{\alpha}(t) = 1$ . By the assumption  $\alpha < \alpha_q^*$  and Proposition 2.2, we obtain  $\alpha < \alpha_q^* \leq \frac{1}{GN_q} g(t_0)$ , which implies  $f_{\alpha}(t_0) < 1$ . Then we see  $1 \leq \sup_{t>0} f_{\alpha}(t) = f_{\alpha}(t_0) < 1$ , which is a contradiction. Thus  $\sup_{t>0} f_{\alpha}(t)$  is not attained.

**Proof of Theorem 1.1.** By Proposition 2.1 (i), Proposition 2.2 and Lemma 3.1, it remains to prove that  $D_{\alpha_q^*,q}$  is not attained when  $q = \frac{N+1}{N}$ , and  $D_{\alpha_q^*,q}$  is attained when  $\frac{N+1}{N} < q < N'$ . First, let  $q = \frac{N+1}{N}$ . In this case, since  $\alpha_q^* G N_q = 1$ , we obtain  $f_{\alpha_q^*}(t) = \frac{(1+t)^{\frac{1}{N}}+t}{(1+t)^{\frac{N+1}{N}}}$ , and

then  $f'_{\alpha^*_q}(t) = \frac{N-t-N(1+t)^{\frac{1}{N}}}{N(1+t)^{\frac{2N+1}{N}}} < 0$  for all t>0. Hence,  $\sup_{t>0} f_{\alpha^*_q}(t)$  is not attained. Next, let  $\frac{N+1}{N} < q < N'$ . In this case, since  $\lim_{t\downarrow 0} g(t) = \lim_{t\to\infty} g(t) = \infty$ , there exists  $t_0>0$  such that  $\alpha^*_q = \frac{1}{GN_q} \inf_{t>0} g(t) = \frac{1}{GN_q} g(t_0)$ , which gives  $f_{\alpha^*_q}(t_0) = 1$ . On the other hand, by noticing  $\lim_{t\to\infty} f_{\alpha^*_q}(t) = 0$  by the condition q < N' together with  $\lim_{t\downarrow 0} f_{\alpha^*_q}(t) = 1$ , we see that  $\sup_{t>0} f_{\alpha^*_q}(t)$  is attained. Thus Theorem 1.1 has been proved.

**Proof of Theorem 1.2.** By Proposition 2.2, we already proved  $\alpha_{N'}^* = \frac{1}{GN_{N'}}$ . Hence, we show  $D_{\alpha,N'} = \max\{1, \alpha GN_{N'}\}$ , and  $D_{\alpha,N'}$  is not attained for all  $\alpha > 0$ . In this case, we have

$$f_{\alpha}(t) = \frac{(1+t)^{N'-1} + \alpha G N_{N'} t^{N'}}{(1+t)^{N'}} \ \text{ and } \ f_{\alpha}'(t) = \frac{t^{N'-1}}{(1+t)^{N'+1}} \left( \alpha N' G N_{N'} - \left(\frac{1+t}{t}\right)^{N'-1} \right).$$

We distinguish between two cases. When  $\alpha \leq \frac{1}{N'GN_{N'}}$ , we obtain  $f'_{\alpha}(t) < 0$  for all t > 0, and hence,  $\sup_{t>0} f_{\alpha}(t)$  is not attained. Also, in this case, we see  $D_{\alpha,N'} = \sup_{t>0} f_{\alpha}(t) = \lim_{t\downarrow 0} f_{\alpha}(t) = 1 = \max\{1, \alpha GN_{N'}\}$ . When  $\alpha > \frac{1}{N'GN_{N'}}$ , by putting  $t_0 := \frac{1}{(\alpha N'GN_{N'})^{\frac{1}{N'-1}}-1} > 0$ , we see that  $f_{\alpha}$  is strictly decreasing in  $(0,t_0)$  and strictly increasing in  $(t_0,\infty)$ , and therefore,  $\sup_{t>0} f_{\alpha}(t)$  is not attained. Also, in this case, we see  $D_{\alpha,N'} = \sup_{t>0} f_{\alpha}(t) = \max\{\lim_{t\downarrow 0} f_{\alpha}(t), \lim_{t\to\infty} f_{\alpha}(t)\} = \max\{1, \alpha GN_{N'}\}$ . The proof of Theorem 1.2 is complete.

**Proof of Theorem 1.3.** Let  $1 < q \le N'$  and  $\alpha > 0$ . First, we prove  $D_{\alpha,q} = \tilde{D}_{\alpha,q}$ . It is enough to show  $D_{\alpha,q} \le \tilde{D}_{\alpha,q}$  since the converse inequality is obtained by the facts  $W^{1,1}(\mathbb{R}^N) \subset BV(\mathbb{R}^N)$  and  $\|\nabla u\|_1 = V(u)$  for  $u \in W^{1,1}(\mathbb{R}^N)$ . By the definition of  $D_{\alpha,q}$ , for any  $\varepsilon > 0$ , there exists  $u_0 \in BV(\mathbb{R}^N)$  such that  $\|u_0\|_1 + V(u_0) = 1$  and  $\|u_0\|_1 + \alpha \|u_0\|_q^q > D_{\alpha,q} - \varepsilon$ . As in the proof of Proposition 2.1 (i), we can pick up a sequence  $\{u_n\}_{n=1}^{\infty} \subset W^{1,1}(\mathbb{R}^N)$  satisfying  $u_n \to u_0$  in  $L^1(\mathbb{R}^N)$  and  $\|\nabla u_n\|_1 = V(u_n) \to V(u_0)$ , and up to a subsequence,  $u_n \to u_0$  a.e. on  $\mathbb{R}^N$ . Now letting  $v_n := \frac{u_n}{\|u_n\|_1 + \|\nabla u_n\|_1} \in W^{1,1}(\mathbb{R}^N) \setminus \{0\}$  for large  $n \in \mathbb{N}$ , we see by the convergences of  $u_n$  and Fatou's lemma,

$$D_{\alpha,q} - \varepsilon < \|u_0\|_1 + \alpha \|u_0\|_q^q \le \liminf_{n \to \infty} \left( \|v_n\|_1 + \alpha \|v_n\|_q^q \right) \le \limsup_{n \to \infty} \left( \|v_n\|_1 + \alpha \|v_n\|_q^q \right) \le \tilde{D}_{\alpha,q},$$

which implies  $D_{\alpha,q} \leq \tilde{D}_{\alpha,q}$  since  $\varepsilon$  is arbitrary. Thus  $D_{\alpha,q} = \tilde{D}_{\alpha,q}$  has been proved.

Next, we prove that  $\tilde{D}_{\alpha,q}$  is not attained for all  $\alpha > 0$ . By Proposition 2.1 (iii),  $\tilde{GN}_q$  is not attained, which yields

$$\tilde{GN}_q(u) < \tilde{GN}_q \quad \text{for all } u \in W^{1,1}(\mathbb{R}^N) \setminus \{0\}.$$
 (3.1)

By contradiction, assume that  $\tilde{D}_{\alpha,q}$  is attained by  $u_0 \in W^{1,1}(\mathbb{R}^N) \setminus \{0\}$  with  $||u_0||_1 + ||\nabla u_0||_1 = 1$ . Then using Proposition 2.1 (i), Proposition 2.2,  $D_{\alpha,q} = \tilde{D}_{\alpha,q}$  and (3.1), we have

$$\begin{split} &D_{\alpha,q} = \tilde{D}_{\alpha,q} = \|u_0\|_1 + \alpha \|u_0\|_q^q < \|u_0\|_1 + \alpha \tilde{GN}_q \|u_0\|_1^{q-(q-1)N} \|\nabla u_0\|_1^{(q-1)N} \\ &= \|u_0\|_1 + \alpha GN_q \|u_0\|_1^{q-(q-1)N} V(u_0)^{(q-1)N} \\ &= \frac{\|u_0\|_1 \left(\|u_0\|_1 + V(u_0)\right)^{q-1} + \alpha GN_q \|u_0\|_1^{q-(q-1)N} V(u_0)^{(q-1)N}}{\left(\|u_0\|_1 + V(u_0)\right)^q} \\ &= \frac{\left(1 + \frac{V(u_0)}{\|u_0\|_1}\right)^{q-1} + \alpha GN_q \left(\frac{V(u_0)}{\|u_0\|_1}\right)^{(q-1)N}}{\left(1 + \frac{V(u_0)}{\|u_0\|_1}\right)^q} = f_{\alpha} \left(\frac{V(u_0)}{\|u_0\|_1}\right) \le \sup_{t>0} f_{\alpha}(t) = D_{\alpha,q}, \end{split}$$

which is a contradiction. Proof of Theorem 1.3 is complete.

**Lemma 3.2.** Let  $1 < q \le N'$  and  $\alpha > 0$ . Assume that  $D_{\alpha,q}$  is attained by  $u_0 \in BV(\mathbb{R}^N) \setminus \{0\}$  with  $||u_0||_1 + V(u_0) = 1$ . Then there exist R > 0 and  $x_0 \in \mathbb{R}^N$  such that  $u_0$  is written as

$$u_0 = \frac{N}{\omega_{N-1} R^{N-1} (N+R)} \chi_{B_R(x_0)}.$$

**Proof.** By Proposition 2.2 and the definition of  $GN_q$ , we see

$$\begin{split} &\sup_{t>0} f_{\alpha}(t) = D_{\alpha,q} = \|u_0\|_1 + \alpha \|u_0\|_q^q \le \|u_0\|_1 + \alpha GN_q \|u_0\|_1^{q-(q-1)N} V(u_0)^{(q-1)N} \\ &= \frac{\|u_0\|_1 \left(\|u_0\|_1 + V(u_0)\right)^{q-1} + \alpha GN_q \|u_0\|_1^{q-(q-1)N} V(u_0)^{(q-1)N}}{\left(\|u_0\|_1 + V(u_0)\right)^q} \\ &= \frac{\left(1 + \frac{V(u_0)}{\|u_0\|_1}\right)^{q-1} + \alpha GN_q \left(\frac{V(u_0)}{\|u_0\|_1}\right)^{(q-1)N}}{\left(1 + \frac{V(u_0)}{\|u_0\|_1}\right)^q} = f_{\alpha} \left(\frac{V(u_0)}{\|u_0\|_1}\right) \le \sup_{t>0} f_{\alpha}(t), \end{split}$$

which implies that  $u_0$  is a maximizer of  $GN_q$ . Then by Proposition 2.1 (ii), we can write  $u_0 = \lambda \chi_{B_R(x_0)}$  for some  $\lambda \in \mathbb{R} \setminus \{0\}$ , R > 0 and  $x_0 \in \mathbb{R}^N$ . Moreover, since  $\|u_0\|_1 = \lambda R^N \frac{\omega_{N-1}}{N}$  and  $V(u_0) = \lambda R^{N-1} \omega_{N-1}$ , the normalization  $\|u_0\|_1 + V(u_0) = 1$  gives  $\lambda = \frac{N}{\omega_{N-1}R^{N-1}(N+R)}$ . Thus Lemma 3.2 has been proved.

**Proposition 3.3.** Let  $1 < q \le N'$  and  $\alpha > 0$ . Assume that  $\sup_{t>0} f_{\alpha}(t)$  admits a unique maximal point  $t_0 > 0$ . Then for each  $x_0 \in \mathbb{R}^N$ , the function

$$\frac{t_0^N}{\omega_{N-1}N^{N-1}(1+t_0)}\chi_{B_{\frac{N}{t_0}}(x_0)}$$
(3.2)

is a maximizer of  $D_{\alpha,q}$ . Moreover, the function (3.2) is a unique maximizer of  $D_{\alpha,q}$  except for the translation.

**Proof.** Let  $v \in BV(\mathbb{R}^N) \setminus \{0\}$  be a maximizer of  $GN_q$ . Then Proposition 2.1 (ii) implies  $v = \lambda \chi_{B_R(x_0)}$  for some  $\lambda \in \mathbb{R} \setminus \{0\}$ , R > 0 and  $x_0 \in \mathbb{R}^N$ . By the assumption, there exists a maximal point  $t_0 > 0$  such that  $\sup_{t > 0} f_{\alpha}(t) = f_{\alpha}(t_0)$ . Take  $\lambda_0 > 0$  satisfying  $\lambda_0^{\frac{1}{N}} \frac{V(v)}{\|v\|_1} = t_0$ , i.e.,

$$\lambda_0 = \left(\frac{\|v\|_1}{V(v)}t_0\right)^N = \left(\frac{R}{N}t_0\right)^N,\tag{3.3}$$

where we used  $||v||_1 = \lambda R^N \frac{\omega_{N-1}}{N}$  and  $V(v) = \lambda R^{N-1} \omega_{N-1}$ . Let  $v_{\lambda_0}(x) := \lambda_0 v(\lambda_0^{\frac{1}{N}} x)$  and

$$w_{\lambda_0}(x) := \frac{v_{\lambda_0}(x)}{\|v_{\lambda_0}\|_1 + V(v_{\lambda_0})} = \frac{\lambda_0 v(\lambda_0^{\frac{1}{N}} x)}{\|v\|_1 + \lambda_0^{\frac{1}{N}} V(v)}.$$

Then by Proposition 2.2, we see

$$\begin{split} &\sup_{t>0} f_{\alpha}(t) = D_{\alpha,q} \geq \|w_{\lambda_0}\|_1 + \alpha \|w_{\lambda_0}\|_q^q = \frac{\|v\|_1}{\|v\|_1 + \lambda_0^{\frac{1}{N}} V(v)} + \alpha \frac{\lambda_0^{q-1} \|v\|_q^q}{\left(\|v\|_1 + \lambda_0^{\frac{1}{N}} V(v)\right)^q} \\ &= \frac{\left(1 + \lambda_0^{\frac{1}{N}} \frac{V(v)}{\|v\|_1}\right)^{q-1} + \alpha G N_q \left(\lambda_0^{\frac{1}{N}} \frac{V(v)}{\|v\|_1}\right)^{(q-1)N}}{\left(1 + \lambda_0^{\frac{1}{N}} \frac{V(v)}{\|v\|_1}\right)^q} = f_{\alpha} \left(\lambda_0^{\frac{1}{N}} \frac{V(v)}{\|v\|_1}\right) = f_{\alpha}(t_0) = \sup_{t>0} f_{\alpha}(t), \end{split}$$

which implies that  $w_{\lambda_0}$  is a maximizer of  $D_{\alpha,q}$ . Moreover, by (3.3), we can compute

$$w_{\lambda_0} = \frac{t_0^N}{\omega_{N-1} N^{N-1} (1+t_0)} \chi_{B_{\frac{N}{t_0}}(\frac{N}{Rt_0}x_0)}.$$

Hence, the function (3.2) and its translations are maximizers of  $D_{\alpha,q}$ .

Next, we prove that the function (3.2) is a unique maximizer of  $D_{\alpha,q}$  except for the translation. Assume that  $u_0 \in BV(\mathbb{R}^N) \setminus \{0\}$  is a maximizer of  $D_{\alpha,q}$  with  $\|u_0\|_1 + V(u_0) = 1$ . Then by Lemma 3.2, we can write

$$u_0 = \frac{N}{\omega_{N-1} R^{N-1} (N+R)} \chi_{B_R(x_0)}$$

for some R > 0 and  $x_0 \in \mathbb{R}^N$ , and then by putting  $s_0 := \frac{N}{R}$ , we have

$$u_0 = \frac{s_0^N}{\omega_{N-1} N^{N-1} (1+s_0)} \chi_{B_{\frac{N}{s_0}}(x_0)}.$$

To compete the proof of Proposition 3.3, it is enough to show  $s_0 = t_0$ . On the contrary, assume  $s_0 \neq t_0$ . Noting that  $u_0$  is a maximizer both of  $D_{\alpha,q}$  and  $GN_q$ , we see

$$\begin{split} &D_{\alpha,q} = \|u_0\|_1 + \alpha \|u_0\|_q^q = \|u_0\|_1 + \alpha GN_q \|u_0\|_1^{q-(q-1)N} V(u_0)^{(q-1)N} \\ &= \frac{\|u_0\|_1 \left(\|u_0\|_1 + V(u_0)\right)^{q-1} + \alpha GN_q \|u_0\|_1^{q-(q-1)N} V(u_0)^{(q-1)N}}{\left(\|u_0\|_1 + V(u_0)\right)^q} \\ &= \frac{\left(1 + \frac{V(u_0)}{\|u_0\|_1}\right)^{q-1} + \alpha GN_q \left(\frac{V(u_0)}{\|u_0\|_1}\right)^{(q-1)N}}{\left(1 + \frac{V(u_0)}{\|u_0\|_1}\right)^q} = f_{\alpha} \left(\frac{V(u_0)}{\|u_0\|_1}\right) = f_{\alpha}(s_0), \end{split}$$

where we used  $s_0 = \frac{V(u_0)}{\|u_0\|_1}$ , and thus it follows  $D_{\alpha,q} = f_{\alpha}(s_0)$ . Since  $t_0$  is a unique maximal point of  $\sup_{t>0} f_{\alpha}(t)$ , we have by Proposition 2.2,

$$D_{\alpha,q} = \sup_{t>0} f_{\alpha}(t) = f_{\alpha}(t_0) > f_{\alpha}(s_0) = D_{\alpha,q},$$

which is a contradiction. Therefore, there holds  $s_0 = t_0$ . Thus Proposition 3.3 has been proved.

**Lemma 3.4.** Assume one of the following conditions

(i) 
$$1 < q < \frac{N+1}{N}$$
 and  $\alpha > 0$ , (ii)  $q = \frac{N+1}{N}$  and  $\alpha > \alpha_q^*$ , (iii)  $\frac{N+1}{N} < q < N'$  and  $\alpha \ge \alpha_q^*$ .  
Then  $\sup_{t>0} f_{\alpha}(t)$  has a unique maximal point on  $(0,\infty)$ .

**Proof.** Let 1 < q < N' and  $\alpha > 0$ . Then we can compute

$$\begin{split} &(1+t)^{q+1}f_{\alpha}'(t) = h(t) \\ &:= -(1+t)^{q-1} + \alpha \, GN_q(q-1)Nt^{qN-(N+1)} - \alpha \, GN_q\left(N-q(N-1)\right)t^{(q-1)N}, \end{split}$$

and

$$\begin{split} h'(t) &= -(q-1)(1+t)^{q-2} - \alpha \, GN_q(q-1)N\left((N+1) - qN\right)t^{(q-1)N-2} \\ &- \alpha \, GN_q(q-1)N\left(N - q(N-1)\right)t^{(q-1)N-1}. \end{split}$$

(i) Let  $1 < q < \frac{N+1}{N}$  and  $\alpha > 0$ . In this case, since qN - (N+1) < 0, we obtain  $\lim_{t\downarrow 0} h(t) = +\infty$ ,  $\lim_{t\to +\infty} h(t) = -\infty$  and h'(t) < 0 for t>0. Hence,  $f'_{\alpha} = 0$  on  $(0,\infty)$  has a unique solution  $t_0 > 0$ , and thus  $f_{\alpha}$  is strictly increasing on  $(0,t_0)$ , and  $f_{\alpha}$  is strictly decreasing on  $(t_0,\infty)$ . As a result,  $\sup_{t>0} f_{\alpha}(t)$  has a unique maximal point  $t_0$ .

(ii) Let  $q = \frac{N+1}{N}$  and  $\alpha > \alpha_q^*$ . In this case, we have

$$h(t) = -(1+t)^{\frac{1}{N}} + \alpha \, GN_q - \frac{\alpha \, GN_q}{N} t$$
 and  $h'(t) = -\frac{1}{N} (1+t)^{\frac{1}{N}-1} - \frac{\alpha \, GN_q}{N} t$ 

Since  $\alpha_q^* = \frac{1}{GN_q}$  by Proposition 2.2, we see  $\lim_{t\downarrow 0} h(t) = -1 + \alpha GN_q > -1 + \alpha_q^*GN_q = 0$ ,  $\lim_{t\to +\infty} h(t) = -\infty$  and h'(t) < 0 for t > 0. Hence,  $f'_{\alpha} = 0$  on  $(0, \infty)$  has a unique solution  $t_0 > 0$ , and thus  $f_{\alpha}$  is strictly increasing on  $(0, t_0)$ , and  $f_{\alpha}$  is strictly decreasing on  $(t_0, \infty)$ . As a result,  $\sup_{t>0} f_{\alpha}(t)$  has a unique maximal point  $t_0$ .

(iii) Let  $\frac{N+1}{N} < q < N'$ . In this case, we observe  $\lim_{t\downarrow 0} h(t) = -1$  and  $\lim_{t\to +\infty} f_{\alpha}(t) = 0$ . Computing

$$g(t) = \frac{(1+t)^{q-1}}{t^{qN-(N+1)}} \quad \text{and} \quad g'(t) = \frac{(1+t)^{q-2}}{t^{(q-1)N}} \left( \left( N - q(N-1) \right) t - \left( qN - (N+1) \right) \right),$$

we see that  $\inf_{t>0}g(t)$  has a unique minimal point  $t_0:=\frac{qN-(N+1)}{N-q(N-1)}>0$ . We first consider the case  $\alpha=\alpha_q^*$ . By Proposition 2.2, we observe that  $\inf_{t>0}g(t)=g(t_0)$  is equivalent to  $f_{\alpha_q^*}(t_0)=1$ . As a result, we can conclude that  $\sup_{t>0}f_{\alpha_q^*}(t)=1$  has a unique maximal point  $t_0$ . Next, we consider the case  $\alpha>\alpha_q^*$ . In this case, we have  $\alpha>\alpha_q^*=\frac{1}{GN_q}\inf_{t>0}g(t)=\frac{1}{GN_q}g(t_0)$ , which implies  $f_{\alpha}(t_0)>1$ . Hence,  $\sup_{t>0}f_{\alpha}(t)$  has a maximal point on  $(0,\infty)$ . For proving the uniqueness of the maximal point of  $\sup_{t>0}f_{\alpha}(t)$ , we introduce  $g_{\beta}(t)$  with  $\beta>1$  by

$$g_{\beta}(t) := \frac{(\beta t + \beta - 1)(1 + t)^{q-1}}{t^{(q-1)N}}.$$

We observe that there holds  $\lim_{t\downarrow 0} g_{\beta}(t) = \lim_{t\to +\infty} g_{\beta}(t) = +\infty$ , and  $g_{\beta}$  is a strictly convex function on  $(0,\infty)$ . Therefore, for each  $\beta>1$ , we see that  $g_{\beta}=\alpha GN_q$  has at most two solutions on  $(0,\infty)$ . On the other hand, since  $g_{\beta}=\alpha GN_q$  is equivalent to  $f_{\alpha}=\beta$ , we can conclude that the maximal point of  $\sup_{t>0} f_{\alpha}(t)$  is unique. Thus Lemma 3.4 has been proved.

**Proof of Theorem 1.4.** Proposition 3.3 together with Lemma 3.4 implies the assertion of Theorem 1.4.

#### References

- [1] M. Ishiwata, Existence and nonexistence of maximizers for variational problems associated with Trudinger-Moser type inequalities in  $\mathbb{R}^N$ , Math. Ann. **351** (2011), 781–804.
- [2] M. Ishiwata and H. Wadade, On the effect of equivalent constraints on a maximizing problem associated with the Sobolev type embeddings in  $\mathbb{R}^N$ . Math. Ann. **364** (2016), no. 3-4, 1043–1068.