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1 Introduction

This is an announcement of [1].

Let R™ be the n-dimensional Euclidean space. Let b € BMO(R") and T be a
Calderén-Zygmund singular integral operator. In 1976 Coifman, Rochberg and
Weiss [3] proved that the commutator [b,T] = bT — Tb is bounded on LP(R™)
(1 < p < 00), that is,

116, T)f e = (0T = T'(0f)lle < Cllbllsroll flze,

where C'is a positive constant independent of b and f. For the fractional integral
operator I,, Chanillo [2] proved the boundedness of [b, I,] in 1982. That is,

[, Za] f1lzs < Cllbllmoll f o

where o € (0,n), p,g € (1,00) and —n/p + @ = —n/q. These results were
extended to Morrey spaces by Di Fazio and Ragusa [4] in 1991.

In this talk we discuss the boundedness of the commutators [b, T] and [b, I,] on
generalized Morrey spaces with variable growth condition, where T is a Calderén-
Zygmund operator, I, is a generalized fractional integral operator and b is a
function in generalized Campanato spaces with variable growth condition.

We denote by B(z,r) the open ball centered at z € R™ and of radius r, that
is,

B(z,r) ={y e R": |y — 2| <r}.
For a measurable set G C R", we denote by |G| and xg the Lebesgue measure of
G and the characteristic function of G, respectively. For a function f € L] (R")

and a ball B, let loc
1
fB—]if~]if(y)dy—@/Bf(y)dy.
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For a variable growth function ¢ : R"x (0, 00) — (0,00) and a ball B = B(z, )
we write p(B) = ¢(z, 7).
Definition 1.1. For p € [1,00) and ¢ : R x (0,00) — (0,00), let L®¥)(R™) be
the sets of all functions f such that the following functional is finite:

1 1/p
P (WB)][ ok dy) ,

where the supremum is taken over all balls B in R™.

Then || f|| ¢ (gn is @ norm and LP¥)(R™) is a Banach space. If g, (z,7) = r*
with A € [—n, 0], then LP¥)(R™) is the classical Morrey spaces. If A = —n, then
LP#-n)(R™) = [P(R™). If A = 0, then L®¥0)(R") = L>(R™).

Definition 1.2. For p € [1,00) and ¢ : R™ x (0,00) — (0,00), let LP*)(R") be
the sets of all functions f such that the following functional is finite:

1/p
7o = sup (-@ ]{5 FW) — faP dy) ,

where the supremum is taken over all balls B in R™.

Then || f|| £ (gn) is @ norm modulo constant functions and thereby £®#)(R™)
is a Banach space. If p =1 and ¢ = 1, then £P¥)(R") = BMO(R"). If p = 1
and ¢(r) = 7® (0 < a < 1), then LP¥)(R™) = Lip,, (R™).

A linear operator T from S(R™) to S'(R™) is said to be a Calderén-Zygmund
operator if T is bounded on L?(R™) and there exists a standard kernel K such
that, for f € Cg,,,(R"),

Tf(z)= . K(z,y)f(y)dy, =z ¢ supp f.

It is known that any Calderén-Zygmund operator T is bounded on LP(R™) for
1<p<oo.

For a function p : R™ x (0,00) — (0,00), we consider generalized fractional
integral operators I, defined by

plz, |z —yl)
Li@= | J(w) dy.
P ( ) N |.’E _ y|n ( )
where we always assume that

1
t
/ &i’—z dt < oo for each z € R™. (1.1)
0
and that there exist positive constants C, K; and K, with K; < K, such that
Kor
t
sup p(z,t) <C pl,t) dt forall z € R" and r > 0. (1.2)
r<t<2r Kir ,

If p(x,r) = r*, then I, is the usual fractional integral operator I,. It is known
as the Hardy-Littlewood-Sobolev theorem that [, is bounded from LP(R™) to
LI(R™), if a € (0,n), p,q € (1,00) and —n/p + a = —n/q.



2 Main results

We say that 0 is almost increasing (resp. almost decreasing) if there exists a
positive constant C such that, for all z € R™ and r, s € (0, c0),

O(z,r) < CO(z,s) (resp.O(z,s) < CO(z,r)), ifr<s.
In this talk we consider the following classes of ¢:

Definition 2.1. (i) Let G%¢ be the set of all functions ¢ : R™ x (0, 00) — (0, c0)
such that ¢ is almost decreasing, and that r — @(z,7)r™ is almost increasing.
(ii) Let G™ be the set of all functions ¢ : R™ x (0,00) — (0,00) such that ¢ is
almost increasing, and that r — ¢(x,r)/r is almost decreasing.

Let ¢ € G4, If  satisfies

limp(z,7) =00, lim p(z,r) =0, (2.1)
r—0 700
then there exists ¢ € G4 such that ¢ ~ @ and that o(z, -) is continuous, strictly
decreasing and bijective from (0,00) to itself for each z.

We also consider the following conditions:

AC > 0 Vz,y € R* Vr € (0, 00),

1 6(x,r) :
— < < -yl <. 2.
C'_Q(y,r)_c’ if [z—yl<r (2.2)
3C > 0 Vz € R™* Vr € (0, 00),
/ @dt < Colz, 1), (2.3)

For functions f in Morrey spaces, we define [b, T f on each ball B by

[b, T]f () = [b, T)(fx25)(x) +/ (b(z) = b(y) K (z,y)f(y)dy, z € B.

R™\2B
Then we have the following theorem.

Theorem 2.1. Let 1 < p < g < 0o and ¢,¥ : R® x (0,00) = (0,00). Assume
that p € G and iy € G™. Let T be a Calderdn-Zygmund operator.

(i) Assume that ¢ satisfy (2.2), that ¢ satisfies (2.3), and that there exists a
positive constant Cy such that, for all x € R™ and r € (0,00),

1[}(1‘, T)go(l‘, T)l/p < COSO(I7 r)l/q'

Ifb € LEV(RM), then [b, T|f is well defined for all f € LP®)(R") and there
exists a positive constant C, independent of b and f, such that

116: T] fll Loy < Clbll s [| fl] v
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(i1) Conversely, assume that ¢ satisfies (2.2) and that there exists a positive
constant Cy such that, for all z € R™ and r € (0, 00),

Cow(:rv T)SO(J"7 r)l/p > 90(1"7 r)l/q.

If T is a convolusion type such that

Tf(x)=pv. | K(z—y)fly)dy
Rn
with homogeneous kernel K satisfying K (x) = |z|"K(z/|z), [¢o-s K =0
and K € C®(S"Y) and K # 0, and if [b, T) is bounded from L®P¥)(R™)
to L@¥)(R™), then b € LOY)(R™) and there exists a positive constant C,
independent of b, such that

16l cawy < CNb, TN Liwe) s Liao)

where ||[b, T)|| L) p@e is the opetator morm of [b,T] from L®¥)(R™) to
L@#)(R™).

In the above theorem, if ¥ = 1 and ¢(z,7) = r™", then LI¥)(R") = BMO(R")
and L®#)(R") = LP(R"). This is the case of the theorem by Coifman, Rochberg
and Weiss.

If Y(z,7) = 7% 0 < a < 1, and p(z,r) = r ", then LY (R™) = Lip, (R"),
LP#)(R™) = [P(R") and L@¥)(R") = LI(R™) with —n/p + a = —n/q. That is,

11 T1fll 2o < H1bllipg [ f1]ze-
This is the case of Janson [5, Lemma 12].

Theorem 2.2. Let 1 < p < g < oo and p,p, ¢ : R* x (0,00) — (0,00). Assume
that ¢ € G%¢ and ¢ € G™°. Assume also that p satisfies (1.1) and (1.2). Let
p*(z,7) = [ 2zl “) dt.

(1) Assume that p, p* and i satisfy (2.2), that ¢ satisfies (2.3) and that there
exist positive constants €, C,, Cy, Cy and an exponent p € (p,q] such that,
forall z,y € R™ and r,s € (0,00),

CP( r) o plz,s)

e Sne,zfr<s (2.4)

’p(::;LT) _ p(i/;s) <O (jr—s|+|o— y|)p*(:+,1r)7 (2.5)
zf% - <2and |z -yl <r/2,

/Or fi(ftﬁ dt p(z.)/? + / —(—i—)%(—)lf dt < Cop(a,1)'77, (2.6

Y(z,m)e(e,r)"? < Crp(z,r)!/e. (2.7)
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Ifb e LEVI(RM), then [b, 1) f is well defined for all f € LP¥)(R™) and there
ezists a positive constant C, independent of b and f, such that

116: Lol fll Laer < Clbll can || f 1] o

(ii) Conversely, assume that ¢ satisfies (2.2), that p(z,r) =r* 0 < a <n, and
that
Coyp(, r)r® oz, 1) > p(,r)!/1. (2.8)

If [b,1,] is bounded from L®®)(R™) to L@¥)(R"), then b € LO¥Y)(R™) and

there exists a positive constant C, independent of b, such that

18] oy < CI[b, )l Laver s Lo
where ||[b, Io]|| L) s L0 18 the opetator norm of [b, I,] from LP#)(R™) to
®) (R™).

3 Sketch of proof

We give a sketch of the proof of Theorem 2.2. To prove the theorem we use the
following inequality and theorem:

MH(b, L1)(x) < Cllbllmw((Mw(ifpfl”)(x))l/" ; <M<p*¢>n<1f|"><x>)”"),

where 1 <7 < oo, p*(z,7) = [; p(x,t)t"" dt and

bup][u - faldy, Mf(a) = supp(B f|f )| dy.

Theorem 3.1 (Nakai, 2014). Let p € [1,00) be a constant and ¢ : R™ X (0, 00) —
(0,00). Assume that there exists a positive constant C such that,

o(x,r) > Cp(z,s) forall x € R"and r € (0,s).
Then the operator M is bounded from LP)(R™) to itself if p € (1, 00).

Theorem 3.2 (Nakai, 2014). Let 1 < p < g < 0o and p, ¢ : R"x(0,00) — (0, 00).
Assume that p satisfies (1.1) and (1.2) and that ¢ is in G4 and satisfies (2.1).
Assume also that there exists a positive constant C such that, for all x € R™ and
r € (0,00),

T t 00 ; , . 1/p
/ p(xt7 ) dt(p(I,T>l/p _|_/ p('[:, t)(pt(‘z7 t) dt S CSO(I7T)1/q-
0 r

Then I, is bounded from L®#)(R™) to L@¥)(R").
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Theorem 3.3. Let 1 < p < g < oo and p,p : R* x (0,00) — (0,00). Assume
that ¢ is in G%° and satisfies (2.1). Assume also that

p(x,r)p(z, )P < Coplz,r)'e. (3.1)
Then M, is bounded from L®#)(R") to L(@%)(R™).

Proof. We may assume that ¢(z, -) is continuous, strictly decreasing and bijective
from (0, 00) to itself for each z € R™.
We prove that, for f € L®%)(R") with £l 2o @ny = 1,
M,f(z) < CM[(z)")?, € R, (3.2)

for some positive constant C' independent of f and z. To prove (3.2) we show
that, for any ball B = B(z,r),

P(B)]i ] < CoMf(a)h. (3.3)

Choose u > 0 such that ¢(z,u) = M f(z)P. If r < u, then ¢(B) = ¢(x,r) >
M f(x)P and @(B)Y9=YP < M f(z)P/9='. By (3.1) we have

o(B) ][ 1 < Cop(B) /31 ][ ] < CoMf(z)".

If r > u, then p(B) = p(z,7) < M f(z)? and p(B)"9 < Mf(z)?/9. By (3.1) we
have

1/p
p(B)fB |f| < p(B) (ﬁ lflp> < p(B)gp(B)"P < Cop(B)V® < CoM f(z)P/°.

Then we have (3.3) and the conclusion. d

Proposition 3.4. Let 1 < p < o0 and ¢ : R* x (0,00) — (0,00). Then, for
f e Li (R"),

loc

1 lloer < CUME |l 601, (3.4)

where C' s a positive constant independent of f.

Corollary 3.5. Let 1 < p < 0o and ¢ : R" x (0,00) — (0,00). Assume that
¢ € G% and that ¢ satisfies (2.3). For f € L (R"), if lim fpo,) =0, then
700

loc

1flleer < CIME S|l er, (3.5)

where C' s a positive constant independent of f.

Lemma 3.6 ([8, Theorem 2.1 and Remark 2.1]). Let p € [1,00) and ¢ is in G¥°

and satisfies (2.3). Then, for every f € LP®)(R"), [Bor) converges as r — 00
and

If = lim fpomlree ~ [fllcow,
T—>00



For any cube @ C R"™ centered at a € R™ and with sidelength 2r > 0, we
denote by Q%(Q) the set of all dyadic cubes with respect to Q.
For any cube () C R, let

MEf@) = sup ][ /(v dy.

RcO¥(Q),zeRCQ

Mé’dyf(.r) = sup ][ |f(y) = foldy.
ReQ¥(Q),zeRcQ JQ

Lemma 3.7 (Tsutsui, 2011 Komori, 2015). Let Q be a cube and f € L'(Q).
Then, for any 0 <~y <1 and XA > |f|o,

{z € Q: MG f(z) > 2X, M§Y f(z) <42}
<2™|{z € Q: MY f(z) > A}. (3.6)

Lemma 3.8. There exists a positive constant C, for any cube @ and any function
fe Q) g
I/ = follr@) < CIIME™ fllr)

Proof. By the good X inequality (3.6) and the standard argument we have the
following boundedness: There exists a positive constant C, for any cube @ and
any function f € L'(Q),

IME Pl < C (IME™ ey + QP flo) (3.7)

Actually, forLany L >2|f|o,

PN {z € Q : MY f(x) > A} dA
0

2|flq
——-/ p)\pl{xEQ Mdyf (z) > A} dA
0

L
+/ pA T {z € Q: MY f(z) > A} dA
2|flq
L/2

< 2flo)fIQ] + 27 / PV Uz € Q: MY f(z) > 2)}] dA.

[fle

By the good A inequality (3.6) we have

219
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L/2
2@/ pNT{z € Q: MY f(x) > 2X}| dA
Iflo

L/2
< QMHPy /m PNz e ngf(z) > A dA
Q

L2
+2° /m pNP 1z €@ Médyf(x) > YA dA
Q

gznﬂw/ pAP{z € @ MY f(z) > A}
0

+ 2”7_”/0 PNz eQ: Mgdyf(x) > AHdA.

Then, for small v > 0,
-2 [ o e € @ Mg > N
< QUlaPIQl+ 277 [ o3 li(e € QM F(a) > 0} dn
Letting L — oo, we have (3.7). Substitute f — fg for f in (3.7). Then
I1f = falle@ < IMG(f = fo)llze@)
< IMEY fllim + Q17 ]{2 = fo

< |ME™ £l o) + Q|7 inf MEY f(x).
zEQ

Since
1/
QI inf MEY f(z) = / inf MEY f(z) ' dy '
TEQ Q Q zEQ
< IMEY fllLr(q)
we have the conclusion. O

Proof of Proposition 3.4. For any ball B = B(z,r), take the cube @ centered at
2 and with sidelength 2r. Then B C Q. By Lemma 3.8 we have

(ﬁ]{?u—fﬁ)ws( ‘B‘]’u fQV’)
-

5 ||]Mﬁf”L<W>(Rn)-

This shows the conclusion. O
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