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1 Introduction.

Let us consider the Cauchy problem of the Navier-Stokes equations in R™, n > 2;

0
8—?—Au+u-Vu+V7r:0 in R™ x (0, 00),
(N-8) divu =0 inR" x (0,00),

Ult=o =a in R",

where u = u(z,t) = (ui(z,t), - ,up(z,t)) and 7 = 7(z,t) denote the unknown velocity vec-
tor and the unknown pressure at the point z = (z1,---,z,) € R™ and the time t € (0, 00),
respectively, while a = a(z) = (a1(x),-- - ,an(x)) is the given initial velocity vector.
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The first purpose of this article is to characterize the optimal space of the initial data a for
existence of mild solution u of (N-S) in the Serrin class L*(0, 00; LP) with 2/s + n/p = 1 for
n < p < co. In a bounded domain 2, a similar investigation has been observed by Farwig-Sohr-
Varnhorn [3] and Farwig-Sohr [2]. In the whole space R™, we shall establish a sharp estimate

0 1
tA s R
</0 lle a”}ggv1 dt) < C“aHB;?f (1.1)

e
for all a € Bps 7 (R™) provided 2/s+n/p = 1 with n < p < co. Since we are also successful

¢

to derive the continuous bilinear estimate of the Duhamel term / PV .-ty @ v(T)dr for
. 0

u,v € LS(O,OO;BSJ), it follows from (1.1) that there exists a unique global mild solution u €

n

. R )
L5(0, oo; 32,1) provided a is sufficiently small in B, s 7. Conversely, if a € S’ satisfies e*®a €
L%(0,00; LP) with S’ denoting the class of temperated distribution, then it holds that a €

. _14n
B,s 7 (R™) with the estimate

o0
loll 1o gy < O( [ 1e2al s o)

Since the continuous bilinear estimate of the Duhamel term holds for u, v € L5(0,00; LP), by
combining (1.1) with (1.2), we conclude that the mild solution u of (N-S) belongs to L*(0, co; LP)

if and only if a € Bp_,;ﬁ for 2/s+n/p=1withn < p < co.

The second purpose is to show analyticity of our mild solutions. In this direction, Giga-
Sawada [5] proved that the strong solution u € C([0,T); L™(R™) N C((0,T); LP(R")) forn < p <
oo with the initial data a € L™(R™) given by Giga-Miyakawa [4] and Kato [6] is analytic in the
space variable. Later on, Miura-Sawada [11] showed that the mild solution u with a € vmo~!
given by Koch-Tataru [7] is also analytic in the space variable. At the end of the paper [11,
Corollary 4.3], in spite of the special construction of Koch-Tataru’s mild solution, they made
it clear that uniqueness of mild solutions in the Serrin class necessarily implies analyticity in
the space variable since any mild solution u € L*(0,T; LP(R™)) with some T for 2/s+n/p =1
with n < p < oo yields that a € vmo~!. Since our mild solution belongs also to such a Serrin
class, our result is not altogether new. However, we should emphasize that analyticity of mild

1
s

(1.2)

solutions is obtained even for the initial data a € B;?HR"). Moreover, our method of the
proof of analyticity is different from that of [11] where they split the interval (0,t) of integration
of the Duhamel term and make use of the generalized Gronwall type inequality to obtain uniform
estimate of derivatives 0Ju(z,t) in « € R™ for arbitrary || € N. On the other hand, our method
is based on the Holder type estimate of ||[0gu(:,t)||Lr(rn) with some n < p < oo in t € (0, 00) for
all |a| € N.

By using the Stokes operator —PA on PB;’Q, the original equations (N-S) can be rewritten
to the abstract evolution equation:

du
—EAAunLP(mVu) =0 on (0,7), (13)
u(0) = a,

where we use a fact that —PAu = —APu = —Au for u satisfying div u = 0 in the whole space.



Definition 1 Let 2 < s < 00, n < p < 00 satisfy 2/s+n/p=1 and a € S’ with diva =10. A
measurable function u on R™ x (0,00) ts called a mild solution of (N-S) if

(i) uw e L*(0,00; PLP);

(il) u satisfies

¢
u(t) = e®a — / PV .- eDAuu)(t)dr, 0<t< oo (1.4)
0

We first state well-posedness of global solutions to (N-S) for small initial data a.

Theorem 1 Let n < p < 0o and 2 < s < 0o satisfy 2/s +n/p = 1. There exists a constant
§=d(n,p,s) >0 such that if a € PBps Ln/p satisfies

Jallgsnre < (15)

then there exists a unique mild solution u of (N-S) with the following properties

u € BC([0,00); By 1t™/P) 0 L*(0, 00; BY,), (1.6)
(2G-Bu() € BO((o,00): BL), (17)
lim Hu(t) - a||B_1+n/p =0, (1.8)

Jim tz(m )||u(t)||Bo =0 (1.9)

Jim flu(@®)f g-14n/p = 0. (1.10)

Remark 1 (1) Since BO C LP, our class (1.6) shows that the solution u given by Theorem 1
belongs to the Serrin class L?(0,00; LP), and so umqueness holds.

4 n

(2) The decay (1.10) of u in the same space Bp,s ? as the initial data a is the corresponding
result to that which is stated at the end of Kato [6, Note] in such a way that the solution of
(N-S) behaves like tlim lu(®)||zn = O for initial data a € L™.

—00

The next theorem shows the class of initial data when the mild solution u belongs to the Serrin
class globally, i.e., L°(0, co0; PLP).

Theorem 2 Leta € S’ and diva = 0 in the distribution sense. Suppose that u is a mild solution

of (N-S) in L*(0,00; PLP) with 2/s+n/q =1 for n < p < co. Then it holds necessarily that
S—14n/p

a€ PBp; .

The third result on analyticity of mild solutions now reads:

-1
Theorem 3 Let 2 < s < 0o and n < p < oo satisfy 2/s+n/p = 1. Suppose that a € PBp, *
satisfies (1.5). The mild solution u of (N-S) given by Theorem 1 is smooth in the space variable
as D%u(-,t) € L*°, 0 <t < oo for all multi-index o = (a1, -+ , o) € NI with the estimate

lol
sup t27% || D%(t)| g < CK1oljafll, (1.11)
0<t<oo
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with an absolute constant K, where C = C(n,p). In particular, such a mild solution u(x,t) is
uniformly analytic in x € R™, namely

e De t
u(z,t) =Y > %(z—zg)a, 0<t<oo (1.12)
k=0 |a|=k '

for all zp, z € R™ with |z — x| < ELKE
Remark 2 By (1.11) it holds that

IDu(t) |~ _ CKFkkt—3—%
k! = k! ’

Va € Njj,

e L
CK*kFt7272 \*  eK
By the Stirling formula, we have that lim | ——— = ——, from which it follows that
k—o0 k! \/E
the convergence radius in such a Taylor expansion as in (1.12) may be taken as % uniformly
at any point zp € R".

Remark 3 Based on Koch-Tataru’s argument, Miura-Sawada [11, Theorem 1.1] constructed a
mild solution for the initial data a € vmo™! which is analytic in R®. They also showed that
every solution in the Serrin class is analytic in R™. However, for existence of solutions in the
Serrin class, they [11, Proposition 4.2] impose on a € brmo~! the condition that [j* e2all$, dt
is sufficiently small. On the other hand, we make it clear that the solutions in the Serrin class

n

JR .
exists if and only if the initial data a belongs to Bps 7. It should be noted that even for
a € L™ etha ¢ L°(0,00; LP) for only s and p such that 2/s +n/p = 1.

In this article, we only sketch the proof. The detail of the proof will be appeared in [9].

2 Outline of the proof of Theorems 1 and 2

We construct solutions by use of the implicit function theorem for Banach spaces (see, [10]).
For using implicit function theorem, It needs controlling the Stokes flow in the Serrin class,
and bilinear estimate of the Duhamel term. Therefore we prepare two following lemmata. The
following first lemma plays a key role for the proof of Theorem 2.

Lemma 2.1 Let 2 < s < 0o and n < p < oo satisfy 2/s +n/p = 1.
(1) Fora € B,I;+n/p, it holds that e'®a € L*(0, o0; 32,1)

00 1
tA s
(/0 lle a”Bgl dt) < CH“Hg;;M/m (2.13)

where C = C(n,p, s) is independent of a.
(2) Assume that a € S’ satisfies

e®a € L*(0,00; LP).
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n

=142
Then it holds that a € By s ¥ with the estimate

1

RN s
lall o5 < 0 /0 leallgo dt), (2.14)
where C = C(n, p, s) is independent of a.

Proof. (1) We take n < pp < p < p; and 0 < 6 < 1 satisfying 1% = 111;09 + r%' Since

—14n/p; < 0 for i = 0,1, by using estimates of the heat semigroup {em}t>0 in homogeneous
Besov spaces (see, [8], [10]), we have

~o(l_ 1
leallgy < CtEETal| 1y, i=0,1 (2.15)

We see that the mapping

n

L1 , .
Bp,oo"' 2 a— HetAaHBo € L*™(0,00), 1=0,1,
Pi»

is a bounded sub-additive operator for (—; =%z L_ —) i =0,1. Here LP9 denotes the Lorentz
space (see, e.g., Bergh-Lofstrom [1, Chapter 5]) Then it follows from the real interpolation
theorem that

142 142
(Bpo”®, Bpioo” ays 3 ar> [leall go € (L2°°(0, 00), L°(0,00) ) (2.16)
P,
Since 2/s+ n/p =1, it holds that 1/s = (1 — )/ + 0/, which yields that

(L>°°(0,00), L*%°(0,00)),s = L¥*(0,00) C L**(0, 00) = L*(0, c0).
A e e

. 1
Since (Bpg,00™ , Bpy,oo'* )o,s = Bp,s ”, we conclude from (2.16) that the mapping

14
P
BP,S

Sar HemaHBol e L*(0,0)
D,

is a bounded sub-additive operator, which yields the desired estimate. This proves (1).
(2) We make use of the following characterization of the equivalent norm of the homogeneous

1-
Besov space B ? due to Triebel [12]:

1 1

> -l At Y o0 s s7

el g = { Je B s T ([T by, @)
p//

where we have used the relation 2/s+n/p =1 with 1 —n/p=2/s > 0.
For a € &', we take a dual coupling with ¢ € S.Since ¢ is expressed by ¢ = et®¢p +
fo( A)e™ dT We consider the coupling

l{a, )] < {a, )| +/0 [{a, (=A)em™ ) |dr =: L(t) + L (t). (2.17)
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The second term of r.h.s. is estimated as

/| (~a)e |dr</| (e58a, (—A)eFAy) dr

T 1 / 1
< /0 leF2al, dr)¥( / (- A)eEB g, dr)e

¢ 1
2(/0 IIET’Aal!izadT’)?(/0 I(=2)e™2¢lly, dr)7

Since a € 8" and ¢ € S, it is easy to see that I1(t) — 0 as t — oo. Letting ¢t — co in both side
of (2.17), we obtain

o

l(a, )] < 2 /0 €72 als d)? gl g forall € S.

p s/

Since S is dense in B it follows from the above estimate

pS”

||QH -*1+; - sup |<a> L)0>| < 2||etAa”Ls(0,oo;LP)7
Bp.s €S, llell R =1

p’

\'GI:I

which implies (2.14). This completes the proof of Lemma 2.1. I
We define the nonlinear term
t ¢
N(u,v) = / e=TAP(u- Vo)(1) dr = / PV - eNA(y @ v)(1) dr.
0 0

Next lemma shows bilinear estimates which will be used to control the nonlinear term N (u, u).

Lemma 2.2 Let 2 < s < o0 and n < p < 0o satisfy 2/s +n/p=1.
(1) It holds that

”N(“’U)HLS(O,T;BSJ) A CHU‘HLS(O,T;BS)I)”vHLS(D,T;Bg’l) (2.18)
forwu, v e L(0,T; 33,1) and for all 0 < T < oo, where C = C(n,p, s) is independent of T.
(2) We assume that sup t%(%_%)ﬂu(t)llgo < oo and sup t%(%_%)nv(t)ﬂgo <oo. It
holds 1 0<t<oo Pl 0<t<oo Pl
olds that

N, 0) )5y, < C(sup 75D u(r)llgg ) sup 720D olr)lgp ) (219)

(1 1

nel_ 1 11
IN(u, ) (O 1o < C(sup 72578 |u(r Mg, )( sup 3G u(r) g ) (2:20)
Bp,s 0<r<t p,1

for all0 <t < oo, where C = C(n,p) is independent of T.

Proof. Using estimates of the heat semigroup {em}t>0 in homogeneous Besov spaces (see,
[8], [10]) and Hardy-Littlewood-Sobolev inequality.
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3 Outline of the proof of Theorem 3

3.1 Holder estimates for higher order derivatives

We assume the following assumption.

Assumption 1 For max(p,2n) < ¢ < 0o, there exist C = C(n,p,q) such that for every k € N,
u satisfies the estimate
1

ID*u(t)l| e < KiKijit 56978 >0
for all multi-index o € N with 0 < |a| = j < k-1, where K1 = K1(n,p,q) and Ko = Ka(n, p,q).

NS,

. —-142
Proposition 3.1 Let max(p,2n) < ¢ < oo and let a € PBps * for 2/s+ n/p = 1 with
n < p < oo. Suppose that uw is a mild solution of (N-S) satisfying Assumption 1. Then for every
k € N, u fulfills the estimate

n 1 n

l.n 1,n L1 gl —n(l_Lly_J p
[D*u(t + h) — D*u(t)||a < O(h272at72" 2  hat~1)KI7 2t 2n79)"2 ) ¢t>0  (3.1)

for all o € N§ with 0 < o] = j <k —1, where C = C(n,p,q) and K = Ka(n,p,q) same as in
Assumption 1.

In order to prove Proposition 3.1, we make use of the following representation formula:

t+h
u(t +h) —u(t) = (e"® - I)etPa - / etHh=DAPY . (4@ u)(r) dr
t
(1—€5)t
- / (e"® - Ne*TAPY . (u@u)(r)dr
0

- /t (e — NeAPY . (u®u)(r)dr
(

1—€;)t
= IP(t) + I3(t) + T§(t) + I}(2),
where we set ¢; = % for j=0,1and ¢ = % for j > 2.

We prepare the following lemmata. Using the following lemmata and Proposition, we can
estimate the higher order derivatives of I7'() to I}(t) and obtain Proposition 3.1.

iz|?
Lemma 3.1 Let G; = (47Tt)_%€_% be the Gauss kernel and o € Nf be a multi-index with
|a| = k. Then it holds that

DGyl < 7 5k5t75, ¢>0.

Lemma 3.2 For every k € N it holds that

= (k
Z (€> ll(k _E)k—é < CkkJr%,

=0
with an absolute constant C > 0.

k
Her S
ere (z Ak — 0)!
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3.2 Analyticity of the solution

In order to prove Theorem 3, it is enough to prove for 2n < g < oo and o € N} with |a] = k
there exist K1 = Ki(n,p,q) and Ky = Ks(n,p, q) such that

1

[D%u(t)|| e < Ky KkkFe 5973 (3.1)
by use of the Gagliardo-Nirenberg inequality. In order to prove (3.1), we make use of the

following representation formula:

t
u(t) = ea - / etDAPY . (u®u)(t) dr
(1-4)

-4 t
- / T enapy. (u®u)(r)dr — / eIAPY {(u®u)(7) — (u@u)(t)} dr
0 1_,)

= J1(t) + Jok(t) + J3x(t) + Jax(t),

which is defined for k > 2.
There are difficult to deal with singularity at 7 = t. Therefore, we estimate Jy x(t) by use of
Propsition 3.1.

Lemma 3.3 Let n < p < 00, and o € Nij with |a] = k. For max(p,2n) < q < 0o, there erists
a constant Cj, = Cy,(n,p,q) satisfying
ID*ak(®llze < Co KERET R385 0, (3:2)

Proof. By Lemmata 3.1, 3.2, and Proposition 3.1, for 8, v € N with || =k —1 and |y| = £ we
have

1D Jak(#)]| s

5/ D% TAPY . ((u®u) (1) — (u® u)(t))| e dr
(-4

t AT—IV% HUUT—uu Y dr
SC/(I% t-7) ID?((w®u)(7) = (u@u)(®))ll, g d

t k

n

1
) 7 B=Y(u(r) —u »||D7u(7)]| e
<< f 0 = () U~ wo o

o~

+ D7 u(t) 24| DY (ulr) = u(t))|a} dr

e

SCK§K§‘1(k - 1)’%*%(%*%*» ,
where we used % 5 and 7 <1 by the assumption 2n < ¢. This completes the proof of the
lemma. |

Therefore, we can take sufficiently large K7, Ko such that

ID%u(t)||ze < KiKkkFe 3 G—0-%,
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