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1 Main theorem

We first recall the definition of the function space of bounded variation. Let NV > 2. The
total variation of u € L*(R") is given by

V(w)(RY) == sup{/ udiw’w € CHRN,RN), [0l p= gy gy < 1} :
RI\I

where ||wHLT>C(RN_’RN) ‘= MaXi<i<N HwiHL”C(RN) for 1/} = (’(/)1,"' ,’l/}N) S C(}(RN,]RN) We
say u € BV(RY) if u € LY(RY) and V(u)(RN) < +o0.

Let 1 < ¢ < N'(:= %) and o > 0. We consider the attainability of maximizing

problems D, 4 and ﬁayq defined by

Dag = sup (s ey + allullagans ) -
u€BV (RN), Jlull 1wy +V (u) (RY)=1

and

Dayg = sup (Il v + allelLues)) -
WEW RN, ull 1 o, HIVull L1 vy =1

Introduce the best-constant GN; > 0 of the Gagliardo-Nirenberg type inequality defined by

||”||L]{q(RN)
GNy = sup GNy(u) ==

sup —
uEBV(RV\(0) weBYENVO) [[ul f vy V () ®N) @DV,

Also define a; >0 by

- 1— flull g1 gw)

inf ——
wEBVRN). ull 1 vy + V) ®N)=1 [[u]|7, gn
Theorem 1.1 (Sub-critical case). (i) When 1 < q < 2L, there holds a; =0, and Do 4
is attained for all « > 0. When —A—fﬁ—] < g < N/, there holds ag >0, and Dq 4 is attained for
all o > ag, while Do g is not attained for all o < o

(ii) When q = ]—Vﬁ—l, Da;A,q is not attained. When iNf—l <g< N/, Da;ﬂ is attained.
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(iii) The values of oy are computed as

0 when 1<q<fH,

a; = GNq when q = NA}LI, 1
—1)9- N
611\7;(qN—(N+1))qN—(IErq+1><)N_q(N—1))N~q(N~1>7 when H <g< N
(iv) There holds GNg = (_Wr)q Lfor1<qg< N’
Theorem 1.2 (Critical case). There hold
1 L
an: = veTTr Nw{~7 and Dy n =max{l,aGNy},
N

and Dq N is not attained for all o > 0.

Theorem 1.3. Let 1 < g < N'. Then there holds Dy g = Da,q, and Da,q is not attained
for all a > 0.

Theorem 1.4. Assume one of the following conditions
(i) 1<qg< ¥ anda >0, (ii) g = 2 and o > o, (iii) NH <g< N and o > ay.
Then there exists R > 0 depending on N,q and a such that the function

N
wn_1RN-1(N + R)Br(0)

(L1)

is a mazimizer of Dg g for all o € RN. Moreover, the function (1.1) is a unique mazimizer
of Dq,q except for the translation.
2 Preliminaries

Let N > 2 and 1 < ¢ < N'. Introduce the best-constants GN, and GNq of the
Gagliardo-Nirenberg type inequalities based on BV (R™) and W11(RY) respectively by

GNy := sup GNy(u) and GN,:= sup GN 4 (u),
u€BV (RV)\{0} weWL1(RN)\{0}
where
GN,(u) = Il for u € BV(RV)\ {0}
=NV ()@ DN
and

IF

)OOV eI

‘Ng(u) = for u € WEL(RM)\ {0}.

Our goal in this section is to prove the following proposition.

Proposition 2.1. Let1 < g < N'.
NN=Twun_1

. -1
(i) There holds GN, = GN, = (Tl———)q .

(ii) GNy is attained by functions of the form u = Axp € BV(RN) for A € R\ {0} and a
ball B C RN . Moreover, the mazimizer of G N, necessarily has this form.

(iii) GN, is not attained in WU1(RN)\ {0}.
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Proof. First, recall the facts that it holds GNy/ = —1— and G Ny is attained only by

N-T
Nwy Ty

functions of the form u = Axp € BV(R"M) for A € R\ {0} and a ball B ¢ RV,
(i) By Hélder’s inequality and Sobolev’s inequality, we have for u € BV (RY)
—(g-1)N )N
[P T
(g=1)N

~la=N ! 1 o —(g-1)N _
< Jlullf (=1 —V(u) = <m> Hthll (g-1) V(u)(q l)N’

qg—1
which implies GN, < (N 1 ) . Let up = xB,0) € BV(RY). Then we can

Ton-1
compute |uglli = [Juol|d = 257+ and V(up) = wy_1, and then we observe GN,(ug) =
q—1 q—1
(W) . Hence, ug is a maximizer of GN, and it follows GN, = (Wvllw—m> .

Next, we prove GN,; = GNq. It is enough to show GN, < GNq since the converse
inequality is obtained by the facts WHL(RY) ¢ BV(RY) and ||[Vull; = V(u) for u €
WLHRN). Let ug € BV(RV)\ {0} be a maximizer of GN,, where note that the existence
of ug is already seen as above. By an approximation argument, there exists a sequence
{un}s2; € BV(RY)NC>(RY) such that u,, — up in L}(RY) and V (u,,) = V(up), and up to
a subsequence, u, — ug a.e. on RN. We observe that u,, € WH1(RN) with V (u,) = || Vuy,||1.
Indeed, by using the fact that there holds V(v)(Q) = [, |Vv| for any v € BV(€2) N C*(2)
with a bounded domain having its sufficiently smooth boundary, we see

V(u,) = Jiu;:())V(un)(BR) = }s?li%/B |Vu,| = H}u};/)g [Vu,| = ||Vun|l1 < +o0,
- R R

where the last equality is shown by Lebesgue’s monotone convergence theorem. Then it
holds u, # 0 in WHI(RYN) for large n € N since ||[Vuy,|j1 = V(un) = V(ug) > 0 as n = oo.
Now we see by the convergences of u,, together with Fatou’s lemma,

GN, = GNy(ug) < hm mf GNy(un) < limsup GNy(u,) = limsup GNy(u,) < GN.

n—oc n—oc
Thus the assertion (i) has been proved.

(i) Let ug = Axp € BV(RY) for A € R\ {0} and a ball B = Bg(z,) with a radius R > 0
centered at zg € RV. Then we can compute

WN - WN- _
luolly = INRY=5= - Juolly = RN =5 and - V(uo) = WR -,
q—1
and thus these relations together with the assertion (i) show GNy(ug) = (m) =

GN,. Hence, ug is a maximizer of GN,.

Next, assume that GN,, is attained by ug € BV(R™)\ {0}. Then by Hélder’s inequality,
Sobolev inequality and the assertion (i), we have

<—A1——)q_l = GN, = GN,(uo)

NNy,

q—1
(g—1)(N—1 (g—=1)(N=1) _ 1
S G 10) I < OGN = ()

which shows that ug is a maximizer of GNy-. Hence, ug = A\xp for some XA € R\ {0} and a
ball B ¢ RY. The assertion (ii) has been proved.

(iii) By contradiction, assume that GN, is attained by ug € WUL(RN)\ {0}. Then the
assertion (i) and the facts WH1(RY) ¢ BV(RY) and |[Vul|; = V(u) for v € WHH(RN)



imply that ug € BV(RY)\ {0} is a maximizer of GN,. Then the assertion (ii) shows that
up = Axp for A € R\ {0} and a ball B ¢ RV, which is a contradiction to uy € WH(RY).
The assertion (iii) has been proved. a

Proposition 2.2. Let 1 < ¢< N’ and o > 0. Then there hold

Da = a . = inf )
q iggf (t) and o= N, inf g(¢)
where
(14 t) T+ aGNgtla N (14!
foe(t) T (1 +t)q and g(t) T t(q—l)N

fort > 0. Furthermore, the values of o, are computed as

N+1
0 when 1<qg< ——ﬁ—,
1 . _ N+l
. oN; when q = =5~,
Qg = 1 (="

L when Nl '
N, GNP = D (N—gu v when S <g <N

GLNQ when q = N'.
Proof. For u € BV(RV) with |lull; + V(u) = 1, we see

—(g—1)N —
lully + alullg < Jully + o GNg|Jul[ i~V (u)a=DN

_ Julls Qudl + V@)™ + a GNJull§” DN Y ()t DN
(lully + v (u))?

1 (¢—1)N
V(u)
+aGN, (_l_l\uﬁ)
v \?
(1 + nunl>

- Ja (””) < sup falt),

flull1 >0

(+5)

which implies Dy q < sup;s falt). On the other hand, let v € BV(R™)\ {0} be a maximizer
of GNg4, where the existence of v is guaranteed by Proposition 2.1 (ii). For any A > 0, let
va(z) := Aw(A¥z) and

B uva(z) B M~ z)
Al + V(@A) ully + ARV (v)

wy(z) :
Then for any A > 0,

Da,q 2 [lwalls + effwallg
vl AT )|

vl + A%V (v) (ol + A% V(v))q

sy 971 ,
(1A% )+ acN, (A

1 Tolly
v \?
(1 + AV = )

lIollx
= fa (A# V(U)> )
vl

Daq 2 sup fao (W V(v)) = sup fa(t).

S
A>0 HU\ 1 t>0

which implies

o1
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Thus there holds Dy ¢ = sup,~ fa(t).
Next, for u € BV (RY) with [jul|; + V (u) = 1, we see

1—ful o 1 — Jlullx
lulld  ~ GNPV Y (u)@-DN

Q) (1 4 "
- G}Vq (TL‘(@) q_l';) - G}ng <‘H/u(|7|l1)) ° N, GN, R
llully

which implies a; > N inf;~0 g(t). On the other hand, let v € BV (RV)\{0} be a maximizer
of GNy and deﬁne w) for A > 0 as above. Then we see for A > 0,

1 q—1
1= sy ATV (Ilvlh +)\NV(U)>
* < _
" Tl NI

ARV () (ol + A%V <v>)q*1
CONIGN, o] TN Y () (a-1)

1 V() Vi) \?!
A hn (1427 152 1 g(/\ V(u)>

- ~
GN, (A¥ V(v))“"”” GNq vl
Mol
which implies
* LV(‘U) 1
ol < mfg(/\N >7G—th>0 (t

Thus there holds o} = c;zvq infysq g(t).

Next, we compute the values of aj. Since we have proved o = —G—lN-infbo g(t), it is
q

enough to manipulate inf;~g g(¢). First, let 1 < ¢ < Nﬁl. In this case, since (N+1)—gN > 0,
we see infy~q g(t) = inf;so VD=9V (1 4 ¢)771 = 0. Next, let ¢ = I—VNil— In this case, since
(N +1) — gN = 0, we see inf;50 g(t) = infyso(1+ )77 = 1. Next, let TH < g < N'. In
this case, we have g(t) = {%i%v‘:r with ¢N — (N 4+ 1) > 0 and

, (1+1¢)=2
g(t) = W((N"Q(N'1))t—(¢1N—(N+1)))-
Then letting t := % > 0, we obtain
(¢—1)!

inf g(t) = g(to) = :

>0 (aN = (N + 1)V (N — g(v — 1))V
Finally, let ¢ = N’. In this case, we have g(t) = t(—lt—t\),iv—: and ¢'(t) = —% < 0.
Hence, we obtain inf;sq g(t) = lim; o g(t) = 1. The proof of Proposition 2.2 is complete.

a

3 Proof of main Theorems

Let N > 2. We start with the following lemma.



Lemma 3.1. Let 1 < g< N'.

(i) Let o > . Then Dqq is attained.

(i1) Assume ay > 0 and let 0 < a < aj. Then Dy q is not attained.

Proof. By Proposition 2.2, we see that D, 4 is attained if and only if sup, fo(t) is attained.

(1) Let a > o . Note that the condition ¢ < N’ shows lim;_« fa(t) = 0. By the assumption
a > ay and Proposition 2.2, there exists ty > 0 such that o > Wg(to), which implies
fa(to) > 1 = limy o fa(t). Hence, sup,q fol(t) is attained.

(ii) Assume of > 0 and let 0 < a < «af. By contradiction, assume that there exists

to > 0 such that supt>0 fa(t) = fa(to). First, note sup,sq fa( ) > limiw fa(t) = 1. By
the assumption o < aj and Proposition 2.2, we obtain a < a, < =5 g(to), which implies
falto) < 1. Then we see 1 < sup,sq falt) = falto) < 1, whlch is a contradiction. Thus
Sup,sg fo(t) is not attained. O
Proof of Theorem 1.1. By Proposition 2.1 (i), Proposition 2.2 and Lemma 3.1, it remains
to prove that Da;_,q is not attained when ¢ = %, and Da;‘,q is attained when M <g<

N'. First, let ¢ = N—ﬁl In this case, since a}GN,; = 1, we obtain f,:(t) = M%, and
e . a0 v
1

then fl.(t) = 2==NGEOT <0 for all t > 0. Hence, s w: (t) is not attained. Next,
hen faq() o or a ence, sup, fa: (t) is not attaine ex

let N“ < q < N’ In this case, since limy o g(t) = lim;_,oc g(t) = oo, there exists tg > 0
such that a; GN inf;s0 g(t) = }\,qg(to), which gives fox (to) = 1. On the other hand, by
noticing llmtHOC faq( ) = 0 by the condition ¢ < N’ together with lim, fax (t) =1, we see
that sup;. ¢ fa: (t) is attained. Thus Theorem 1.1 has been proved. a

Proof of Theorem 1.2. By Proposition 2.2, we already proved o}, = GN . Hence, we

show Dq n = max{l,a GNy-}, and D, n- is not attained for all a > 0. In thls case, we
have

(1+ V=1 + aGNy it ) -1 , 1+\ V!
- =—_|aN P .
fa(t) (1 +t)N, and fa( ) (1 +t)Nl+1 a GNN t

We distinguish between two cases. When a < TV-’GlTW’ we obtain fJ(t) < 0 for all t > 0,
and hence, sup,. fa(t) is not attained. Also, in thié case, we see Dy N/ = sup,~ fa(t) =
limy o falt ) =1=max{l,aGNy'}. When o > W by putting to := m‘:‘:
0, we see that f, is strictly decreasing in (0,tp) and strictly increasing in (o, c0), and
therefore, sup;.( fo(t) is not attained. Also, in this case, we see Dy n' = sup,sg falt) =
max{lim¢ o fo(t), limy o fo(t)} = max{l,a GNy-}. The proof of Theorem 1.2 is com-
plete. O

Proof of Theorem 1.3. Let 1 < ¢ < N’ and a > 0. First, we prove Dy g = Da .
It is enough to show D4 < ba,q since the converse inequality is obtained by the facts
WELRYN) ¢ BV(RY) and ||Vull; = V(u) for u € WH(RY). By the definition of D, 4, for
any € > 0, there exists ug € BV(RY) such that ||luo||; + V(ug) = 1 and |jug||; + allupl|d >
Dga,q — €. As in the proof of Proposition 2.1 (i), we can pick up a sequence {u,}5>; C
WLH(RN) satisfying u, — ug in LY(RN) and |[Vu,|: = V(un) -5 V(’LLU) and up to a
subsequence, u, — 1y a.e. on RY. Now letting v, := m € WEHH(RN)\ {0} for
large n € N, we see by the convergences of u,, and Fatou’s lemma,

Dig = & < |l ]l1 + alfuol[¢ < liminf (unlly + alvnl[$) < limsup (va ] +allva]3) < Deg,
n-—roc

which implies Dy g < Da,q since € is arbitrary. Thus Daq = Da,q has been proved.

93
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Next, we prove that ba,q is not attained for all « > 0. By Proposition 2.1 (iii), GNq is
not attained, which yields

GN,(u) < GN, for all u e WH(RV)\ {0}. (3.1)

By contradiction, assume that D, is attained by uy € WUIL(RN) \ {0} with [jug], +
[IVuoll1 = 1. Then using Proposition 2.1 (i), Proposition 2.2, Dy ¢ = Da,q and (3.1), we
have

Dayq = Dayg = luolli + allugll? < lluolly +a GNy|uo|{ "DV [Vug) VY
luoll1 + a GNglluoll§~ DNV (ug) (@ DN

_ Jolls (luolls + V(0)"™" + @ GNg|fuo [NV ()@= DN
(Tuoll + V(o))"

q-1 (g=1)N
(1+M( )) +aGN, (‘“”“))

I

u v
_ uol| - A [Juo 1 _ fa ( (UO)> S supfa(t) — Da,qy
1+ Yluo) lluollx >0
lluollx
which is a contradiction. Proof of Theorem 1.3 is complete. |

Lemma 3.2. Let1 < ¢ < N’ and o > 0. Assume that Do 4 is attained by ug € BV (RV)\{0}
with |Juglli + V(ug) = 1. Then there exist R > 0 and xo € RN such that ug is written as
N

Uo = MN_]RN_l(N+R)XB1{<IO)l

Proof. By Proposition 2.2 and the definition of GN,, we see
—(g—1)N _
SUp fa(t) = Dag = lluolls + o | < luolls + o GNy ol {47V g 40
>

_ Mol (lolls + V()™ + & GNg fuo {7~ ™V (ug) 4=DN
(luolls + V (uo))*
Viug) )91 o)\~
B (Hnun” +aGN, (uuou1> . (V(w)
= 3 =/ < sup fa(t)
(1 ¥ T"Wﬁ))) [uollx
uo |1

which implies that u is a maximizer of GNNy. Then by Proposition 2.1 (ii), we can write
U = AXBp(z0) for some A € R\{0}, R > 0 and 2o € R". Moreover, since |ug|; = ARY 5=+
and V(up) = ARY ~lwy_1, the normalization |lugl; +V (ug) = 1 gives A = W%Wﬁ_)'
Thus Lemma 3.2 has been proved.

t>0

Proposition 3.3. Let 1 < ¢ < N’ and oo > 0. Assume that sup,~ fo(t) admits a unique

mazimal point tg > 0. Then for each zo € RY, the function
'

Wyt NV=1(1 + to)XB%m)

(3.2)
s a mazimizer of Dy 4. Moreover, the function (3.2) is a unique mazimizer of De,q except
for the translation.

Proof. Let v € BV(R"Y)\ {0} be a maximizer of GN,. Then Proposition 2.1 (ii) implies
U = AXBp(x) for some A € R\ {0}, R > 0 and o € RY. By the assumption, there exists a

1V
maximal point ¢y > 0 such that sup, o fo(t) = fa(to). Take Ag > 0 satisfying A} TI/ML)
ie.,

e () - ()"

= to,




where we used [[v]l; = ARY =521 and V(v) = ARV lwy_1. Let vy, (z) := )\ov()\(‘)%’x) and

’U)‘O(ill) o )\()’U()\OWI)

Wy, () 1= [vaolli + V(va,) ol + /\()%V(v).

Then by Proposition 2.2, we see

v Aol
U fa(t) = Dag > frg 1+ afung g = —12IL 0o
Il +AFVE) (ol + 2 V)
L v \7? L v (g=1)N
(H’\O nm) +aGN, (”ﬂwu) V()
= V( = fa ’\U = fa(tU) = Supfa(t),
(125 )" Tl

which implies that wy, is a maximizer of D, 4. Moreover, by (3.3), we can compute

wy, = t[j)v X N
0 wN-lNN“l(]+to) B%(mx").

Hence, the function (3.2) and its translations are maximizers of Dg,q.

Next, we prove that the function (3.2) is a unique maximizer of D 4 except for the
translation. Assume that ug € BV(RY)\ {0} is a maximizer of Dy with [ug|; +V (ug) = 1.
Then by Lemma 3.2, we can write

N

Y0 ONCIRNTI(N + R) *Bre()

for some R > 0 and zo € RV, and then by putting so := £, we have

R )
Up = S(J)V XB :
wy NNT(1 4 50) P25 1)
To compete the proof of Proposition 3.3, it is enough to show sy = ty. On the contrary,

assume sy # to. Noting that ug is a maximizer both of Dg 4 and GN,, we see

—(g—1)N —
Dag = lluoll + alluol|d = luolls + a GNyluol|{ ™" NV (ug) =N

_ ol (luolls + V(u0)™™" + & GNg|Juo ||~V (ug) @~ DN
(Tuollx + V (uo))’?

) (1+{5_&%>q~ +aGN, (ﬂﬁ%)(q_lw . <V(u0)> = fal(s0)

V(uo) a HU()Hl
(1+ )
where we used sg = M“ﬁ’ , and thus it follows Dq ¢ = fa(so). Since ty is a unique maximal

point of sup,- ¢ fa(t), we have by Proposition 2.2,
Davq = iugfa(t) = fa(t(]) > fa(s()) = Da,qv
>

which is a contradiction. Therefore, there holds sy = tg. Thus Proposition 3.3 has been
proved. O
Lemma 3.4. Assume one of the following conditions

(i)1<qg<BH anda>0, (ii)q=2E and o > ay,  (iii) NH < g< N and a > ay.

Then sup, fa(t) has a unique mazimal point on (0, c0).
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Proof. Let 1 < ¢ < N’ and o > 0. Then we can compute

L+ )T fo(t) = h(t)
=—(1+t)7 "+ aGN,(g — 1)NtIN~N+D) _ o GN, (N — g(N — 1)) tla- DN

and
K(t) =—(g= 1)1+ 877 = aGNyg(g = )N ((N +1) — gN) tla= DN =2
~aGNy(g— 1)N (N = g(N — 1)) {0 N1,
(i) Let 1 < ¢ < & and o > 0. In this case, since gN — (N + 1) < 0, we obtain
limy o A(t) = 400, limy, o h(t) = —oc and A/(t) < O for ¢ > 0. Hence, f., = 0 on (0,00)

has a unique solution ¢y > 0, and thus fq is strictly increasing on (0, tg), and f, is strictly
decreasing on (tg,00). As a result, sup,. fo(t) has a unique maximal point ty.

(i) Let ¢ = & and o > ay. In this case, we have

Nq 1 1_q C!GNq

B(t) = ~(1L+ 0% +aGN, = St and K(t) = ——(1+ )%~

N
Since o = GLN by Proposition 2.2, we see limg o h(t) = -1+ aGNg > —1 + a;GNy =0,
q
limy 4 oc h(t) = —oo and A/(t) < 0 for ¢ > 0. Hence, f,, =0 on (0, 00) has a unique solution

to > 0, and thus f, is strictly increasing on (0,to), and f, is strictly decreasing on (¢g,00).
As a result, sup,. fo(t) has a unique maximal point ¢g.

(iii) Let ﬁ;—l— < g < N'. In this case, we observe lim; o h(t) = —1 and lim; , ;oo fo(t) = 0.
Computing
(14t , (1+1¢)772
g(t) = N—vny end gt = *t—(;:l)—N—((N—(I(N— 1))t —=(gN = (N +1))),
we see that infys( g(t) has a unique minimal point ¢y := ﬁ]\]“; > 0. We first consider

the case a = aj. By Proposition 2.2, we observe that inf,~ g(t) = g(to) is equivalent to
faz (to) = 1. As aresult, we can conclude that sup,. faz (t) = 1 has a unique maximal point
to. Next, we consider the case o > ag. In this case, we have a > o = G;Nq infy~0 g(t) =
GN g(to), which implies fu(tg) > 1. Hence7 sup;.o fa(t) has a max1rna1 point on (0, c0).

For proving the uniqueness of the maximal point of sup,  fa(t), we introduce gg(t) with
£ >1by

(Bt+4 -1 +t)7!
95(¢) = @=DN '

We observe that there holds limy | gg(t) = lims—, y o ga(t) = +00, and gz is a strictly convex
function on (0,00). Therefore, for each 8 > 1, we see that gg = a GN, has at most two
solutions on (0,00). On the other hand, since gg = a GN, is equivalent to fo = 8, we
can conclude that the maximal point of sup,s( fo(t) is unique. Thus Lemma 3.4 has been

proved. O
Proof of Theorem 1.4. Proposition 3.3 together with Lemma 3.4 implies the assertion of
Theorem 1.4. O
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