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CONVERGENCE THEOREMS OF ITERATIVE

SEQUENCES FOR NONLINEAR OPERATORS

SACHIKO ATSUSHIBA

ABSTRACT. In this paper, we study an implicit iterative procedure
for extended generalized hybrid mappings in a Banach space and
study weak convergence theorems for such mappings in a Banach
space satisfying Opial’s condition. We also give some weak conver‐
gence theorems for nonlinear mappings.

1. INTRODUCTION

Let H be a real Hilbert space and let  C be a nonempty subset of  H.

A mapping  T :  Carrow H is called nonexpansive if  \Vert Tx-Ty\Vert\leq\Vert x-y\Vert
for all  x,  y\in C . For a mapping  T :  Carrow H , we denote by  F(T) the set
of fixed points of  T . An important example of nonexpansive mappings in
a Hilbert space is a firmly nonexpansive mapping. A mapping is said to
be firmly nonexpansive mapping

 \Vert Fx-Fy\Vert\leq\langle x-y, Fx-Fy\rangle

for all  x,  y\in C (see, for instance, Browder [7] and Goebel and Kirk
[10]). It is known that a firmly nonexpansive mapping  F can be deduced
from an equilibrium problem in a Hilbert space (see, for instance, [6, 8]).
Kohsaka and Takahashi [17], and Takahashi [24] introduced the following
nonlinear mappings which are deduced from a firmly nonexpansive map‐
ping in a Hilbert space. A mapping  T :  Carrow H is called nonspreading
[17] if

 2\Vert Tx-Ty\Vert^{2}\leq\Vert Tx-y\Vert^{2}+\Vert Ty-x\Vert^{2}
for all  x,  y\in C . A mapping  T:Carrow H is called hybrid [24] if

 3\Vert Tx-Ty\Vert^{2}\leq\Vert x-y\Vert^{2}+\Vert Tx-y\Vert^{2}+\Vert Ty-
x\Vert^{2}
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for all  x,  y\in C . They proved fixed point theorems for such mappings (see
also [18, 14, 26]). Aoyama, Iemoto, Kohsaka and Takahashi [1] introduced
the class of  \lambda‐hybrid mappings in a Hilbert space. This class contains the
classes of nonexpansive mappings, nonspreading mappings, and hybrid
mappings in a Hilbert space. They proved fixed point theorems and mean
convergence theorems for such mappings. Following [1], we say that a
mapping  T:Carrow C is  \lambda‐hybrid if

 \Vert Tx-Ty\Vert^{2}\leq\Vert x-y\Vert^{2}+2(1-\lambda)(x-Tx, y-Ty\rangle
for all  x,  y\in C . In general, nonspreading and hybrid mappings are not
continuous mappings. Kocourek, Takahashi and Yao [15] introduced a
more broad class of nonlinear mappings than the class of  \lambda‐hybrid map‐
pings in Hilbert spaces. They called such a class the class of generalized
hybrid mapping and proved a mean convergence theorem for generalized
hybrid mappings which generalizes Baillon’s nonlinear ergodic theorem
[5]. Hsu, Takahashii and Yao [12] extended this class in a Hilbert space
to that of a Banach space. Further, they proved fixed point theorems for
such mappings in a Banach space (see also [16]). A mapping  T:Carrow E

is called generalized hybrid [15, 12] if there are  \alpha,  \beta\in \mathbb{R} such that

 \alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert x-Ty\Vert^{2}\leq\beta\Vert Tx-
y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2}
for all  x,  y\in C . Hojo and Takahashi [11] introduce a more broad class of
nonlinear mappings in a Banach space which covers generalized hybrid
mappings. They proved fixed point and weak convergence theorem of
Mann’s type for such mappings in a Banach space satisfying Opial’s
condition.

On the other hand, Xu and Ori [28] studied the following implicit
iterative procedure for finite nonexpansive mappings  T_{1},  T_{2},  \cdot\cdot\cdot ,  T_{r} in a
Hilbert space:  x_{0}=x\in C,

 x_{n}=\alpha_{n}x_{n-1}+(1-\alpha_{n})T_{n}x_{n}, \forall n\geq 1 , (1.1)

where  \{\alpha_{n}\} is a sequence in  (0,1) and  T_{n}=T_{n+r} . And they proved a weak
convergence of the iterates defined by (1.1) in a Hilbert space (see also
[21]). In this paper, motivated by [11, 28], we study an implicit iterative
procedure for extended generalized hybrid mappings in a Banach space
and study weak convergence theorems for such mappings in a Banach
space satisfying Opial’s condition (see also [27]). We also give some weak
convergence theorems for nonlinear mappings.
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2. PRELIMINARIES AND NOTATIONS

Throughout this paper, we denote by  \mathbb{N} and  \mathbb{Z}^{+} the set of all positive
integers and the set of all nonnegative integers, respectively. We also
denote by  \mathbb{R} the set of all real numbers. Let  E be a real Banach space
with norm  \Vert  \Vert . We denote by  B_{r} the set  \{x\in E : \Vert x\Vert\leq r\} . Let  E^{*}

be the dual space of a Banach space  E . The value of  x^{*}\in E^{*} at  x\in E

will be denoted by  \{x,   x^{*}\rangle . Let  C be a closed subset of a Banach space
and let  T be a mapping of  C into itself. We denote by  F(T) the set
 \{x\in C:x=Tx\}.

The duality mapping  J from  E into  2^{E^{*}} is defined by

 J(x)=\{y^{*}\in E^{*}: \langle x, y^{*}\rangle=\Vert x\Vert^{2}=\Vert y^{*}
\Vert^{2}\}, x\in E.
From the Hahn‐Banach theorem, we see that   J(x)\neq\emptyset for all  x\in E.

We say that a Banach space  E satisfies Opial  s condition [20] if for each
sequence  \{x_{n}\} in  E which converges weakly to  x,

 \varliminf_{narrow\infty}\Vert x_{n}-x\Vert<\varliminf_{narrow\infty}\Vert 
x_{n}-y\Vert (2.1)

for each  y\in E with  y\neq x . If  E is reflexive Banach space with weakly
sequentially continuous duality mapping, then  E satisfies Opial’s condi‐
tion. Each Hilbert space and the sequence spaces  \ell^{p} with   1<p<\infty
satisfy Opial’s condition (see [20]). Though an  L^{p}‐space with  p\neq 2 does
not usually satisfy Opial’s condition, each separable Banach space can be
equivalently renormed so that it satisfies Opial’s condition (see [?, 20]).

Banach space  E is said to be smooth if

 1 \dot{{\imath}}m\frac{\Vert x+ty\Vert-\Vert x\Vert}{t}tarrow 0
exists for each  x and  y in  S_{1} , where  S_{1}=\{u\in E : \Vert u\Vert=1\} . The
norm of  E is said to be uniformly Gâteaux differentiable if for each
 y in  S_{1} , the limit is attained uniformly for  x in  S_{1} . We know that if
 E is smooth, then the duality mapping is single‐valued and norm to
weak star continuous and that if the norm of  E is uniformly Gâteaux
differentiable, then the duality mapping is single‐valued and norm to
weak star, uniformly continuous on each bounded subset of  E.

Every weakly compact convex subset of a Banach space satisfying
Opial’s condition has normal structure (see [19]). We note that closed
convex subset  C of a Banach space  E is said to have the fixed point
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property for nonexpansive mappings if for every bounded closed convex
subset  K of  C , every nonexpansive mapping on  K , has a fixed point.

Following [1], we say that a mapping  T:Carrow C is  \lambda‐hybrid if

 \Vert Tx-Ty\Vert^{2}\leq\Vert x-y\Vert^{2}+2(1-\lambda)\{x-Tx, y- Ty\}
for all  x,  y\in C . It is obvious that  T is 1‐hybrid if and only if  T is
nonexpansive;  T is  0‐hybrid if and only if  T is nonspreading [17];  T is
1/2‐hybrid if and only if  T is hybrid [24]); In general, nonspreading and
hybrid mappings are not continuous mappings. A mapping  T:Carrow C is
called quasi‐nonexpansive if  F(T) is nonempty and  \Vert w-Tx\Vert\leq\Vert w-x\Vert
for all  w\in F(T) and  x\in C . By Dotson [9, Theorem 1] and Itoh and
Takahashi [13, Corollary 1], we know that  F(T) is closed convex whenever
 T is quasi‐nonexpansive. Every  A‐hybrid mapping with a fixed point is
clearly quasi‐nonexpansive. Thus, the set of fixed points of each  A‐hybrid
mapping is closed convex.

3. WEAK CONVERGENCE THEOREMS

In this section, we study an implicit iterative procedure for nonlinear
mappings and prove weak convergence theorems for extended generalized
hybrid mappings in a Banach space satisfying Opial’s condition (see also
[11, 28]). We also give some weak convergence theorem for nonlinear
mappings. A mapping  T :  Carrow E is called extended generalized hybrid
[11] if there are  \alpha,  \beta,  \gamma,  \delta\in \mathbb{R} such that  \alpha+\beta+\gamma+\delta\geq 0,  \alpha+\beta>0 and

 \alpha\Vert Tx-Ty\Vert^{2}+\beta\Vert x-Ty\Vert^{2}+\gamma\Vert Tx-y\Vert^{2}+
\delta\Vert x-y\Vert^{2}
for all  x,  y\in C . Now, we get the following weak convergence theorems
for extended generalized hybrid mappings in a Banach space satisfying
Opial’s condition (see [3]).

Theorem 3.1 ([3]). Let  E be a uniformly convex Banach space whlch
satisfying Opial’s condition and let  C be a nonempty closed convex subset
of E. Let  \alpha,  \beta,  \gamma,  \delta\in \mathbb{R} and let  T be  a(\alpha, \beta, \gamma, \delta) ‐extended generalized
hybrid mapping of  C into itself such that  \beta\leq 0 and  \gamma\leq 0 . Let  \{\gamma_{n}\} be a
sequence of real numbers such that  0<a\leq\gamma_{n}\leq b<1 for some  a,  b\in \mathbb{R}

and define a sequence  \{x_{n}\} on  C as follows:  x_{1}=x\in C and

 x_{n}=\gamma_{n}x_{n-1}+(1-\gamma_{n})Tx_{n} for  n\in \mathbb{N}.

If  F(T),  \neq\emptyset , then  \{x_{n}\} converges weakly to some element  z\in F(T) .
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Theorem 3.2 ([3]). Let  E be a uniformly convex Banach space which
 sat_{i}sfy_{i}ng Opial  scond_{i}t_{i}on and let  C be a nonempty closed convex subset
of E. Let  \alpha,  \beta,  \gamma,  \delta\in \mathbb{R} and let  T be  a(\alpha, \beta, \gamma, \delta) ‐extended generalized
hybrid mapping of  C into itself such that  \beta\leq 0 and  \gamma\leq 0 . Let  \{\gamma_{n}\} be
a sequence in  (0,1 ] such that   \lim_{narrow\infty}\gamma_{n}=0 and define a sequence  \{x_{n}\}
on  C as follows:  x_{1}=x\in C and

 x_{n}=\gamma_{n}x_{n-1}+(1-\gamma_{n})Tx_{n} for  n\in \mathbb{N}.

If  F(T),  \neq\emptyset , then  \{x_{n}\} converges weakly to some element  z\in F(T) .

From Theorem 3.1, we get the following weak convergence theorem.

Theorem 3.3 ([3]). Let  E be a uniformly convex Banach space which
 sat_{i\mathcal{S}}fy_{i}ng Opial  scond_{i}t_{i}on and let  C be a nonempty closed convex subset
of E. Let  \alpha,  \beta\in \mathbb{R} and let  T be  a(\alpha, \beta) ‐generalized hybrid mapping of
 C into itself such that  \alpha\geq 1 and  \beta\geq 0 . Let  \{\gamma_{n}\} be a sequence of real
numbers such that  0<a\leq\gamma_{n}\leq b<1 for some  a,  b\in \mathbb{R} and define a
sequence  \{x_{n}\} on  C as follows:  x_{1}=x\in C and

 x_{n}=\gamma_{n}x_{n-1}+(1-\gamma_{n})Tx_{n} for  n\in \mathbb{N}.

If  F(T),  \neq\emptyset,  \{x_{n}\} converges weakly to some element  z\in F(T) .

From Theorem 3.2, we get the following weak convergence theorem.

Theorem 3.4 ([3]). Let  E be a uniformly convex Banach space and let
 C be a nonempty closed convex subset of E. Let  \alpha,  \beta and let  T be a
 (\alpha, \beta) ‐generalized hybrid mapping of  C into itself such that  \alpha\geq 1 and
 \beta\geq 0 . Let  \{\gamma_{n}\} be a sequence in  (0,1 ] such that   \lim_{narrow\infty}\gamma_{n}=0 and
define a sequence  \{x_{n}\} on  C as follows:  x_{1}=x\in C and:

 x_{n}=\gamma_{n}x_{n-1}+(1-\gamma_{n})Tx_{n} for  n\in \mathbb{N}.

If  F(T),  \neq\emptyset , then  \{x_{n}\} converges weakly to  \mathcal{S}ome element  z\in F(T) .

From Theorem 3.1, we get the following weak convergence theorems.

Theorem 3.5 ([3]). Let  E be a uniformly convex Banach space which
 \mathcal{S}at\iotasfying Opial’s condition and let  C be a nonempty closed convex  sub_{\mathcal{S}}et

of E. Let  T be a hybrid mapping of  C into itself. Let  \{\gamma_{n}\} be a sequence
of real numbers such that  0<a\leq\gamma_{n}\leq b<1 for some  a,  b\in \mathbb{R} and
define a sequence  \{x_{n}\} on  C as follows:  x_{1}=x\in C and

 x_{n}=\gamma_{n}x_{n-1}+(1-\gamma_{n})Tx_{n} for  n\in \mathbb{N}.

If  F(T),  \neq\emptyset,  \{x_{n}\} converges weakly to some element  z\in F(T) .
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Theorem 3.6 ([3]). Let  E be a uniformly convex Banach space which
satisfyzng Opial  s condition and let  C be a nonempty closed convex subset
of E. Let  T be a nonspreading mapping of  C into itself. Let  \{\gamma_{n}\} be a
sequence of real numbers  \mathcal{S}uch that  0<a\leq\gamma_{n}\leq b<1 for some  a,  b\in \mathbb{R}

and define a sequence  \{x_{n}\} on  C as follows:  x_{1}=x\in C and

 x_{n}=\gamma_{n}x_{n-1}+(1-\gamma_{n})Tx_{n} for  n\in \mathbb{N}.

If  F(T),  \neq\emptyset,  \{x_{n}\} converges weakly to some element  z\in F(T) .

Theorem 3.7 ([3]). Let  E be a uniformly convex Banach space which
satisfying Opial  s condition and let  C be a nonempty  cl_{0\mathcal{S}}ed convex subset
of E. Let  T be a nonexpansive mappmg of  C into itself. Let  \{\gamma_{n}\} be a
sequence of real numbers such that  0<a\leq\gamma_{n}\leq b<1 for some  a,  b\in \mathbb{R}

and define a sequence  \{x_{n}\} on  C as follows:  x_{1}=x\in C and

 x_{n}=\gamma_{n}x_{n-1}+(1-\gamma_{n})Tx_{n} for  n\in \mathbb{N}.

If  F(T),  \neq\emptyset,  \{x_{n}\} converges weakly to  \mathcal{S}ome element  z\in F(T) .
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