Calculation of invariant rings and their divisor class groups by cutting semi－invariants

Haruhisa Nakajima＊
Department of Mathematics
J．F．Oberlin University

Abstract

Let G be an affine connected algebraic group acting regularly on an affine Krull scheme $X=\operatorname{Spec}(R)$ over an algebraically closed field K of any characteristic．We study on the minimal calculation of the ring R^{G} of invariants of G in R and their class groups by cutting prime semi－invariants which form free modules over R^{G} ．

MSC：primary 13A50，14R20，20G05；secondary 14L30，14M25
Keywords：algebraic torus；pseudo－reflection；Krull domain；semi－invariant； divisor class group

1 Introduction

Let G be an affine algebraic group over an algebraically closed field K of arbitrary characteristic p ．Let R be an integral domain containing K as a subfield．We say that (R, G) a K－regular action of G on R ，if G acts on R as a rational G－module over K which induces the homomorphism $G \rightarrow \operatorname{Aut}_{K-a l g e b r a}(R)$（e．g．，［12］）．Let $\mathrm{U}(R)$ denote the group of all units in R and $\mathrm{U}_{K}(R)$ the quotient group of $\mathrm{U}(R)$ by the multiplicative group $\mathrm{U}(K)=K^{\times}$of K ．In general $\mathrm{U}_{K}(R)$ is torsion－free，as K is algebraically closed．We say that a non－zero element f of R is said to be a non－zero semi－invariant of R relative to χ ，if the map

$$
\chi: G \ni \sigma \mapsto \frac{\sigma(f)}{f} \in \mathrm{U}(K)
$$

is a rational character of G ．In order to calculate rings of invariants and their class groups，we can cut some prime semi－invariants and explain this viewpoint in the following example：

[^0]Example 1.1 Let $\boldsymbol{C}\left[X_{1}, X_{2}, X_{3}\right]$ be the 3-dimensional polynomial ring over the complex number field \boldsymbol{C}. Let \boldsymbol{G}_{m} be the multiplicative group \boldsymbol{C}^{\times}whose action on this algebra in such a way that $\boldsymbol{G}_{m} \ni t$ acts on $\left\{X_{1}, X_{2}, X_{3}\right\}$ by

$$
\operatorname{diag}\left[t^{2}, t^{-1}, t^{-1}\right] .
$$

Then we have
(1) $\boldsymbol{C}\left[X_{1}, X_{2}, X_{3}\right]^{\boldsymbol{G}_{m}}=\boldsymbol{C}\left[X_{1} X_{2}^{2}, X_{1} X_{2} X_{3}, X_{1} X_{3}^{2}\right]$.
(2) The stabilizer $\left(\boldsymbol{G}_{m}\right)_{X_{1}}=\langle\operatorname{diag}[1,-1,-1]\rangle$ of \boldsymbol{G}_{m} at X_{1} on $\left\{X_{1}, X_{2}, X_{3}\right\}$.
(3) $\boldsymbol{C}\left[X_{1}, X_{2}, X_{3}\right]^{\left(\boldsymbol{G}_{m}\right) X_{1}}=\boldsymbol{C}\left[X_{1}, X_{2}^{2}, X_{2} X_{3}, X_{3}^{2}\right]$.
(4) The divisor class group $\mathrm{Cl}\left(\boldsymbol{C}\left[X_{1}, X_{2}, X_{3}\right]^{\boldsymbol{G}_{m}}\right) \cong \boldsymbol{Z} / 2 \boldsymbol{Z}$ which is isomorphic to

$$
\left.\operatorname{Hom}\left(\left(\boldsymbol{G}_{m}\right)_{X_{1}}, \boldsymbol{C}^{*}\right) \cong \mathrm{Cl}\left(\boldsymbol{C}\left[X_{1}, X_{2}, X_{3}\right] \boldsymbol{G}_{m}\right)_{X_{1}}\right) .
$$

(5) There is the isomorphism

$$
\boldsymbol{C}\left[X_{1}, X_{2}, X_{3}\right]^{\left(\boldsymbol{G}_{m}\right)_{X_{1}}} /\left(X_{1}-1\right) \cong \boldsymbol{C}\left[X_{1}, X_{2}, X_{3}\right]^{\boldsymbol{G}_{m}}
$$

induced by

$$
\psi: \boldsymbol{C}\left[X_{1}, X_{2}, X_{3}\right] \rightarrow \boldsymbol{C}\left[X_{1}, X_{2}, X_{3}\right]
$$

$\left(\psi\left(X_{1}\right)=1, \psi\left(X_{2}\right)=X_{2}, \psi\left(X_{3}\right)=X_{3}\right)$.
The purpose of this paper is to generalize the assertion of this example to in the case of factorial (or Krull) domains with affine algebraic group actions in characteristic-free.

2 Preliminaries

Let $\mathcal{Q}(A)$ denote the total quotient ring of a ring A and

$$
\operatorname{Ht}_{1}(A):=\{\mathfrak{P} \in \operatorname{Spec}(A) \mid \operatorname{ht}(\mathfrak{P})=1\} .
$$

For an integral domain A and a subring B of A such that $B=\mathcal{Q}(B) \cap A$ and $\mathcal{Q}(B) \subseteq \mathcal{Q}(A)$, we denote by

$$
\begin{aligned}
& \operatorname{Ht}_{1}(A, B):=\left\{\mathfrak{P} \in \operatorname{Ht}_{1}(A) \mid \mathfrak{P} \cap B \in \operatorname{Ht}_{1}(B)\right\}, \\
& \left.\operatorname{Ht}_{1}^{(2)}(A, B):=\left\{\mathfrak{P} \in \operatorname{Ht}_{1}(A) \mid \operatorname{ht}(\mathfrak{P} \cap B) \geq 2\right)\right\}
\end{aligned}
$$

and, for $\mathfrak{p} \in \operatorname{Ht}_{1}(B)$, by

$$
\operatorname{Over}_{\mathfrak{p}}(A):=\left\{\mathfrak{P} \in \operatorname{Ht}_{1}(A) \mid \mathfrak{P} \cap B=\mathfrak{p}\right\} .
$$

Especially suppose that A is a Krull domain (e.g., [1]). Let $\mathrm{v}_{A, \mathfrak{P}}$ be the discrete valuation defined by $\mathfrak{P} \in \operatorname{Ht}_{1}(A)$ of A. Denote by $\operatorname{Div}(A)($ resp. $\operatorname{PDiv}(A), \operatorname{Cl}(A))$ the divisor group (resp. the group of principal divisors, the divisor class group) of A. For a subring B of A such that $B=\mathcal{Q}(B) \cap A, B$ is a Krull domain (e.g., $[1,3])$ and every $\operatorname{Over}_{\mathfrak{p}}(A)$ is non-empty and finite. Let $\mathrm{e}(\mathfrak{P}, \mathfrak{p})=\mathrm{v}_{A, \mathfrak{P}}(\mathfrak{p} A)$ be the ramification index of $\mathfrak{P} \in \operatorname{Over}_{\mathfrak{p}}(A)$ for a prime ideal $\mathfrak{p} \in \operatorname{Ht}_{1}(B)$. If all ramification indices of minimal prime ideals are equal to 1 , the extension $B \rightarrow A$ is said to be divisorially unramified (cf. [7]).

Consider an action of a group G on a ring R as automorphisms. For a prime ideal \mathfrak{P} of R, let

$$
\mathcal{I}_{G}(\mathfrak{P})=\{\sigma \in G \mid \sigma(x)-x \in \mathfrak{P}(x \in R)\}
$$

which is referred to as the inertia group of \mathfrak{P} under this action (for the classical case, see [5]). Let $Z^{1}(G, \mathrm{U}(R))$ be the group of 1 cocycles of G on the unit group $\mathrm{U}(R)$ of R. For a 1-cocycle χ,

$$
R_{\chi}:=\{x \in R \mid \sigma(x)=\chi(\sigma) x(\sigma \in G)\}
$$

which is a module over the invariant subring R^{G}.
The next theorem is a generalization of [11] and is fundamental in this paper:
Theorem 2.1 (cf. [7]) Let R be a Krull domain acted by a group G as automorphisms. For a cocycle $\chi \in Z^{1}(G, \mathrm{U}(R)), R_{\chi}$ is a free R^{G}-module if and only if the following conditions are satisfied:
(i) $\operatorname{dim} \mathcal{Q}\left(R^{G}\right) \otimes_{R^{G}} R_{\chi}=1$
(ii) There is a nonzero element $f \in R_{\chi}$ satisfying

$$
\left.\forall \mathfrak{p} \in \operatorname{Ht}_{1}\left(R^{G}\right) \Rightarrow \exists \mathfrak{P} \in \operatorname{Over}_{\mathfrak{p}}(R) \text { such that } \mathrm{v}_{R, \mathfrak{P}}(f)<\mathrm{v}_{R, \mathfrak{P}}(\mathfrak{p} R)\right)
$$

Here the condition (i) holds, if $R_{\chi} \cdot R_{-\chi} \neq\{0\}$.
Algebraic groups are affine and defined over a fixed algebraically closed field K of an arbitrary characteristic p. Let $\mathfrak{X}(G)$ be the group of rational characters of an algebraic group G expressed as an additive group with zero. The K-algebras R are not necessarily finite generated as algebras over K.

A subset N of a set M with an action of G is said to be G-invariant, if N is invariant under the action of G on M. In this case $\left.G\right|_{N}$ denote the group consisting of the restriction $\left.\sigma\right|_{N}$ of all $\sigma \in G$ to N, which is called the group G on N.

Pseudo-reflections on finite-dimensional vector spaces are defined in [2] and should be generalized as follows:

Definition 2.2 (Pseudo-reflections of actions) Suppose that R is a Krull Kdomain with (R, G) a regular action of an algebraic group G. Define the subgroup

$$
\mathfrak{R}(R, G):=\left\langle\bigcup_{\mathfrak{P} \in \mathrm{Ht}_{1}\left(R, R^{G}\right)} \mathcal{I}_{G}(\mathfrak{P})\right\rangle
$$

of G which is called the pseudo-reflection group of the action (R, G).
Finiteness of pseudo-reflections of regular actions characterize reductivity of algebraic groups. We have

Theorem 2.3 (cf. [8]) Let G^{0} be the identity component of an algebraic group G. Then the following conditions are equivalent:
(i) G^{0} is reductive.
(ii) $\mathfrak{R}(R, G)$ is finite on R for any Krull K-domain R with a regular action of G.

3 The abstract descent of class groups

In this section, suppose that A is Krull. For a subset Γ of $\mathcal{Q}(A)$ satisfying $\gamma \cdot \Gamma \subset A$ for some $\gamma \in A$, let $\operatorname{div}_{A}(\Gamma)$ be the divisor of ΓA on A. On the other hand, let $\mathrm{I}_{A}(D)$ be the divisorial fractional ideal of A defined by the divisor D on A. Consider a K-subalgebra B of A satisfying $\mathcal{Q}(B) \cap A=B$. For each $\mathfrak{p} \in \operatorname{Ht}_{1}(B)$, set

$$
d_{\mathfrak{p}}=\sum_{\mathfrak{P} \in \operatorname{Over}_{\mathfrak{p}}(A)} \mathrm{v}_{A, \mathfrak{P}}(\mathfrak{p} A) \operatorname{div}_{A}(\mathfrak{P}) \in \operatorname{Div}(A) .
$$

Define the subgroup

$$
E^{*}(A, B):=\left(\bigoplus_{\mathfrak{p} \in \mathrm{Ht}_{1}(B)} \boldsymbol{Z} d_{\mathfrak{p}}\right) \oplus \operatorname{Bup}(A, B)
$$

of $\operatorname{Div}(A)$ where $\operatorname{Bup}(A, B)=\bigoplus_{\mathfrak{P} \in \operatorname{Ht}_{1}(A), \text { ht }(\mathfrak{P} \cap B) \geqq 2} \boldsymbol{Z} \operatorname{div}_{A}(\mathfrak{P})$. Let

$$
\Phi_{A, B}^{*}: E^{*}(A, B) \rightarrow \operatorname{Div}(B)
$$

be the homomorphism defined by the composite of the projection

$$
E^{*}(A, B) \rightarrow \bigoplus_{\mathfrak{p} \in \mathrm{Ht}_{1}(B)} \boldsymbol{Z} d_{\mathfrak{p}}
$$

and the isomorphism

$$
\bigoplus_{\mathfrak{p} \in \mathrm{Ht}_{1}(B)} \boldsymbol{Z} d_{\mathfrak{p}} \ni \sum_{\mathfrak{p}} a_{\mathfrak{p}} d_{\mathfrak{p}} \mapsto \sum_{\mathfrak{p}} a_{\mathfrak{p}} \operatorname{div}_{S}(\mathfrak{p}) \in \operatorname{Div}(B)
$$

$\operatorname{Set} \operatorname{Div}_{A}(\mathrm{U}(\mathcal{Q}(B))):=\left\{\operatorname{div}_{A}(\gamma) \mid \gamma \in \mathrm{U}(\mathcal{Q}(B))\right\} \subset \operatorname{PDiv}(A)$. Then

$$
\operatorname{PDiv}(B) \ni D \mapsto \operatorname{div}_{A}\left(\mathrm{I}_{B}(D)\right) \in \operatorname{Div}_{A}(\mathrm{U}(\mathcal{Q}(S)))
$$

is an isomorphism whose inverse is the restriction $\left.\Phi_{R, S}^{*}\right|_{\operatorname{Div}_{A}(U(\mathcal{Q}(B)))}$. Since

$$
\operatorname{Div}_{A}(\mathrm{U}(\mathcal{Q}(B))) \subset E^{*}(A, B)
$$

we define $E(A, B):=E^{*}(A, B) / \operatorname{Div}_{A}(\mathrm{U}(\mathcal{Q}(B)))$. Moreover define the subgoup

$$
L(A, B):=\left\{f \in \mathrm{U}(\mathcal{Q}(A)) \mid \operatorname{div}_{A}(f) \in E^{*}(A, B)\right\}
$$

of $\mathrm{U}(\mathcal{Q}(A))$. Then:
Theorem 3.1 Under the circumstances as above, we obtain the sequences

$$
\begin{gathered}
0 \rightarrow\left(\operatorname{Div}_{A}(\mathrm{U}(\mathcal{Q}(B)))+\operatorname{Bup}(A, B)\right) / \operatorname{Div}_{A}(\mathrm{U}(\mathcal{Q}(B)) \rightarrow E(A, B) \rightarrow \mathrm{Cl}(B) \rightarrow 0 \\
0 \rightarrow \frac{L(A, B) / \mathrm{U}(\mathcal{Q}(B))}{\mathrm{U}(A) / \mathrm{U}(B)} \rightarrow E(A, B) \rightarrow \mathrm{Cl}(A)
\end{gathered}
$$

which are exact.
We introduce the concept of redundant prime elements which partially generate the subring C of A over B as follows:

Definition 3.2 (Paralleled linear hulls) Consider an intermediate subring C of A such that $C=\mathcal{Q}(C) \cap A$ and $B \subseteq C$. The pair $\left(C,\left\{f_{1}, \ldots, f_{m}\right\}\right)$ is defined to be a paralleled linear hull of B with respect to $f_{i}(1 \leq i \leq m)$, if the composite of the inclusion and the canonical epimorphism

induces an isomorphism, $f_{i}(1 \leq i \leq m)$ are algebraically independent over $\mathcal{Q}(B)$ and

$$
\mathrm{Cl}(B) \cong \mathrm{Cl}(C)
$$

Note in general $C \neq B\left[f_{1}, \ldots, f_{m}\right]$.

4 Graded structures and paralleled linear hulls

Let S be an integral domain which is a \boldsymbol{Z}^{m}-graded algebra

$$
S=\bigoplus_{i \in \boldsymbol{Z}^{m}} S_{i}
$$

over S_{0}. Then if S is Krull, so is S_{0}, because $S_{0}=\mathcal{Q}\left(S_{0}\right) \cap S$.
Definition 4.1 (half primary \boldsymbol{Z}^{m}-freeness) We say that S is half primary \boldsymbol{Z}^{m} free with respect to $\left\{f_{1}, \ldots, f_{m}\right\}$, if

$$
S_{i}=S_{\left(i_{1}, \ldots, i_{m}\right)}=S_{\mathbf{0}} \prod_{j=1}^{m} f_{j}^{i_{j}}
$$

for any $i_{j} \geqq 0$ and $f_{j}, 1 \leqq j \leqq m$, is homogeneous prime element in S of degree $(0, \ldots, 0,1,0, \ldots, 0)$ having 1 at the j-th part.

Theorem 4.2 Suppose that S is a \boldsymbol{Z}^{m}-graded Krull domain. If S is half primary \boldsymbol{Z}^{m}-free with respect to $\left\{f_{1}, \ldots, f_{m}\right\}$, then $\left(S,\left\{f_{1}, \ldots, f_{m}\right\}\right)$ is a paralleled linear hull of $S_{\mathbf{0}}$.

Put $\boldsymbol{Z}_{\leq 0}:=\{k \in \boldsymbol{Z} \mid k \leq 0\}$ and let $\boldsymbol{Z}_{<0}^{m}$ be the direct product of k-copies of $\boldsymbol{Z}_{\leq 0}$. For a subset W of S, let $W^{\text {hom }}$ be the set consisting homogenous elements of W in S. Let

$$
U_{S}:=\left\{h \in S^{\text {hom }} \mid h \neq 0, \operatorname{deg}(h) \in \boldsymbol{Z}_{\leq 0}^{m}\right\} .
$$

For a subset Ω of Spec S, let $\Omega^{\text {hom }}$ be the set of all homogeneous prime ideals in Ω. A divisor

$$
D=\sum_{\mathfrak{P} \in \mathrm{Ht}_{1}(S)} a_{\mathfrak{P}} \operatorname{div}_{S}(\mathfrak{P})
$$

of $\operatorname{Div}(S)$ is said to be homogeneous, if all prime ideals in

$$
\operatorname{supp}_{S}(D):=\left\{\mathfrak{P} \in \operatorname{Ht}_{1}(S) \mid a_{\mathfrak{P}} \neq 0\right\}
$$

are homogeneous. For a subset of \mathcal{D} of $\operatorname{Div}(S)$, we put

$$
\begin{gathered}
\mathcal{D}^{\text {hom }}:=\{D \in \mathcal{D} \mid D \text { is homogeneous }\}, \\
\operatorname{Ht}_{1}(S)_{0}^{\text {hom }}:=\operatorname{Ht}_{1}(S)^{\text {hom }} \backslash\left\{S f_{1}, \ldots, S f_{m}\right\}
\end{gathered}
$$

and

$$
\operatorname{Div}(S)_{0}^{\text {hom }}:=\left\{D \in \operatorname{Div}(S)^{\text {hom }} \mid \operatorname{supp}_{S}(D) \cap\left\{S f_{1}, \ldots, S f_{m}\right\}=\emptyset\right\}
$$

Lemma 4.3 Under the circumstances as above we have
(i) $\mathrm{Cl}\left(U_{S}^{-1} S\right)=\{0\}$
(ii) $\operatorname{Div}(S)_{0}^{\text {homo }} \longrightarrow \mathrm{Cl}(S)$ is an epimorphism.
(iii) $\operatorname{Ht}_{1}(S)_{0}^{\text {hom }} \ni \mathfrak{P} \longmapsto \mathfrak{P} \cap S_{\mathbf{0}} \in \operatorname{Ht}\left(S_{\mathbf{0}}\right)$ is bijective and $\mathrm{e}\left(\mathfrak{P}, \mathfrak{P} \cap S_{\mathbf{0}}\right)=1$.
(iv) The composite $\operatorname{Div}(S)_{0}^{\text {homo }} \hookrightarrow E^{*}\left(S, S_{0}\right) \xrightarrow[\Phi_{S, S_{0}}^{*}]{\longrightarrow} \operatorname{Div}\left(S_{0}\right)$ is an isomorphism and induces

$$
\operatorname{PDiv}(S) \cap \operatorname{Div}(S)_{0}^{\text {homo }} \cong \operatorname{PDiv}\left(S_{0}\right)
$$

This follows from the idea of M. Nagata on homogeneous localization (e.g., [3]).
By Lemma 4.3 we must have the isomorphism

$$
\mathrm{Cl}(S) \cong \mathrm{Cl}\left(S_{0}\right)
$$

The remainder of the sketch of the proof of Theorem 4.2 is omitted.

5 Toric quotients

In this section let (R, G) be a regular action of a connected algebraic group G on a Krull domain R containing K as a subring.

Using Nagata's pseudo-geometric rings ([5]) and Rosenlicht's theorem on $\mathrm{U}_{K}\left(R^{\prime}\right)$ of affine normal domains R^{\prime}, we can generalize the result of [4] without the assumption of finite generations of R as follows.

Theorem 5.1 (cf. [10]) Let f be a nonzero element of $\mathcal{Q}(R)$. If $R f$ is invariant under the action of G, then $K f$ is G-invariant and, moreover if $\mathfrak{P} \cap R^{G} \neq\{0\}$ for any $\mathfrak{P} \in \operatorname{Ht}_{1}(R)$ such that $\mathrm{v}_{R, \mathfrak{P}}(f)<0$, then

$$
G \ni \sigma \mapsto \frac{\sigma(f)}{f} \in \mathrm{U}(K)
$$

is a rational character of G.
By this theorem, for a nonzero $f \in R$ satisfying that $R f$ is G-invariant, the symbol $\delta_{f, G}$ is denoted to the homomorphism

$$
\delta_{f, G}: G \ni \sigma \mapsto \frac{\sigma(f)}{f} \in \mathrm{U}(K) .
$$

Lemma 5.2 We have:
(i) If the set $\bigcup_{\mathfrak{p} \in \Lambda} \operatorname{Over}_{\mathfrak{p}}(R)$ consists of principal ideals, then it is a finite set, where $\Lambda:=\left\{\mathfrak{p} \in \operatorname{Ht}_{1}\left(R^{G}\right)| | \operatorname{Over}_{\mathfrak{p}}(R) \mid \geq 2\right\}$.
(ii) If the set $\mathrm{Ht}_{1}^{(2)}\left(R, R^{G}\right)$ consists of principal ideals, then it is a finite set.

This finiteness follows from Theorem 2.1 and $\operatorname{rank}(\mathcal{X}(G))<\infty$.
Assumption 5.3 Suppose that the both sets of Lemma 5.2 consist of principal ideals of R.

By this there exist non-associated prime elements f_{1}, \ldots, f_{m} of R such that

$$
\left|\left\{R f_{1}, \ldots, R f_{m}\right\} \cap \operatorname{Over}_{\mathfrak{p}}(R)\right|=\left|\operatorname{Over}_{\mathfrak{p}}(R)\right|-1
$$

for every $\mathfrak{p} \in \operatorname{Ht}_{1}\left(R^{G}\right)$ and

$$
\left\{R f_{1}, \ldots, R f_{m}\right\} \backslash\left(\bigcup_{\mathfrak{p} \in \mathrm{Ht}_{1}\left(R^{G}\right)} \operatorname{Over}_{\mathfrak{p}}(R)\right)=\mathrm{Ht}_{1}^{(2)}\left(R, R^{G}\right)
$$

According to Theorem 5.1, the homomorphisms $\delta_{f_{i}, G}$ are rational characters of G. Let H be the stabilizer

$$
\operatorname{Stab}\left(G: f_{1}, \ldots, f_{m}\right)=\bigcap_{i=1}^{m} G_{f_{i}}=\bigcap_{i=1}^{m} \operatorname{Ker}\left(\delta_{f_{i}, G}\right)
$$

of G at the set $\left\{f_{1}, \ldots, f_{m}\right\}$.
From the choice of f_{i} and Theorem 2.1, we must have

$$
\begin{equation*}
R_{\sum_{i} a_{i} \delta_{f_{i}, G}}=R^{G} \prod_{i} f_{i}^{a_{i}} \tag{5.1}
\end{equation*}
$$

for any integer $a_{i} \geq 0(1 \leq i \leq m)$ and put

$$
R^{f}=\sum_{a_{1}, \ldots, a_{m} \in \boldsymbol{Z}} R_{\sum_{i} a_{i} \delta_{f_{i}, G}} \subset R
$$

which is a K-subalgebra of R^{H}. Clearly $R^{H}=R^{f}$ in the case where the ground field K is of characteristic $p=0$. The equalities (5.1) imply that the subgroup $\left\langle\delta_{f_{1}, G}, \ldots, \delta_{f_{m}, G}\right\rangle$ of $\mathfrak{X}(G)$ is free of rank m. On the other hand

$$
R^{\boldsymbol{f}}=\mathcal{Q}\left(R^{\boldsymbol{f}}\right) \cap R
$$

and hence the K-subalgebra $R^{\boldsymbol{f}}$ is a Krull domain with the \boldsymbol{Z}^{m}-graded structure defined by the homogeneous part

$$
R_{a}^{\boldsymbol{f}}=R_{\sum_{i} a_{i} \delta_{f_{i}, G}}
$$

of degree $\boldsymbol{a}=\left(a_{1}, \ldots, a_{m}\right) \in \boldsymbol{Z}^{m}$. Consequently, from (5.1) we infer that, for $S=R^{f}$ and $S_{0}=R^{G}, S$ is half primary \boldsymbol{Z}^{m}-free with respect to $\left\{f_{1}, \ldots, f_{m}\right\}$.

Theorem 5.4 Under the circumstances as above, $\left(R^{f},\left\{f_{1}, \ldots, f_{m}\right\}\right)$ is a paralleled linear hull of R^{G}.

This theorem follows from Theorem 4.2.
Next, the class group $\mathrm{Cl}\left(R^{\boldsymbol{f}}\right) \cong \mathrm{Cl}\left(R^{G}\right)$ shall be studied by the abstract descent method. For this purpose we introduce the notation as bellow: Consider a K subalegba M of R such that $M \supset\left\{f_{1}, \ldots, f_{m}\right\}$ and $\mathcal{Q}(M) \cap R=M$ which is invariant under the action of G. Since M is a Krull domain, for a subset \mathcal{D} of the divisor group $\operatorname{Div}(M)$ of M, let us define the subset

$$
\mathcal{D}_{\boldsymbol{f}(M)}:=\left\{D \in \mathcal{D} \mid \operatorname{supp}_{M}(D) \cap\left\{M f_{1}, \ldots, M f_{m}\right\}=\emptyset\right\}
$$

without prime elements f_{i} as supports of divisors. The group G acts on $\operatorname{Div}(M)$ naturally. If \mathcal{D} is an G-invariant subset, let \mathcal{D}^{G} denote the set consisting G-invariant divisors of \mathcal{D} and, for a simplicity, denote $\mathcal{D}_{\boldsymbol{f}(M)}^{G}$ by the set $\mathcal{D}^{G} \cap \mathcal{D}_{\boldsymbol{f}(M)}$.

As $R^{\boldsymbol{f}}$ is invariant under the action of G on R, we see $\operatorname{Ht}_{1}\left(R^{\boldsymbol{f}}\right)^{\text {homo }}=\operatorname{Ht}_{1}\left(R^{\boldsymbol{f}}\right)^{G}$ and

$$
\begin{equation*}
\operatorname{Div}\left(R^{\boldsymbol{f}}\right)_{0}^{\mathrm{hom}}=\operatorname{Div}\left(R^{\boldsymbol{f}}\right)_{\boldsymbol{f}\left(R^{f}\right)}^{G} \tag{5.2}
\end{equation*}
$$

Recalling $\mathcal{Q}\left(R^{f}\right) \cap R=R^{f}$, we have

$$
\Phi_{R, R^{f}}^{*}: E^{*}\left(R, R^{\boldsymbol{f}}\right) \rightarrow \operatorname{Div}\left(R^{f}\right)
$$

which is an isomorphism, since $\operatorname{Bup}\left(R, R^{\boldsymbol{f}}\right)=\{0\}$ follows from Assumption 5.3. For any $\mathfrak{p} \in \operatorname{Ht}_{1}\left(R^{\boldsymbol{f}}\right)_{0}^{\text {hom }}, \operatorname{ht}\left(\mathfrak{p} \cap R^{G}\right)=1$ and $\operatorname{Over}_{\mathfrak{p} \cap R^{G}}\left(R^{\boldsymbol{f}}\right)=\{\mathfrak{p}\}$, which shows the set $\operatorname{Over}_{\mathfrak{p}}(R)$ consists of a unique prime ideal and is G-invariant and $\operatorname{Over}_{\mathfrak{p}}(R)=$ Over $_{\mathrm{p} \cap R^{G}}(R)$. Thus we have the commutative diagram
and $\operatorname{Div}(R)_{\boldsymbol{f}(R)}^{\boldsymbol{G}} \cap E^{*}\left(R, R^{\boldsymbol{f}}\right) \cong \operatorname{Div}\left(R^{\boldsymbol{f}}\right)_{\boldsymbol{f}\left(R^{f}\right)}^{G}$. Putting

$$
L\left(R, R^{\boldsymbol{f}}\right)_{\boldsymbol{f}}:=\left\{g \in L\left(R, R^{\boldsymbol{f}}\right) \mid \operatorname{div}_{R}(g) \in \operatorname{Div}(R)_{\boldsymbol{f}(R)}\right\}
$$

we have the exact sequence

$$
0 \rightarrow L\left(R, R^{\boldsymbol{f}}\right)_{\boldsymbol{f}} /\left(\mathrm{U}(R) \cap L\left(R, R^{\boldsymbol{f}}\right)_{\boldsymbol{f}}\right) \rightarrow \operatorname{Div}(R)_{\boldsymbol{f}(R)}^{\boldsymbol{G}} \cap E^{*}\left(R, R^{\boldsymbol{f}}\right) \rightarrow \mathrm{Cl}(R)
$$

Moreover putting

$$
L\left(R^{\boldsymbol{f}}\right)_{\boldsymbol{f}}:=\left\{h \in \mathrm{U}\left(\mathcal{Q}\left(R^{f}\right)\right) \mid \operatorname{div}_{R^{f}}(h) \in \operatorname{Div}\left(R^{f}\right)_{\boldsymbol{f}\left(R^{f}\right)}^{G}\right\}
$$

by Lemma 4.3 and (5.2) we have the exact sequence

$$
0 \rightarrow L\left(R^{\boldsymbol{f}}\right)_{\boldsymbol{f}} /\left(\mathrm{U}\left(R^{\boldsymbol{f}}\right) \cap L\left(R^{\boldsymbol{f}}\right)_{\boldsymbol{f}}\right) \rightarrow \operatorname{Div}\left(R^{\boldsymbol{f}}\right)_{\boldsymbol{f}\left(R^{f}\right)}^{G} \rightarrow \mathrm{Cl}\left(R^{\boldsymbol{f}}\right) \rightarrow 0
$$

and $L\left(R^{\boldsymbol{f}}\right)_{\boldsymbol{f}} /\left(\mathrm{U}\left(R^{\boldsymbol{f}} \cap L\left(R^{\boldsymbol{f}}\right)_{\boldsymbol{f}}\right) \cong \mathrm{U}\left(\mathcal{Q}\left(R^{G}\right)\right) / \mathrm{U}\left(R^{\boldsymbol{G}}\right)\right.$ whose isomorphism demoted to $\tilde{\Phi}_{R f, R^{G}}^{*}$.

Consequently under the circumstances as above, we see
Theorem 5.5 If R is factorial, then

$$
\begin{aligned}
\mathrm{Cl}\left(R^{G}\right) & \cong \mathrm{Cl}\left(R^{\boldsymbol{f}}\right) \cong \frac{L\left(R, R^{\boldsymbol{f}}\right)_{\boldsymbol{f}} /\left(\mathrm{U}(R) \cap L\left(R, R^{\boldsymbol{f}}\right)_{\boldsymbol{f}}\right)}{L\left(R^{f}\right)_{\boldsymbol{f}} /\left(\mathrm{U}\left(R^{\boldsymbol{f}}\right) \cap L\left(R^{\boldsymbol{f}}\right)_{\boldsymbol{f}}\right)} \\
& =\frac{L\left(R, R^{\boldsymbol{f}}\right)_{\boldsymbol{f}} /\left(\mathrm{U}(R) \cap L\left(R, R^{\boldsymbol{f}}\right)_{\boldsymbol{f}}\right)}{\tilde{\Phi}_{R^{f}, R^{G}}^{*-1}\left(\mathrm{U}\left(\mathcal{Q}\left(R^{G}\right)\right) / \mathrm{U}\left(R^{G}\right)\right)} .
\end{aligned}
$$

For any $g \in L\left(R, R^{\boldsymbol{f}}\right)_{\boldsymbol{f}}$, as $\operatorname{div}_{R}(g)$ is G-invariant and

$$
\operatorname{supp}_{R}\left(\operatorname{div}_{R}(g)\right) \subset\left\{\mathfrak{P} \in \operatorname{Ht}^{1}(R) \mid \mathfrak{P} \cap R^{G} \neq\{0\}\right\},
$$

the subspace $K g$ is G-invariant and $\delta_{g, G} \in \mathfrak{X}(G)$. Suppose that

$$
\begin{equation*}
\mathrm{U}(R) \cap L\left(R, R^{\boldsymbol{f}}\right)_{\boldsymbol{f}} \subset R^{\boldsymbol{f}} . \tag{5.3}
\end{equation*}
$$

Then $\mathrm{Cl}\left(R^{G}\right) \cong L\left(R, R^{\boldsymbol{f}}\right)_{\boldsymbol{f}} / L\left(R^{\boldsymbol{f}}\right)_{\boldsymbol{f}}$. Put

$$
\mathfrak{X}(H)_{R, f}:=\left\{\left.\delta_{g, G}\right|_{H} \mid g \in L\left(R, R^{f}\right)_{f}\right\} .
$$

In case of $p=0$ we see $R^{H}=R^{f}$ and obtain
Corollary 5.6 Suppose that R is factorial and the condition (5.3) holds. If $p=0$, then

$$
\mathrm{Cl}\left(R^{G}\right) \cong \mathfrak{X}(H)_{R, \boldsymbol{f}} .
$$

Moreover by $[6,8,12]$ we have
Corollary 5.7 Suppose that R is affine factorial K-domain with trivial units. Let (R, G) be a stable regular action of an algebraic torus G (i.e., $\operatorname{Spec}(R)$ contains a non-empty open subset consisting of closed G-orbits, see [12]). If $p=0$, then $\mathrm{Cl}\left(R^{G}\right) \cong \mathfrak{X}(H / \mathfrak{R}(R, H))$.

In this case, the extension $R^{H} \rightarrow R^{\Re(R, H)}$ is divisorially unramified and $R^{\Re(R, H)}$ is factorial. Thus this follows from Corollary 5.6 for $R=R^{\mathfrak{\Re (R , H)} \text {. }}$

References

[1] N. Bourbaki, Commutative Algebra: Chapters 1-7 (Elements of Mathematics) Springer-Verlag, Berlin-Heidelberg-New York, 1989.
[2] N. Bourbaki, Groupes et Algèbres de Lie : Chapitres 4 à 6 (Éléments de Mathématique) Springer-Verlag, Berlin-Heidelberg-New York, 2006.
[3] Robert M. Fossum, The Divisor Class Groups of a Krull Domains, Springer-Verlag, Berlin-Heidelberg-New York, 1973.
[4] Andy Magid, Finite generation of class groups of rings of invariants, Proc. of Amer. Math. Soc. 60 (1976), 45-48.
[5] Masayoshi Nagata, Local Rings, Robert E. Krieger Publ. Co., New York, 1975.
[6] Haruhisa Nakajima, Reduced ramification indices of quotient morphisms under torus actions, J. Algebra 242 (2001), 536-549.
[7] Haruhisa Nakajima, Divisorial free modules of relative invariants on Krull domains, J. Algebra 292 (2005), 540-565.
[8] Haruhisa Nakajima, Reductivities and finiteness of pseudo-reflections of algebraic groups and homogeneous fiber bundles, J. Pure and Appl. Algebra 217 (2013), 1548-1562.
[9] Haruhisa Nakajima, Valuative characterizations of central extensions of algebraic tori on Krull domains, arXiv:1707.06008[math.GR]
[10] Haruhisa Nakajima, Invariant principal fractional ideals of affine integral schemes under algebraic group actions, to appear.
[11] Richard P. Stanley, Relative invariants of finite groups generated by pseudoreflections, J. Algebra 49 (1977), 134-148.
[12] Vladimir L. Popov; Tonny A. Springer, Algebraic Geometry IV, Encyclopaedia of Mathematical Sciences 55, Springer-Verlag, Berlin-Heidelberg-New York, 1994.

Department of Mathematics
J. F. Oberlin University

Machida, Tokyo 194-0294
JAPAN

[^0]: ＊Partially supported by Grant No．26400019：the Japan Society for the Promotion of Sciences．

