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Abstract. In this work we discuss a characterization of  (\epsilon, \delta) ‐Freudenthal Kan‐
tor triple systems defined by bilinear forms and give exampıes of such triple
systems. From these results, we construct some Lie algebras or superalgebras.

1 Introduction

The concept discussed here first appeared with a class of nonassociative alge‐
bras, that is commutative Jordan algebras, which was the defining subspace
 g-1 in the Tits‐Kantor‐Koecher (for short TKK) construction of 3‐graded Lie
algebras  g=g_{-1}\oplus g_{0}\oplus g_{1} , such that  [g_{i}, g_{j}]\subseteq g_{i+J} . Nonassociative algebras
are rich in algebraic structures, and they provide an important common ground
for various branches of mathematics, not only for pure algebra and differential
geometry, but also for representation theory and algebraic geometry. Specially,
the concept of nonassociative algebras such as Jordan and Lie (super)algebras
plays an important role in many mathematical and physical subjects ([5],[10]‐
[13], [15], [26], [28], [29], [38], [47], [48], [52], [55], [56]). We also note that the
construction and characterization of these algebras can be expressed in terms
of the notion of triple systems ([1]‐[4],  [6]-[8],  [20],  [23],  [24],  [33],  [38],  [43]-[46],
[49], [51]) by using the standard embedding method ([22], [41], [42], [50], [54]).
In particular, the generalized Jordan triple system of second order, or  (-1,1)-
Freudenthal Kantor triple system (for short  (-1,1)‐FKTS), is a useful concept
 ([13]-|21], [34\rfloor-\lfloor 37], |40], 153\rfloor) for the constructions of simple Lie algebras, while
the  (-1, -1) ‐FKTS plays the same role ([6], [22], [25], [27]) for the construction
of Lie superalgebras, while the  \delta‐Jordan Lie triple systems act similarly for that
of Jordan superalgebras ([23], [24], [49]). Specially, we have constructed a model
of Lie superalgebras  D(2,1;\alpha),  G(3) and  F(4) ([25]).

The purpose of this paper is to study applications of triple systems. First,
we give several examples of tripıe systems defined by bilinear forms, and second,
we give the construction of examples of Lie algebras or superalgebras associated
with the triple systems and furthermore the connection with extended Dynkin
diagrams. As a final comment of the introduction, we summarize with the
following scheme:

Bilinear forms
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(Jordan algebras)

 \swarrow  \searrow

 (\varepsilon, \delta)-FKTS  \Leftrightarrow Lie (super)algebra construction

(Jordan triple systems) (TKK construction)

We show how these generalized triple systems, (i.e.,  (\varepsilon, \delta) ‐FKTS), correspond
to certain bilinear forms  <,  >in analogy to the case of Jordan algebras and the
TKK construction.

2 Preamble and definitions

In this paper triple systems have finite dimension being defined over a field  \Phi

of characteristic  \neq 2 or 3, unless otherwise specified. In order to render the
paper as self‐contained as possible, we recall first the definition of a generalized
Jordan triple system of second order (for short GJTS of 2nd order).

A vector space  V over a field  \Phi endowed with a trilinear operation   V\cross V\cross

 Varrow V,  (x, y, z)\mapsto (xyz) is said to be a GJTS of 2nd order if the following
conditions are fulfilled:

(ab(xyz))  = ((abx)  yz )  -(x(bay)z)+(xy(abz)) , (1)

 K(K(a, b)x, y)-L(y, x)K(a, b)-K(a, b)L(x, y)=0 , (2)

where  L(a, b)c:= (abc) and  K(a, b)c:=(acb)-(bca) .
A Jordan triple system (for short JTS) satisfies (1) and the following condi‐

tion

(abc)  = (cba). (3)

We can generalize the concept of GJTS of 2nd order as follows (see [13], [14],
[18], [22], [54] and the earlier references therein).

For  \varepsilon=\pm 1 and  \delta=\pm 1 , a triple product that satisfies the identities

(ab(xyz))  =((abx)yz)+\varepsilon(x(bay)z)+(xy(abz)) , (4)

 K(K(a, b)x, y)-L(y, x)K(a, b)+\varepsilon K(a, b)L(x, y)=0 , (5)

where

 L(a, b)c:= (abc),  K(a, b)c:=(acb)-\delta(bca) , (6)

is called an  (\varepsilon, \delta) ‐FKTS. An  (\varepsilon, \delta) ‐FKTS is said to be unitary if  Id\in\{K(a, b)\}_{span}.
A triple system satisfying only the identity (4) is called a generalized FKTS

(for short GFKTS), while the identity (5) is called the second order condition.
Remark. We note that

 K(b, a)=-\delta K(a, b) . (7)

A triple system is called  a(\alpha, \beta, \gamma) triple system associated with a bilinear
form if

(xyz)  =\alpha<x,  y>z+\beta<y,  z>x+\gamma<z,  x>y,
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where  <x,  y> is a bilinear forin such that  <x,  y>=\kappa<y,  x>,  \kappa=\pm 1,
 \alpha,  \beta,  \gamma\in\Phi.

From now on we will mainly consider this type of triple system.
An  (\varepsilon, \delta) ‐FKTS is said to be balanced if there is a bilinear form  <x,  y>\in\Phi^{*}

such that  K(x, y)=<x,  y>Id.
Triple products are denoted by (xyz), {xyz}, [xyz] and  <xyz  > upon their

suitability.
Remark. We note that the concept of GJTS of 2nd order coincides with that of
 (-1,1)‐FKTS. Thus we can construct the corresponding Lie algebras by means
of the standard embedding method  ([6], [13]-[18], [22], [25], [27], [36], [54]) .
For  \delta=\pm 1 , a triple system  (a, b, c)\mapsto [abc],  a,  b,  c\in V is called a  \delta‐Lie triple
system (for short  \delta‐LTS) if the following three identities are fulfilled

[abc]  =-\delta[bac],
 [abc]+[bca]+[cab]=0 , (8)

[ab[xyz]]  = [[abx]  yz ]  +[x[aby]z]+[xy[abz]],

where  a,  b,  x,  y,  z\in V . An 1‐LTS is a LTS while a  -1‐LTS is an anti‐LTS, by
 [141.
Proposition 2.1 ([14],[22]) Let  U(\varepsilon, \delta) be an  (\varepsilon, \delta) ‐FKTS. If  J is an endomor‐
phism of  U(\varepsilon, \delta) such that  J<xyz  >=< JxJyJz  > and  J^{2}=-\varepsilon\delta Id , then
 (U(\varepsilon, \delta) , [xyz]  ) is a LTS  (if  \delta=1) or an anti‐LTS  (if  \delta=-1) with respect to
the product

[xyz]  :=<xJyz>-\delta<yJxz>+\delta<xJzy>-<yJzx>. (9)

Corollary Let  U(\varepsilon, \delta) be an  (\varepsilon, \delta) ‐FKTS. Then the vector space  T(\varepsilon, \delta)=
 U(\varepsilon, \delta)\oplus U(\varepsilon, \delta) becomes a LTS  (if  \delta=1) or an anti‐LTS  (if  \delta=-1) with
respect to the triple product

 [  (\begin{array}{l}
a
b
\end{array})(\begin{array}{l}
c
d
\end{array})(\begin{array}{l}
e
f
\end{array})]=(\begin{array}{lll}
L(a,d)-   \delta L(c,b)   \delta K(a,c)
-\varepsilon K(b,d)      \delta L(b,c))\varepsilon(L(d,a)-
\end{array})(\begin{array}{l}
e
f
\end{array}) (10)

Thus we can obtain the standard embedding Lie algebra (if  \delta= 1) or Lie
superalgebra (if  \delta=-1 ),  L(\varepsilon, \delta)=D(T(\varepsilon, \delta), T(\varepsilon, \delta))\oplus 
T(\varepsilon, \delta) , associated to
 T(\varepsilon, \delta) where  D(T(\varepsilon, \delta), T(\varepsilon, \delta)) is the set of inner derivations of  T(\varepsilon, \delta) , i.e.

 D(T(\varepsilon, \delta), T(\varepsilon, \delta)):=\{  (\begin{array}{llll}
L(a   b)   \delta K(c   d)
-\varepsilon K(e,f)      \varepsilon L(b,a)   
\end{array})\}_{span}
 T(\varepsilon, \delta):=\{ (\begin{array}{l}
x
y
\end{array})x, y\in U(\varepsilon, \delta)\}_{span}

Proposition 2.2 ([15],[31]) Let  U be a unitary  (\varepsilon, \delta) ‐FKTS and  L(U) be
the standard embedding Lie (super)algebra associated with U. Then the following
are equivalent:

(i)  U is simple,
(ii) the algebra  L is simple,
(iii) the JTS  k:=\{K(a, b)\}_{span} is simple and nondegenerate.
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3 Examples of  (\varepsilon, \delta) ‐JTS

We consider here the particular case when  K(x, y)\equiv 0 (identically), that is of
an  (\varepsilon, \delta) ‐JTS.

Example 3.1 Let V be a vector space with a symmetric bilinear form  <

 x,  y> . Then

 <xyz >=<x, y>z+<y, z>x-<z, x>y

defines on V  a(-1,1) ‐JTS.

Example 3.2 Let V be a vector space with an anti‐symmetric bilinear form
 <x,  y> . Then

 <xyz >=<x, y>z+<y, z>x-<z, x>y

defines on V  a(1, -1) ‐JTS.

Example 3.3 Let V be a vector space with a symmetric bilinear form  <

 x,  y> . Then

 <xyz >=<x, y>z-<y, z>x

defines on V  a(-1, -1)‐JTS.

Example 3.4 Let V be a vector space with an anti‐symmetric bilinear form
 <x,  y> . Thcn

 <xyz >=<x, y>z-<y, z>x

defines on V  a(1,1)‐JTS.

Proposition 3.1 Let  (U, <xyz >) be an  (\varepsilon, \delta) ‐JTS. Then the triple system
is a  \delta ‐LTS with respect to the new product

[xyz]  =<xyz  >-\delta<yxz  >.

In the next subsection we study the case of an  (\varepsilon, \delta) ‐FKTS, but we give first
two examples which are not  (\varepsilon, \delta) ‐JTS as it follows.

Proposition 3.2 Let  (U, <xyz >) be a triple system  with<xyz  >=<

 y,  z>x  and<x,  y>=-\varepsilon<y,  x> . Then this triple system is an  (\varepsilon, \delta) ‐FKTS.

Proposition 3.3 Let  U be a balanced (1, 1) ‐FKTS satisfying  << xxx  >

,  x>\equiv 0 (identically)  and<x,  y> is nondegenerate. Then  U has a triple
product defined by

 <xyz >= \frac{1}{2}(<y, x>z+<y, z>x+<x, z>y) .

4 Complex structure

We discuss here about a complex structure on the vector space  T(\varepsilon, 5)=g_{-1}Og_{1}.
We set

 E=(\begin{array}{ll}
0   Id
0   0
\end{array}) , F=(\begin{array}{ll}
0   0
Id   0
\end{array}) , H=(\begin{array}{ll}
Id   0
0   -Id
\end{array}) , J=\delta E-\varepsilon F.
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Then, by straightforward calculations, follows

 H=[E, F],  [H, E]=2E,  [H, F]=-2F,   J^{2}=-\delta\varepsilon  (\begin{array}{ll}
Id   0
0   Id
\end{array})
Next, we define the Nijenhuis operator on  T(\varepsilon, \delta) by

 N(X, Y)=[JX, JY]-J[JX, Y]-J[X, JY]+J^{2}[X, Y] ,  X,  Y\in T(\varepsilon, \delta) .

We study here the cases  \varepsilon\delta=1 , that is, the case of an almost complex
structure, i.e.  J^{2}=-Id. The cases  \varepsilon\delta=-1 , i.e. of para complex structure,
will be considered elsewhere.

Then, by straightforward but extensive calculations (to be omitted here) it
follows:

Theorem 4.1 Let  U be  a(\varepsilon, \delta) ‐FKTS. Then the following identities are
equivalent:

(i)  N(X, Y)=0,
(ii)  L(y, x)-\delta L(x, y)=K(x, y) .
From these results as well as differential geometry, we obtain that there

exists a complex structure on  T(\varepsilon, \delta) if the identity  L(y, x)-\delta L(x, y)=K(x, y)
holds.

Remark Following [30], we have examples of  (-1, -1)‐FKTSs with a com‐
plex structure, which are also anti‐structurable algebras. Also we note that a
generalization of this endomorphism  J will be discussed in [32].

Remark. We note that if  U is unitary then  L(\varepsilon, \delta) contains the subalgebra
 sl_{2}=\{H, E, F\}_{span} , because  Id\in k=\{K(a, b)\}_{span}=g-2.

5 Main results and examples

5.1 Main theorem

In this subsection we discuss about triple systems defined by bilinear forms.
Theorem 5.1 Let  U be an  (\alpha, \beta, \gamma) triple system associated with a bilinear

 form<x,  y>with  <x,  y>=\kappa<y,  x> , where  \kappa=\pm 1 . If  U is an  (\varepsilon, \delta) ‐FKTS
then we have the following twelve cases:

(t)  (\kappa, \varepsilon, \delta, \alpha, \beta, \gamma)=\{\begin{array}{l}
(\pm 1, \mp 1, \pm 1, \alpha, \alpha, 0)
(\pm 1, \mp{\imath}, \pm 1,0, \beta, 0)
(\pm 1, \mp 1, \pm 1, a, \alpha, -\alpha)
(\pm 1, \mp 1, \mp 1, \alpha, -\alpha, 0)
(\pm 1, \mp 1, \mp 1,0, \beta, 0)
(\pm 1, \mp 1, \mp 1, \alpha, -\alpha, \alpha)
\end{array}
where  \alpha\neq 0 and  \beta\neq 0.

5.2 Types  B_{n},  B(0, n),  C_{n},  C(n+1),  B(n, 1) and  D(n, 1)
From now on, we give several examples of  (\varepsilon, \delta) ‐FKTSs defined by bilinear
forms and their associated Lie algebras or superalgebras of the following types:
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a)  B_{n} type Lie algebias, b)  B(0, n) type Lie supeialgebras, c)  C_{7l} type Lie
algebras, d)  C(n+1) type Lie superalgebras, e)  B(n, 1)=osp(2n+1|2) or
 D(n, 1)=osp(2n, |2) type Lie superalgebras  ([91 ).

a)  B_{n} type is of dimension  \dim B_{n}=n(n+1) .
Let  U be the set of matrices  M(1, n;\Phi) . Then, by Proposition 3.2, it follows

that the triple product

 L (x, y) =<xyz >:=<y, z>x

such that the bilinear form fulfills

 <x, y>=-<y, x>

is  a(1,1)-\Gamma KTS . Furthermore, the standard embedding Lie algebra is 5‐graded
and of  B_{n} type. For the extended Dynkin diagram, we obtain from the rcsults
of §2

 L_{-2}\oplus L_{0}\oplus L_{2}  :=D (T(ı, 1),  T(1,1) )  =\{(-\varepsilon K(e,f)L(a,b)  \varepsilon L(b, a)  \varepsilon=1=\delta)\}_{span}\cong
 \delta K(c, d)

 \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{n-1} \alpha_{n}

 \circ-0-0-----0=>

 o\alpha_{0}

 =D_{n} type (  \alpha_{7l} deleted).

Also, we obtain

 L_{0}:=\{  ( L(a, b)0eL(b, a)0\varepsilon=1=\delta)  \}_{span}\cong
 \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{n-1} \alpha_{n}

 \circ-\circ-0-----0=>

 =A_{n-1}\oplus\Phi Id (  \alpha_{n} and  \alpha_{0}\circ deleted).

Thus the last diagram is obtained from the extended Dynkin diagram of  D_{n} type
by deleting  \alpha_{n} and  \alpha_{0}\circ . We note that this triple system is not balanced.

b)  B(0, n) type is of dimension  \dim B(0, n)=2n^{2}+3n.
Let  U be the set of matrices  M(1, n;\Phi) . Then, by Proposition 3.2, it follows

that the triple product

 L(x, y)z=<xyz >:=<y, z>x

such that the bilinear form fulfills

 <x, y>=<y, x>
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is  a  ( ‐ı,  -1) ‐FKTS. Furthermore, the standard embedding Lie superalgebra is
5‐graded and of  B(0, n) type. For the extended Dynkin diagram, we obtain
from the results of §2

 L_{-2}\oplus L_{0}\oplus L_{2}  :=D  (T(-1, -1), T(-1, -1))=\{(-\varepsilon K(e,f)L(a,b)  \varepsilon L(b, a)  \varepsilon=-1=\delta)\}_{span}\cong
 \delta K(c, d)

 \alpha_{0} \alpha_{1} \alpha_{2} \alpha_{n-1} \alpha_{n}

 \circ=>0-0-----0=>

 =C_{n} type (  \alpha_{n} deleted).

Also, we obtain

 L_{0}:=\{  ( L(a, b)0\varepsilon L(b, a)0\varepsilon=-1=\delta)  \}_{span}\cong
 \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{n-1} \alpha_{n}

 \circ-0-0-----0=>

 =A_{n-1}\oplus\Phi Id (  \alpha_{n} and  \alpha_{0}0 deleted).

Thus the last diagram is obtained from the extended Dynkin diagram of  B(0, n)
type by deleting  \alpha_{n} and  \alpha_{0}\circ . We note that this triple system is unitary,
but is not the balanced, since  K(y,  \frac{y}{2<y,y>})y=y for any  y\in U.

c)  C_{n} type is of dimension  \dim C_{n}=n(n+1) .
Let  U be the set of matrices  M(1,2(n-1);\Phi) . Then, by Proposition 3.2, it

follows that the triple product

 L(x, y)=<xyz >:= \frac{1}{2}(- <x, y>z+<y, z>x-<z, x>y)
such that the bilinear form fulfills

 <x, y>=-<y, x>,

is a balanced (1, 1)‐FKTS. Indeed, we have  K(x, z)y=<x,  z>y and  L(x, y)z-
 L(y, x)z=<y,  x>z=-<x,  y>z . Thus this case has a complex structure
by means of § 4. Furthermore, the standard embedding Lie superalgebra is 5‐
graded and of  C_{n} type. For the extended Dynkin diagram, we obtain from the
results of § 2

 L_{-2}\oplus L_{0}\oplus L_{2}  :=D(T(1,1), T(1,1))=\{(-\varepsilon K(e,f)L(a' b)  \varepsilon L(b, a)\delta K(cd)|\varepsilon=1=\delta)\}_{span}\cong
 \alpha_{0} \alpha_{1} \alpha_{2} \alpha_{n-1} \alpha_{n}

 \circ=>-0-----0<=0

 =A_{1}\oplus C_{n-1} type (  \alpha_{1} deleted).
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Also, we obtain

  L_{0}:=\{(\begin{array}{ll}
L(a,b)0   ==
0\varepsilon L(b,a)   ==
\end{array})\}_{span}\cong
 \alpha_{1} \alpha_{2} \alpha_{3} \alpha_{n-1} \alpha_{n}

 -\circ-0-----0<=\circ

 =C_{n-1}\oplus\Phi Id (  \alpha_{1} and  \alpha_{0}\circ deleted).

Thus the ıast diagram is obtained from the extended Dynkin diagram of  C_{n} type
by deleting  \alpha_{1} and  \alpha_{0}\circ . We note that this triple system is coincides with
the one defined in Proposition 3.3 due to the property  <x,  y>=-<y,  x> of
the bilinear form.

d)  C(n+1) type is of dimension  \dim C(n+1)=2n^{2}+5n+1.
Let  U be the set of matrices  M(1,2n;\Phi) . Then, by Example 3.2, it folıows

that the triple product

 L(x, y)z=<xyz >:=<x, y>z+<y, z>x-<z, x>y

such that the bilinear form fulfills

 <x, y>=-<y, x>,

is  a(1, -1) ‐JTS since  K(x, y)\equiv 0 (identically). Furthermore, the standard
embedding Lie superalgebra is 3‐graded and of  C(n+1) type. For the extended
Dynkin diagram, we obtain

 L_{-1}\oplus L_{0}\oplus L_{1}:=\{ (\begin{array}{ll}
L(a,b)   0
0   \varepsilon L(b,a)
\end{array})\varepsilon=1=-\delta\}_{span}\oplus\{  (\begin{array}{l}
e
f
\end{array})\}_{span}\cong
 \otimes\alpha_{1} \alpha_{2} \alpha_{3} \alpha_{n} \alpha_{n+1}

 \Vert > 0-\circ-----0<=0

 \otimes\alpha_{0}

 =C(n+1) type (  \alpha_{1}\otimes deleted).

Also, we obtain

  L_{0}:=\{ (\begin{array}{ll}
L(a,b)   0
0   \varepsilon L(b,a)
\end{array})\varepsilon=1=-\delta\}_{span}\cong
 \alpha_{2} \alpha_{3} \alpha_{n} \alpha_{n+1}

 0-0-----0<=0

 =C_{n}\oplus\Phi Id (  \alpha_{1}\otimes and  \alpha_{0}\otimes deleted).

Thus the last diagram is obtained from the extended Dynkin diagram of  C(n+1)
type by deleting  \alpha_{1}\otimes and  \alpha_{0}\otimes . We note that this triple system is not balanced.
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e)  B (  n , ı) and  D(n, 1) type are of dimension  \dim B(n, 1)=2n^{2}+5n+5 and
 \dim D(n, 1)=2n^{2}+3n+3 , respectively.

Let  U be the set of matrices  M(1, l;\Phi) . Then, by Proposition 3.2, it follows
that the triple product

 L(x, y)=<xyz >:= \frac{1}{2}(<x, y>z-<y, z>x+<z, x>y)
such that the bilinear form fulfills

 <x, y>=<y, x>

is  a(-1, -1) ‐FKTS. Furthermore, the standard embedding Lie superalgebra is
5‐graded and of  B(n, 1) type if  l=2n+1 , or of  D(n, 1) type if  l=2n . For the
extended Dynkin diagram, we obtain from the results of § 2 the following.

For the case of  B(n, 1) type we have

 L_{-2}\oplus L_{0}\oplus L_{2}  :=D(T(-1, -1), T(-1, -1))=\{ (\begin{array}{llll}
L(a   b)   \delta K(c   d)
-\varepsilon K(e,f)      \varepsilon L(b,a)   
\end{array})\varepsilon=-1=\delta\}_{span}\cong
 \alpha_{0} \alpha_{1} \alpha_{2} \alpha_{n} \alpha_{n+1}

 \circ=>\otimes-\circ-----\circ=>\circ

 =A_{1}\oplus B_{n} type (  \alpha_{1}\otimes deleted).

Also, we obtain

  L_{0}:=\{ (\begin{array}{ll}
L(a,b)   0
0   \varepsilon L(b,a)
\end{array})\varepsilon=-1=\delta\}_{span}\cong
 \alpha_{2} \alpha_{3} \alpha_{n} \alpha_{n+1}

 0-0-----0=>0

 =B_{n}\oplus\Phi Id (  \alpha_{1}\otimes and  \alpha_{0}0 deleted).

Thus the last diagram is obtained from the extended Dynkin diagram of  B(n, 1)
type by deleting  \alpha_{1}\otimes and  \alpha_{0}\circ.

Similarly, for the case of  D(n, 1) type we have  L_{-2}\oplus L_{0}\oplus L_{2}\cong A_{1}\oplus D_{n},   L_{0}\cong
 D_{n}\oplus\Phi Id . We note that this triple system is balanced, since  K(x, y)=<x,  y>

 Id=L(x, y)+L(y, x) .

Remark. The examples  a),  b ),  c),  d ) and e) are simple triple systems, since
the bilinear forms  <x,  y> are nondegenerate.

Indeed, if  I\neq 0 is an ideal of  U then, by straightforward caıculations, from
the fact that  <I,  U>  U\subseteq I and  <  > is nondegenerate, we have  I=U.

Hence  U is simple.
Concluding Remark. Briefly summarizing this section we have the fol‐

lowing table:
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