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1 Introduction

Let  H be a real Hilbert space and let  C be a nonempty subset of  H . Let  T be a mapping
of  C into  H . Then we denote by  F(T) the set of fixed points of  T and by  A(T) the set of

 \cdot

attractive point6 [33] of  T , i.e.,

(i)  F(T)=\{2\in C:Tz =z\} ;
(ii)  A(T)=\{z\in H: \Vert Tx-z\Vert\leq\Vert\alpha.\cdot-z\Vert_{:} \forall x\in C\}
.

We know from [33] that  A(T) is closed and convex. This property is iınpo1tant for proving our
main theorems. In  2010_{\backslash } Kocourek, Takahashi and Yao [17] defined a broad class of nonlinear
mappings in a Hilbert space: Let  H be a real Hilbert space and let  C be a nonempty subset
of  H . A mapping  T :  Carrow H is called generalized hybrid [17] if there exist  \alpha.\beta\in \mathbb{R} sucll that

 \alpha\Vert Tx-Ty\Vert^{2}+(1-\alpha)\Vert\prime x;-T\prime y\Vert^{2}\leq\beta
\Vert Tx-y\Vert^{2}+(1-\beta)\Vert x-y\Vert^{2} (1.1)

for all  \prime x,  y\in C . Such a mapping  T is called  (\alpha_{:}\beta) ‐ge1leralizcd hybrid. We also know the
following mapping: For  \lambda\in \mathbb{R},  U:Carrow H is called  A‐hybrid [2] if

 \Vert Ux-Uy\Vert^{2}\leq\Vert\prime\iota,\cdot-\prime y\Vert^{2}+2(1-\lambda)  \langle x —  Ux ,   y-Uy\rangle (1.2)
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for alı  x,  y\in C . Notice that the class of generalized hybrid mappings covers several well‐
known mappings. For example,  a(1,0) ‐generalized hybrid mapping is nonexpansive. It is
nonspreading [21, 22] for  \alpha=2 and  \beta=1 , i.e.,

 2\Vert Tx-Ty\Vert^{2}\leq\Vert Tx-y\Vert^{2}+\Vert Ty-x\Vert^{2}, \forall x, 
y\in C.

It is also hybrid [31] for   \alpha=\frac{3}{2} and   \beta=\frac{1}{2}7 i.e.,

 3\Vert Tx-Ty\Vert^{2}\leq\Vert x-y\Vert^{2}+\Vert Tx-y\Vert^{2}+\Vert Ty-
x\Vert^{2}, \forall x, y\in C.

In general, nonspreading and hybrid mappings are not continuous; see [14]. We know that
 A‐hybrid mappings are cotained in the class of generalized hybrid mappings; see [7]. In 1975,
Baillon [3] proved the following nonlinear ergodic theorem in a Hilbert space:

Theorem 1.1 ([3]). Let  H be a real Hilbert space and let  C be a nonempty, closed and convex
subset of H. Let  T:Carrow C be a nonexpansive mapping such that the set  F(T) of fixed points
of  T is nonempty. Then, for any  x\in C,

 S_{n}x= \frac{1}{n}\sum_{k=0}^{n-1}T^{k}x
convergeb weakly to a point of  F(T) .

This theorem for nonexpansive mappings has been extended to Banach spaces by many
authors; see, for example, [4, 5, 6, 23, 24]. On the other hand, Kocourek, Takahashi and
Yao [17] extended this theorem to generalized hybrid mappings in a Hiıbert space. Recently,
Kohsaka [19] also proved the following theorem:

Theorem 1.2 ([19]). Let  H be a real  H_{i}lber\cdot t space and let  C be a nonempty, closed and convex
subset of H. Let  S and  T be commutative  \lambda and  \mu ‐hybrid mappings of  C into itself such that
the set  F(S)\cap F(T) of common fixed points of  S and  T is nonempty. Then, for any  x\in C,

 S_{n}x= \frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l=0}^{n}S^{k}T^{l}x
converges weakly to a point of  F(S)\cap F(T) .

We also know Mann’s iteration [26] introduced in 1953. Let  C be a nonempty, closed
and convex subset of a Banach space  E . A mapping  T :  Carrow C is called nonexpansive if
 \Vert Tx-Ty\Vert\leq\Vert x-y\Vert for all  x,  y\in C . For an initial guess  x_{1}\in C , an iteration process  \{x_{n}\}
is defined recursively by

 x_{n+1}=\alpha_{n}x_{n}+(1-\alpha_{n})Tx_{n}, \forall n\in \mathbb{N},

where  \{\alpha_{n}\} is a sequence in  [0,1].
In this article, using the class of generalized nonspreading mappings in Banach spaces which

covers generalized hybrid mappings in a Hilbert space, we prove an attractive point theorem.
Furthermore, we prove a nonlinear mean convergence theorem of Baillon’s type and a weak
convergence theorem of Mann’s type for generalized nonspreading mappings in a Banach space.
Using these theorems, we obtain new attractive point theorems, mean convergence theorems
and weak convergence theorems in Hilbert spaces and Banach spaces.
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2 Preliminaries

Let  E be a real Banach space with norm  \Vert\cdot\Vert and let  E^{*} be the topological dual space of  E.

We denote the value of  y^{*}\in E^{*} at  x\in E by  \langle x,  y^{*} }. When  \{x_{n}\} is a sequence in  E , we denote
the strong convergence of  \{x_{n}\} to  x\in E by  x_{n}arrow x and the weak convergence by  x_{n}harpoonup x.

The modulus  \delta of convexity of  E is defined by

  \delta(\epsilon)=\inf\{1-\frac{\Vert x+y\Vert}{2} : \Vert x\Vert\leq 1, \Vert 
y\Vert\leq 1_{\grave{}}\Vert x-y\Vert\geq\epsilon\}
for every  \epsilon with  0\leq\epsilon\leq 2 . A Banach space  E is said to be uniformly convex if  \delta(\epsilon)>0
for every  \epsilon>0 . A uniformly convex Banach space is strictly convex and reflexive. Let  C

be a nonempty subset of a Banach space  E . A mapping  T :  Carrow E is nonexpansive if
 \Vert Tx-Ty\Vert\leq\Vert x-y\Vert for all  x,  y\in C . A mapping  T :  Carrow E is quasi‐nonexpansive if
  F(T)\neq\emptyset and  \Vert Tx-y\Vert\leq\Vert x-y\Vert for all  x\in C and  y\in F(T)_{\dot{r}} where  F(T) is the set of

fixed points of  T . If  C is a nonempty, closed and convex subset of a strictly convex Banach
space  E and  T :  Carrow E is quasi‐nonexpansive, then  F(T) is closed and convex; see Itoh and
Takahashi [15]. Let  E be a Banach space. The duality mapping  J from  E into  2^{E^{*}} is defined
by

 Jx=\{x^{*}\in E^{*} : \langle x, x^{*}\rangle=\Vert x\Vert^{2}=\Vert x^{*}
\Vert^{2}\}

for every  x\in E . Let  U=\{x\in E : \Vert x\Vert=1\} . The norm of  E is said to be Gâteaux
differentiable if for each  x,  y\in U , the limit

 t arrow 01\dot{{\imath}}rn\frac{\Vert x+ty\Vert-\Vert x\Vert}{t} (2.1)

exists. In this case,  E is called smooth. We know that  E is smooth if and only if  J is a
single‐valued mapping of  E into  E^{*} . We also know that  E is reflexive if and only if  J is
surjective, and  E is strictly convex if and only if  J is one‐to‐one. Therefore, if  E is a smooth,
strictly convex and reflexive Banach space, then  J is a single‐valued bijection. The norm of
 E is said to be uniformly Gâteaux differentiable if for each  y\in U , the limit (2.1) is attained
uniformly for  x\in U . It is also said to be Fréchet differentiable if for each  x\in U , the limit
(2.1) is attained uniformly for  y\in U . A Banach space  E is called uniformly smooth if the
limit (2.1) is attained uniformly for  x,  y\in U . It is known that if the norm of  E is uniformly
Gâteaux differentiable, then  J is uniformly  norm-to-weak^{*} continuous on each bounded subset
of  E , and if the norm of  E is Fréchet differentiable, then  J is norm‐to‐norm continuous. If  E

is uniformly smooth,  J is uniformly norm‐to‐norm continuous on each bounded subset of  E.

For more details, see [29, 30]. The following result is also well known.

Lemma 2.1 ([29]). Let  E be a smooth Banach space and let  J be the duality mapping on  E.

Then,  \{x-y, Jx-- Jy\}\geq 0 for all  x_{i}y\in E . Further, if  E is strictly convex and  \{x-y,  Jx-Jy\rangle=
 0 , then  x=y.

Let  E be a smooth Banach space. The function  \phi:E\cross Earrow(-\infty, \infty) is defined by

 \phi(x, y)=\Vert x\Vert^{2}-2\langle x, Jy\rangle+\Vert y\Vert^{2}

for  x,  y\in E , where  J is the duality mapping of  E ; see [1] and [16]. We have from the definition
of  \phi that

 \phi(x, y)=\phi(x, z)+\phi(z, y)+2 { x-z ,  Jz —  Jy } (2.2)
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for all  x,  y,  z\in E . From  (\Vert x\Vert-\Vert y\Vert)^{2}\leq\phi(x, y) for all  x,  y\in E , we can see that  \phi(x, y)\geq 0.
Furthermore, we can obtain the following equality:

2{ x-y ,  Jz  -- Jw }  =\phi(x, w)+\phi(y, z)-\phi(X_{\backslash ,\prime}Z)-\phi(y, w) (2.3)

for  x,  y,  z,  w\in E . If  E is additionally assumed to be strictly convex, then

 \phi(x, y)=0\Leftrightarrow x=y . (2.4)

The following lemmas are in Xu [36] and Kamimura and Takahashi [16].

Lemma 2.2 ([36]). Let  E be a uniformly convex Banach space and let  r>0 . Then there exists
a strictly increasing, continuous and convex function  g :  [0, \infty )  arrow[0, \infty ) such that  g(0)=0
and

 \Vert\lambda x+(1-\lambda)y\Vert^{2}\leq\lambda\Vert x\Vert^{2}+(1-\lambda)
\Vert y\Vert^{2}-\lambda(1-\lambda)g(\Vert x-y\Vert)

for all  x,  y\in B_{r} and  \lambda with  0\leq\lambda\leq 1 , where  B_{r}=\{z\in E:\Vert z\Vert\leq r\}.

Lemma 2.3 ([16]). Let  E be smooth and uniformly convex Banach space and let  r>0 . Then
there exists a strictly increasing, continuous and convex function  g :  [0,2r]arrow \mathbb{R} such that
 g(0)=0 and

 g(\Vert x-y\Vert)\leq\phi(x, y)

for all  x,  y\in B_{r} , where  B_{\Gamma}=\{z\in E:\Vert z\Vert\leq r\}.

Let  E be a smooth Banach space and let  C be a nonempty subset of  E . Then a mapping
 T:Carrow E is called generalized nonexpansive [10] if   F(T)\neq\emptyset and

 \phi(Tx, y)\leq\phi(x, y)

for all  x\in C and  y\in F(T) . Let  D be a nonempty subset of a Banach space  E . A mapping
 R:Earrow D is said to be sunny if

 R(Rx+t(x-Rx))=Rx

for all  x\in E and  t\geq 0 . A 1napping  R :  Earrow D is said to be a retraction or a projection
if Rx  =x for all  x\in D . A nonempty subset  D of a smooth Banach space  E is said to
be a generaıized nonexpansive retract (resp. sunny generalized nonexpansive retract) of  E

if there exists a generalized nonexpansive retraction (resp. sunny generalized nonexpansive
retraction)  R from  E onto  D ; see [9, 10] for more details. The following results are in Ibaraki
and Takahashi [10].

Lemma 2.4 ([10]). Let  C be a nonempty closed sunny generalized nonexpansive retract of
a smooth and strictly convex Banach space E. Then the sunny generalized nonexpansive
r.etractionfr.omE onto  C is uniquely determined,

Lemma 2.5 ([10]). Let  C be a nonernpty closed subset of a smooth and strictly convex Banach
space  E such that there exists a sunny generalized nonexpansive retraction  R from  E onto  C

and let  (x, z)\in E\cross C. Then the following hold:

(i)  z=Rx if and only if  \{x-z,  Jy-Jz\rangle\leq 0 for all  y\in C ;
(ii)  \phi(Rx, z)+\phi(x, Rx)\leq\phi(x, z) .

In 2007, Kohsaka and Takahashi [20] proved the following results:

117



118

Lemma 2.6 ([20]). Let  E be a smooth, strictly convex and reflexive Banach space and let  C

be a nonempty closed subset of E. Then the following are equivalent:

(a)  C is a sunny generalized nonexpansive retract of  E ;
(b)  C is a generalized nonexpansive retract of  E ;
(c)  JC is closed and convex.

Lemma 2.7 ([20]). Let  E be a smooth, strictly convex and reflexive Banach space and let
 C be a nonempty closed sunny generalized nonexpansive retract of E. Let  R be the sunny
generalized nonexpansive retraction from  E onto  C and let  (x, z)\in E\cross C . Then the following
are equivalent:

(i)  z=R鰐
(ii)   \phi(x, z)=\min_{y\in C}\phi(x, y) .

Ibaraki and Takahashi [13] also obtained the following result concerning the set of fixed
points of a generalized nonexpansive mapping.

Lemma 2.8 ([13]). Let  E be a smooth, strictly convex and reflexive Banach space and let  T

be a generalized nonexpansive mapping from  E into itself. Then,  F(T) is closed and  JF(T)
is closed and convex.

The following lemma is a direct consequence of Lemmas 2.6 and 2.8.

Lemma 2.9 ([13]). Let  E be a smooth, strictly convex and reflexive Banach space and let  T

be a generalized nonexpansive mapping from  E into itself. Then,  F(T) is a sunny generalized
nonexpansive retract of  E.

Using Lemma 2.6, we have the following result.

Lemma 2.10. Let  E be a smooth, strictly convex and reflexive Banach space and let  \{C_{i} :   i\in

 I\} be a family of sunny generalized nonexpansive retracts of  E such that   \bigcap_{i\in I}C_{i} is nonempty.
Then   \bigcap_{i\in I}C_{i} is a sunny generalized nonexpansive retract of  E.

3 Attractive Point and Fixed Point Theorem

Kocourek, Takahashi and Yao [18] extended the concept of generalized hybrid mappings [17]
in a Hilbert space to that in a Banach space. Let  E be a smooth Banach space and let  C be
a nonempty subset of  E . Then a mapping  T :  Carrow E is called generalized nonspreading [18]
if there exist  \alpha,  \beta,  \gamma,  \delta\in \mathbb{R} such that

 \alpha\phi(Tx, Ty)+(1-\alpha)\phi(x, Ty)+\gamma\{\phi(Ty, Tx) -\phi(Ty, x)\}

 \leq\beta\phi(Tx, y)+(1-\beta)\phi(x, y)+\delta\{\phi(y, Tx)-\phi(y, x)\}

for all  x,  y\in C . We call such a mapping  (\alpha, \beta, \gamma, \delta) ‐generalized nonspreading. Let  E be a
smooth Banach space. Let  C be a nonempty subset of  E and let  T be a mapping of  C into
 E . We denote by  A(T) the set of attractive points of  T , i.e.,  A(T)=\{z\in E :  \phi(z, Tx)\leq
 \phi(z, x) ,  \forall x\in C\} ; see [25].

Lemma 3.1 ([25]). Let  E be a smooth Banach space and let  C be a nonempty subset of  E.

Let  T be a mapping  fr .om  C into E. Then  A(T) is a closed and convex subset of  E.
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We prove the following lemma.

Lemma 3.2. Let  E be a smooth, strictly convex and reflexive Banach space with the duality
mapping  J and let  C be a nonempty subset of E. Let  S and  T be mappings of  C into itself.
Let  \{x_{n}\} be a bounded sequence of  E and let  \mu be a mean on  l^{\infty} . Suppose that

 \mu_{n}\phi  (x_{n}, Sy)\leq\mu_{n}\phi(x_{n}, y) and  \mu_{n}\phi(x_{n}, Ty)\leq\mu_{n}\phi(x_{n}, y)

for all  y\in C. Then  A(S)\cap A(T) is nonemppty. Additionally, if  C is closed and convex and
 \{x_{n}\}\subset C , then  F(S)\cap F(T) is nonempty.

Using Lemma 3.2, we can prove an attractive point and fixed point theorem for commutative
generalized nonspreading mappings in a Banach space.

Theorem 3.3 ([34]). Let  C be a nonempty subset of a smooth, strictly convex and reflexive
Banach space  E and let  S and  T be commutative generalized nonspreading mappings of  C

into itself.  Suppo6e that there exists an element  z\in C such that  \{S^{k}T^{l}z : k, l\in \mathbb{N}\cup\{0\}\}
is bounded. Then  A(S)\cap A(T) is nonempty. Additionally, if  C is closed and convex, then
 F(S)\cap F(T) is nonempty.

4 Nonlinear Ergodic Theorems of Baillon’s Type

Now, using the technique developed by [28], we prove a mean convergence theorem of Bail‐
lon’s type for generalized nonspreading mappings in a Banach space. For proving it, we need
the followirtg lemma.

Lemma 4.1. Let  E be a smooth, stríctly convex and reflexive Banach space and let  C be
a nonempty, closed and convex subset of E. Let  S and  T be commutative generalized non‐
spreading mappings of  C into itself. If  \{S^{k}T^{\iota}x : k, l\in \mathbb{N}\cup\{0\}\} for some  x\in C is bounded
and

 S_{n}x= \frac{1}{(1+n)^{2}}\sum_{k=0}^{n}\sum_{l=0}^{n}S^{k}T^{l}x
for all  n\in \mathbb{N}\cup\{0\} , then every weak cluster point of  \{S_{n}x\} is a point of  F(S)\cap F(T) .

Let  E be a smooth Banach space. Let  C be a nonempty subset of  E and let  T be a
mapping of  C into  E . We denote by  B(T) the set of skew‐attractive points [25] of  T , i.e.,
 B(T)=\{z\in E : \phi(Tx, z)\leq\phi(x, z), \forall x\in C\} . Let  E be a smooth, strictly convex and
reflexive Banach space and let  C be a nonempty subset of  E . Let  T be a mapping of  C into
 E . Define a mapping  \tau* as follows:

 T^{*}x^{*}=JTJ^{-1}x^{*}, \forall x^{*}\in JC,

where  J is the duality mapping on  E and  J^{-1} is the duality mapping on  E^{*} . A mapping
 \tau* is called the duality mapping of  T ; see also [35] and [8]. It is easy to show that if  T is a
mapping of  C into itselt, then  T^{*} is a mapping of  JC into itself. In fact, for  x^{*}\in JC , we have
 J^{-1}x^{*}\in C and hence  TJ^{-1}x^{*}\in C . So, we have

 T^{*}x^{*}=JTJ^{-1}x^{*}\in JC.

Then,  \tau* is a mapping of  JC into itself. The following result is in Lin and Takahashi [25].
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Lemma 4.2 ([25]). Let  E be a smooth, stríctly convex and reflexive Banach space and let  C

be a nonempty subset of E. Let  T be a mapping of  C into  E and let  \tau* be the duality mapping
of T. Then, the following hold:

(1) JB (T)  =A(T^{*}) ;
(2)  JA(T)=B(T^{*}) .

In particular,  JB(T) is closed and convex.

Let  D=\{(k, l) : k, l\in \mathbb{N}\cup\{0\}\} . Then  D is a directed set by the binary relation:

 (k, l)\leq(i, j) if  k\leq i and  l\leq j.

Now, we can prove the following nonlinear ergodic theorem for generalized nonspreading map‐
pings in a Banach space.

Theorem 4.3 ([32]). Let  E be a uniformly convex Banach space with a Fréchet differentiable
norm and let  C be a nonempty, closed and convex sunny generalized nonexpansive retract
of E. Let  S and  T be commutative generalized nonspreading mappings of  C into itself with
  F(S)\cap F(T)\neq\emptyset such that  \phi(Sx, u)\leq\phi(x, u) and  \phi(Tx, v)\leq\phi(x, v) for all  x\in C and
 u\in F(S) and  v\in F(T) , respectively. Let  R be the sunny generalized nonexpansive retraction
of  E onto  F(S)\cap F(T) . Then, for any  x\in C,

 S_{n}x= \frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l=0}^{n}S^{k}T^{\'{i}}x
converges weakly to an element  q of  F(S)\cap F(T) , where  q= \lim_{(k,l)\in D}RS^{k}T^{l}x.

Using Theorem 4.3, we obtain the two following theorems.

Theorem 4.4. Let  E be a uníformly convex Banach space with a Fréchet differentiable norm.
Let  S,  T:Earrow E be commutative  (\alpha, \beta, \gamma, \delta)an_{!}d(\alpha', \beta', \gamma', \delta') ‐generalized nonspreading map‐
pings with  F(S)\cap F(T) such that  \alpha>\beta and  \gamma\leq\delta and  \alpha'>\beta' and  \gamma'\leq\delta' , respectively.
Assume that   F(S)\cap F(T)\neq\emptyset and let  R be the sunny generalized nonexpansive retraction of
 E onto  F(S)\cap F(T) . Then, for any  x\in E,

 S_{n}x= \frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{\prime.=0}^{n}S^{k}T^{1}x
converges weakly to an element  q of  F(S)\cap F(T) , where  q= \lim_{(k,l)\in D}RS^{k}T^{l}x.
Theorem 4.5. Let  H be a Hilber  t space and let  C be a nonempty, closed and convex subset
of H. Let  S,  T :  Carrow C be commutative generalized hybrid mappings with   F(S)\cap F(T)\neq\emptyset
and let  P be the mertic projection of  H onto  F(S)\cap F(T) . Then, for any  x\in C,

 S_{n^{X}}= \frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l=0}^{n}S^{k}T^{1}x
converges weakly to an element  p of  F(S)\cap F(T) , where  p= \lim_{(k,l)}{}_{\in D}PS^{k}T^{l}x.
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5 Weak Convergence Theorems of Mann’s Type

In this section, we prove a weak convergence theorem of Mann’s type iteration for generalized
nonspreading mappings in a Banach space. For proving it, we need the following lemma.

Lemma 5.1. Let  E be a smooth and uniformly convex Banach space and let  C be a nonernpty
and closed subset of  E such that  JC is closed and convex. Let  S and  T be commutative
generalized nonspreading mappings of  C into itself such that  F(S)\cap F(T)\neq\emptyset,  \phi(Sx, u)\leq
 \phi(x, u) and  \phi(Tx, v)\leq\phi(x, v) for for all  x\in C and  u\in F(S) and  v\in F(T) . Let  R be a
sunny generalized nonexpansive retraction of  E onto  F(S)\cap F(T) . Let  \{\alpha_{n}\} be a sequence of
real numbers such that  0\leq\alpha_{n}<1 and let  \{x_{n}\} be a sequence in  C generated by  x_{1}=x\in C
and

 x_{n+1}=R_{C}( \alpha_{n}x_{n}+(1-\alpha_{n})\frac{1}{(n+1)^{2}}\sum_{k=0}^{n}
\sum_{l=0}^{n}S^{k}T^{\iota}x_{n}) , \forall n\in \mathbb{N},
where  R_{C} is a sunny generalized nonexpansive retraction of  E onto C. Then  \{Rx_{n}\} converges
strongly to a point  z of  F(S)\cap F(T) .

Using Lemma 5.1 and the technique developed by [11], we prove the following theorem.

Theorem 5.2 ([32]). Let  E be a uniformly convex Banach space with a Fréchet differentiable
norm and let  C be a nonempty closed convex sunny generalized nonexpansive retract of  E.

Let  S and  T be commutative generalized nonbpreading mappings of  C into itself such that
 F(S)\cap F(T)\neq\emptyset,  \phi(Sx, u)\leq\phi(x, u) and  \phi(Tx, v)\leq\phi(x, v) for for all  x\in C and  u\in F(S)
and  v\in F(T) . Let  R be the sunny generalized nonexpansive retraction of  E onto  F(S)\cap F(T) .
Let  \{\alpha_{n}\} be a sequence of real numbers such that  0\leq\alpha_{n}<1 and   \lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>0.
Then, a sequence  \{x_{n}\} generated by  x_{1}=x\in C and

 x_{n+1}= \alpha_{n}x_{n}+(1-\alpha_{n})\frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l
=0}^{n}S^{k}T^{l}x_{n}, \forall n\in \mathbb{N}
converges weakly to  z\in F(S)\cap F(T) , where  z= \lim_{narrow\infty}Rx_{n}.

Using Theorem 5.2, we can prove the following two weak convergence theorems.

Theorem 5.3. Let  E be a uniformly convex Banach space with a Fréchet differentiable norm.
Let  S,  T :  Earrow E be commutative  (\alpha, \beta, \gamma, \delta) and  (\alpha', \beta', \gamma', \delta') ‐generalized nonspreading
mappings such that  \alpha>\beta and  \gamma\leq\delta and  \alpha'>\beta' and  \gamma'\leq\delta', r.espectively. Asbume
that   F(S)\cap F(T)\neq\emptyset and let  R be the sunny generalized nonexpansive retraction of  E

onto  F(S)\cap F(T) . Let  \{\alpha_{n}\} be a sequence of real numbers such that  0\leq\alpha_{n}<1 and
  \lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{n})>0 . Then, a sequence  \{x_{n}\} generated by  x_{1}=x\in C and

 x_{n+1}=\alpha_{n}x_{7}、  +(1- \alpha_{r\iota})\frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l=0}^{n}S^{k}T^{l}
x_{n}x_{n},  \forall n\in \mathbb{N}

converges weakly to  z\in F(S)\cap F(T) , where  z= \lim_{narrow\infty}Rx_{n}.

Theorem 5.4. Let  H be a Hilbert space and let  C be a nonempty, closed and convex subset of
H. Let  S,  T:Carrow C be commutative generalized hybrid mappings with   F(S)\cap F(T)\neq\emptyset and
let  P be the mertic projection of  H onto  F(S)\cap F(T) . Let  \{\alpha_{n}\} be a sequence of real numbers
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such that  0\leq\alpha_{n}<1 and   \lim\inf_{narrow\infty}\alpha_{n}(1-\alpha_{\gamma},.)>0 . Then, a bequence  \{x_{n}\}gener\cdot ated by
 x_{1}=x\in C and

 x_{n+1}= \alpha_{n}x_{n}+(1-\alpha_{n})\frac{1}{(n+1)^{2}}\sum_{k=0}^{n}\sum_{l
=0}^{n}S^{k}T^{l}x_{n}x_{n}, \forall n\in \mathbb{N}
converges weakly to  z\in F(S)\cap F(T) , where  z= \lim_{narrow\infty}Px_{n}.
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