
77

The Tarski Theorems and Elemerttary Free Groups

Benjamin Fine
Department of Mathematics

Fairfield University
Fairfield, Connecticut 06430

United States

Abstract

Around 1945, Alfred Tarski proposed several questions concerning the elementary theory
of non‐abelian free groups. These remained open for 60 years until they were proved by O.
Kharlampovich and A. Myasnikov and independently by Z. Sela. The proofs, by both sets of
authors, were monumental and involved the development of several new areas of infinite group
theory. In this paper we explain precisely the Tarski problems and what was actually proved.
We then discuss the history of the solution as well the components of the proof and provide the
basic startegy for the proof. We finish with a brief discussion of elementary free groups, that is
groups that have exactly the same elementary theory as the class of nonabelian free groups
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1 Introduction

Around 1945, Alfred Tarski proposed several questions concerning the elementary theory of non‐
abelian free groups. These questions then became well‐known conjectures but remained open for 60
years. They were proved in the period 1996‐2006 independently by O. Kharlampovich and A. Myas‐
nikov  [KhM1-5] and by Z. Sela [Se 1‐5]. The proofs, by both sets of authors, were monumental, and
involved the development of several new areas of infinite group theory Because of the trcmendoub
amount of material developed and used in the two different proofs, the details of the solution are
largely unknown, even to the general group theory population. The book [FGMRS], presented an
introductory guide through the material. In this paper and the talk presented we provide, for a
general mathematical audience, an introduction to both the Tarksi theorems and the vast new ideas
that went into the proof. These ideas straddle the line between algebra and mathematical logic and
hence most group theorists don’t know enough logic to fully understand the details while in the other
direction most logicians don’t understand enough infinite group theory. Details and an explanation
of the proof can be found in the book Elementary Theory of Groups by B.Fine, A. Gaglione, A.
Myasnikov, G. Rosenberger and D. Spellman.

2 Elementary and Universal Theory

A first‐order sentence in group theory has logical symbols  \forall,  \exists,  \vee,  \wedge,  \sim but no quantification over
sets. A first‐order theorem in a free group is a theorem that says a first‐order sentence is true in all
non‐abelian free groups. We make this a bit more precise:
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Wc start with a first‐order language appropriate for group theory. This language, which we
denote by  L_{0} , is the first‐order language with equality containing a binary operation symbol .  a

unary operation symbol
 -1

and a constant symbol 1. A universal sentence of  L_{0} is one of
the form  \forall\overline{x}\{\phi(\overline{x})\} where  \overline{x} is a tuple of distinct variables,  \phi(\overline{x}) is a formula of  L_{0} containing no
quantifiers and containing at most the variables of  \overline{x} . Similarly an existential sentence is one of
the form  \exists\overline{x}\{\phi(\overline{x})\} where  \overline{x} and  \phi(\overline{x}) are as above.

If  G is a group, then the universal theory of  G , denoted by  Th_{\forall}(G) , consists of the set of all
universal sentences of  L_{0} true in  G . Since any universal sentence is equivalent to the negation of
an exlstential sentence it follows that two groups have the same universal theory if and only if they
have the same existential theory. We say that two groups  G,  H are universally equivalent if
 Th_{\forall}(G)=Th_{\forall}(H) .

The set of all sentences of  L_{0} true in  G is called the first‐order theory or the elementary
theory of  G , denoted by Th(G) . Being first‐order or elementary means that in the intended
interpretation of any formula or sentence all of the variables (free or bound) are assumed to take on
as values only individual group elements‐ never, for example, subsets of nor functions, on the group
in which they are interpreted.

We say that two groups  G and  H are elementarily equivalent, denoted  G\equiv H if thcy have
the same first‐order theory, that is Th  (G)=Th(H) .

Group monomorphisms which preserve the truth of first‐order formulas are called elementary
embeddings. Specifically, if  H and  G are groups and

 f:Harrow G

 i_{b} a monomorphibm then  f is an elementary embedding provided whenever  \phi  (x_{0}, x_{n}) is a
formula of  L_{0} containing free at most the distinct variables  x_{0},  x_{n} and  (h_{0}, h_{n})\in H^{n+1} then
 \phi  (h_{0}, , h_{n}) is true in  H if and only if

 \phi(f(h_{0}), , f(h_{n}))

is true in  G . If  H is a subgroup of  G and the inclusion map  i :  Harrow G is an elementary embedding
then we say that  G is an elementary extension of  H.

Two important concepts in the elementary theory of groups, are completeness and decidabil‐
ity. Given a non‐empty class of groups  \mathcal{X} closed under isomorphism then we say its first‐order
theory is complete if given a sentence  \phi of  L_{0} then either  \phi is true in every group in  \mathcal{X} or  \phi is false
in every group in  \mathcal{X} . The first‐order theory of  \mathcal{X} is decidable if there exists a recursive algorithm
which, given a sentence  \phi of  L_{0} decides whether or not  \phi is true in every group in  \mathcal{X}.

3 The Tarski Problems

Tarski first asked the general question whether all non‐abelian free groups share the same elementary
theory. Vaught, a student of Tarksi’s, proved almost immediately that all free groups of infinite rank
do have the same elementary theory, and thus reduced the question to the class of non‐abelian free
groups of finite rank. After this, Tarski’s question was formalized into the following conjectures.

Tarski Conjecture ı Any two non‐abelian free groups are elementarzly equivalent. That is any
two non‐abelian free groups satisfy exactly the same first‐order theory.

Tarski Conjecture 2 If the non‐abelian free group  H is a free factor in the free group  G then
the inclusion map  i :  Harrow G is an elementary embedding.

The second conjecture implies the first. Hence the theory of the non‐abelian free groups is
complete, that is, given a sentence  \phi of  L_{0} then either  \phi is true in every non‐abelian free group or
 \phi is false in every non‐abelian free group.
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After a long serieb of partial results the positive solution to the Tarksi conjectures  wab given by
O. Kharlampovich and A. Myasnikov  [KhM1-5] and independently by Z.Sela [Se 1‐5]. The proofs
by both sets of authors involved the development of whole new areas of mathematics, in particular
an algebraic geometry (Sela calls this diophantine geometry) over free groups. The basic theorems
eventually proved were:

Theorem 3.1. (Tarski 1.) Any two non‐abelian free groups are elementarzly equivalent. That is
any two non‐abelian free groups satisfy exactly the same first‐order theory.

Theorem 3.2. (Tarski 2. \cdot) If the non‐abelian free group  H is a free factor in the free group  G then
the inclusion map  Harrow G is an elementary embeddmg.

Kharlampovich and Myasnikov in addition to the proofs of the main Tarksi conjectures also
proved that the theory is decidable (see  [KhM5] )

Theorem 3.3. Tarski 3. The elementary theory of the non‐abelian free groups is decidable.

Although Tarksi was never explicit on the origin of the basic question, it is motivated by several
results, and concepts, in the theory of free groups (see [MKS],[LS], and [FGMRS] for complete
discussions of free groups). First is the observation that most free group properties, involvin g

elements, are rank independent, that is, true for all free groups independent of rank. For example
all non‐abelian free groups are torsion‐free and all abelian subgroups of non‐abelian free groups are
cyclic.

A second possible motivation, which also shows that all non‐abelian free groups have the same
universal theory, is the following. Let  F_{2} be a free group of rank 2. It is a straightforward consequence
of the Reidemeister‐Schreier process (see [MKS]) that the commutator subgroup of  F_{2} is free of
infinite rank. This implies that if we let  F_{\omega} denote a free group of countably infinite rank, then
 F_{\omega}\subset F_{2} . It follows that for any  m,  n\underline{>}2 with  m<n we have the string of inclusions

 \subset F_{\omega}\subset F_{2}\subset F_{m}\subset F_{n}\subset \subset 
F_{\omega}\subset 

This shows that  F_{n}\subset F_{m} and  F_{m}\subset F_{n} . Its like a snake eating its tail.
If  G\subset H then any universal sentence in  H must also be true in  G , that is  Th_{\forall}(H)\subset Th_{\forall}(G) .

This observation combined with the observations above prove that all non‐abelian free groups have
the same universal theory and hence are universally equivalent.

Theorem 3.4. All non‐abelian free groups are universally equivalent.

A group with the same universal theory as a non‐abelian free group is called a universally
free group. The above theorem then opens the question as to whether the class of universally free
groups extends beyond the class of free groups. One of the initiaı steps toward the proof of the
Tarksi problcms was a group theoretical characterization of universally frce groups. In the finitely
generated case these turn out to be the fully residually free groups.

4 The History of the Solution

The final proof of the Tarski theorems was a monumental collection of work by both sets of authors,
In addition to dealing with already existing ideas in group theory and logic, the solution involved
the development of several new areas of group theory. In particular three areas of group theory had
to be fully developed before the proof could be completed. First: the theory of fully residually
free groups. In Sela’s approach these were called limit groups. Next, the Makhanin‐Razborov
technique for solving equations within free groups and finally the development of algebraic ge‐
ometry over groups. Sela calls this diophantine geometry.
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We will discuss each of these in turn. First we look at the initiaı partial results that were done
between the statement of the problem by Tarski (in 1945) and the final proofs (1998‐2006).

The first progress was due to Vaught, a student of Tarski, who showed that the Tarski conjectures
1,2 are truc if  G and  H are both free groups of infinitc rank. This reduced the problem to free
groups of finite rank, that is, in showing that all non‐abelian free groups of finite rank share the
same elementary theory or even stronger that the embedding of a free group of rank  m into a free
group of rank  n , with  m<n , is an elementary embedding.

The basic idea in Vaught’s proof is to use the following criteria for elementary embeddings; if
 H_{0} is a subgroup of  H and that to cvcry finite subsct  \{a_{1}, , a_{n}\} of  H_{0} and cvcry element  b\in H

there exists an automorphism  \sigma of  H fixing  a_{1} , ,  a_{n} and mapping  b into  H_{0} , then the inclusion
map from  H_{0} into  H is an elementary embedding. Applying this criterion to free groups of infinite
 rank_{7} suppose that,  F is free on an infinite subset  S and that  G is free on an infinite subset  S_{0} of  S.

Then permutations of  S will induce enough automorphisms to guarantee that the inclusion map of
 G into  F is an elementary embedding.

The next significant progress was due to Merzljakov [Mer]. A positive sentence is a first‐order
sentence which is logically equivalent to a sentence constructed using (at most) the connectives
 \vee,  \wedge,  \forall,  \exists . The positive theory of a group  G consists of all the positive sentences true in  G.

Merzljakov showed that the non‐abelian free groups have the same positive theory.
Merzljakov‘s proof used what are now called generalized equations and a quantifier elimination

process. This was a precursor to the methods used in the eventual solution of the overall Tarksi
problems.

Two non‐abelian free groups satisfy the same universal theory. Sacerdote [Sa] extended this to
universal‐existential sentences. The set of universal‐existential sentences true in a group  G is
called the  \Pi_{2} ‐theory of G.  Sacerdote^{J}s [Sa] result is then that all non‐abelian free groups have the
same  \Pi_{2}1‐theory.

That all non‐abelian free groups have the same universal theory coupled with the fact that
universally free is equivalent to existentially free says that Tarski conjecture 1 is true if there is only
one quantifier. Sacerdote’s extension to  \Pi_{2}1‐theory shows that the Tarski conjecture 1 is true if there
are two quantifers. Sacerdote’s theorem becomes the initial step in the final proof which employs
an induction based on the number of quantifiers.

A first step to the initial proofs was to compıetely characterize those groups that are universally
free. This was accomplished within the study of fully residually free groups. A group  G is residually
free if for each non‐trivial  g\in G there is a homomorphism  \phi :  Garrow F where  F is a free group
and  \phi(g)\neq 1 . A group  G is fully residually free if for each finite subset of non‐trivial elements
 g_{1},  g_{n} in  G there is a homomorphism  \phi :  Garrow F where  F is a free group and  \phi(g_{i})\neq 1 for all
 i=1,  n.

Fully residually free groups arise in Sela’s approach as limiting groups of homomorphisms from a
group  G into a free group. Sela shows that such groups in the finitely generated case are equivalent
to fully residually free groups. Hence. a finitely generated fully residually free group is also called
a limit group. This has become the more common designation (see [FGMRS] for a proof of the
equivalence)

Two concepts are crucial in the study of limit groups. A group  G is commutative transitive
or CT if commutativity is transitive on the set of non‐trivial elements of  G . That is if  [x, y]= ı
and  [y, z]=1 for non‐trivial elements  x,  y,  z\in G then  [x, z]=1 . A group  G is CSA or conjugately
separated abelian if maximal abelian subgroups are malnormal. A subgroup  H\subset G is malnormal
if  g^{-1}Hg\cap H\neq\{1\} implies that  g\in H . CSA groups are always CT but there exist CT groups that
are not CSA. As we will see, in the presence of residual freeness they are equivalent. A classification
of CT non‐CSA groups was given in [FGRS 3].

In ı967 Benjamin Baumslag [BB] proved the following result who’s innocuous beginnings belied
its much greater later importance. It was in this paper that the concept of full residual freeness was
first explored.
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Theorem 4.1. (B. Baumslag  [BB]) Suppose  G\iota s residually free. Then the followzng are equ?valent:
(1)  G is fully residually free,
(2)  G is commutative transitive,

Gaglione and Spellman [GS] and independently Remcslennikov [Re] extended  I3.Baumslag ’s The‐
orem and this extension became one of the cornerstones of the proof of the Tarksi problems

Theorem 4.2.  ([GS],[Re]) Suppose  G is residually free. Then the following are equivalent:
(1)  GiS fully residually free,
(2)  G is commutative transitive,
(3)  GlS universally free Of non‐abelian.

Further the result can be extended to include the equivalence with CSA. In addition Remeslen‐
nikov and independently Chiswell (see [Ch]) showed that if a group  G is finitely generated then
being fully residually free is equivalent to being universally frcc. Therefore the finitely generated
universally free groups are precisely the finitely generated fully residually free groups which are
non‐abelian

Theorem 4.3. Let  G be  finitel?/ generated. Then  GiS a limit group if and only if  GiS universally
free.

Ciobanu, Fine and Rosenberger [CFR] recently greatly extended the class of groups satisfying
both B.Baumslag’s original theorem and the theorem of Gaglione, Spellman and Remeslennikov.

The solution of the Tarski conjectures involved analyzing groups which have the same elementary
theory as a free group. Clearly this includes the universally free groups and therefore the theory
of limit groups became essential to the proof and to analyzing those groups which have the same
elementary theory as a free group

It was clear that to deal with the Tarski probıems it was necessary to give a precise definition
of solution sets of equations and inequations over free groups. In this direction R. Lyndon [L]
introduced the concept of an exponential group, that is a group which allows parametric exponents
in an associative unitary ring  A . In particular he studied the free exponential group  F^{\mathbb{Z}[t]} where
exponents are allowed from the polynomial ring  \mathbb{Z}[t] over the integers  \mathbb{Z} . Lyndon established that
the free exponential group  F^{\mathbb{Z}[t]} and hence any finitely generated subgroup of it, is fully residually
free and hence, if it is non‐abelian, universally free. Kharlampovich and Myasnikov  [KhM7,8]
established the converse; therefore a finitely generated group is fully residually free if and only if it
is embeddable in  F^{\mathbb{Z}[t]}.

Advances on solving equations in free group were given by Makanin and Razborov (see [Mak
1,2],[Ra]). Makanin proved that there exists an algorithm to determine, given a finite system of
equations over a free group, whether the system possesses at least one solution. Razborov working
with the Makanin algorithm determined an algorithm to effectively describe the solution sets of a
finite system of equations over a free group.

Kharlampovich and Myasnikov further refined the Makanin‐Razborov method. Their technique
allows one to transform arbitrary finite systems of equations in free groups to some canonical forms
and describe precisely the irreducible components of algebraic sets in free groups.

These canonical forms consist of finitely many quadratic equations in a triangular form. The
following result is a corollary of the decidability of the Diophantine problem

Theorem 4.4. (Makanin) [Mak  1_{f}2] (1) The existential (and hence the universal) theory of a free
group is decidable.

(2) The positive theory of a free group  iS decidable

The final ingredient that was needed for the proof was the development of an algebraic geom‐
etry over groups. In analogy with the classical theory of equations over number fields, algebraic
geometry over groups was developed by G. Baumslag, A. Myasnikov and V. Remeslenmikov [BMR
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1,2]. The theory of algebraic geoinetry over groups translated the basic notions of the classical
algebraic geometry: algebraic sets, the Zariski topology, Noetherian domains, irreducible varieties,
radicals and coordinate groups to the setting of equations over groups.

This provided the necessary machinery to transcribe important geometric ideas into pure group
theory. The proof of the Tarski conjectures depends on the algebraic geometry of free groups. In
particular it depends on the description of a fully residually free group as the coordinate group of
an irreducible algebraic variety. A full description of the algebraic geometry of free group is given
in [FGMRS]

What did not translate immediately was the Noetherian property which is crucial in classicial
algebraic geomerty. For the group based algebraic geometry, what had to be introduced was equa‐
tionally Noetherian groups which is the group theoretic counterpart of the Noetherian condition.
The Noetherian condition in rings is defined in terms of the ascending chain condition and implies
that every ideal is finitely generated. What is important about this condition in algebraic geometry
is the Hilbert Basis theorem that asserts that every algebraic set is flnitely based. That is if  S be
a set of polynomials in  k[x_{1)} , x_{n}] then  V(S)=V(S_{1}) for some finite set of polynomials. This is
what is recast in terms of group theory. First a  G‐group  H is a group which has a distinguished
subgroup isomorphic to  G . If  S is a set of equations over a group  G then  V(S) is its set of solutions
in  G.

Definition 4.1. A  G ‐group  H is said to be  G ‐equationally Noetherian if for every  n>0 and
every subset  S of G[xı,  x_{n} ] there exists a finite subset  S_{0} of  S such that

 V(S)=V(S_{0}) .

The first major examples of equationally Noetherian groups are linear groups over commutative
Noetherian rings. This was proved originally by R. Bryant [Bry] in the one variable case and then
extended by V. Guba [Gu] to the case of free groups. The general result is the following.

Theorem 4.5. Let  H be a linear group over a commutativeJ Noetheri an  r\ln g with unity and in
particular a field. Then  H is equationally Noetherian.

In particular, it follows that a finitely generated non‐abelian free group is equationally noetherian.
Extremely important in the application of the algebraic geometry of groups to the proof of the

Tarski problems is the description of the coordinate groups of systems of equations. Radicals of a
system of equations and coordinate group are defined as in classical algebraic geometry. Examining
the relationship between the coordinate groups and groups embeddable by a sequence of extensions
of centralizers in the free exponential group  F^{\mathbb{Z}[t]} , shows that the coordinate groups of irreducible
algebraic varieties are precisely the finitely generated fully residually free groups (limit groups).

5 Strategy for the Proof

All these components had to be combined and integrated to provide the final proofs. Here we outline
the strategy that was followed. Recall that Vaught proved Tarski Conjecture 2 for all free groups
of infinite rank and hence reduced the problem to non‐abelian frcc groups of finite rank. Vaught’s
main result was that if the infinite rank free group  F_{1} is a free factor of the infinite rank free group
 F_{2} then  F_{1} is an elementary subgroup of  F_{2} , that is the identity map embedding  F_{1} into  F_{2} is an
elementary embedding. Sacerdote went on to prove that all free groups of finite rank have the same
 \Pi_{2} ‐theory, that is they satisfy exactly the same  \forall\exists (and equivalently  \exists\forall ) sentences. It is Sacerdote’s
result that pinpoints the main strategy in solving the whole problem and provides the first step in
an induction.

The main technique Vaught used in proving the Tarksi conjecture for infinite rank and Sacerdote
used for the  \Pi_{2} ‐theory is the following, that is known as the Tarski‐Vaught Test.
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Tarski‐Vaught Test If  H is a subgroup of  G thcn  H is an elementary subgroup of  G if and
only if for any formula  \phi(x, \overline{z}) and for any tuple  (\overline{h}) of elements from  H there exists a  c\in G such
that  \phi(c, \overline{h}) is satisfied in  G implies that there exists  c\in H such that  \phi(c, \overline{h}) is satisfied in  H.

Roughly the Tarski‐Vaught Test says that a subgroup  H of  G is an elementary subgroup if and
only if  H is algebraically closed in  G . In analogy with commutative algebra if we consider first
order sentences with variables as our equations then any equation with constants from  H which has
a solution in  G already has a solution within  H.

If we wish to appıy the Tarksi‐Vaught Test to the case of a free factor in a free group of finite rank
we must then understand the nature of solving equations in free groups and over free groups. The
work of Makanin and Razborov became crucial. Their work provided first a method to determine if
an equation over a free group was solvable and hence provided a technique for Kharlampovich and
Myasnikov to show that the elementary theory of non‐abelian free groups was decidable.

Here is where, however, it was the introduction of algebraic geometry over free groups that led
to the necessary understanding of groups that have the same elementary theory as a non‐abelian
free group of finite rank.

The proofs of Kharlampovich‐Myasnikov and Sela show that a gcneral system of equations, with
a few special cases that must be handled separately, can be shown to be equivalent to what is called
a quasi‐trianglular system of quadratic equations.

The coordinate groups of such systems are called QT‐groups and are limit groups. A special
subclass of them, called special NTQ‐groups, are precisely the groups that can be shown to have the
same elementary theory as the non‐abelian free groups.

The structure of the algebraic variety of a system of equations can be broken down by the
Makanin‐Razborov method and is tied to the group theoretic breakdown of the coordinate groups.

Since thc coordinate groups are limit groups  th\cdot s brcakdown is well‐understood as the JSJ de‐
composition of limit groups. The JSJ decompositon of a finitely generated group was developed
originally by Rips and Sela  [RiS] . It is graph of groups decomposition with abelian edge groups that
encodes all other amalgam decompositions of a group.

It is the JSJ decomposition of the coordinbate groups combined with a type of implicit function
theorem that provides for a quantifier elimination process that permits an induction starting with
Sacerdote’s  \Pi_{2}1‐result.

After all these massive preliminaries the proof itself is then an induction on the number of quan‐
tifiers, based on a quantifer elimination process. In the Kharlampovich‐Myasnikov approach
the quantifier elimination is handled by an implicit function theorem for quadratic systems.  A

summary of the proof can be found in the book [FGMRS].

6 Elementary Free Groups

The proof of the Tarski theorems provided a complete characterizations of those finitely generated
groups that have exactly the same first order theory as the non‐abelian free groups. Such groups are
called elementary free groups and extend beyond the class of purely non‐abelian free groups. In
the Kharlampovich‐Myasnikov approach these are the speciaı NTQ‐groups and in the Sela approach
the hyperbolic  \omega‐residually free towers. The primary examples of non‐free elementary free groups
are the orientable surface groups  S_{g} of genus  g\geq 2 and the non‐orientable surface groups  N_{g}
of genus  g\geq 4 . That these groups are elementary free provides a powerful tool to prove some
results concerning surface groups that are otherwise quite difficult. For example J.Howie [H] and
independently O. Bogopolski and O,Bogopolski and V. Sviridov [Bo],  [BoS] proved that a theorem
of Magnus about the normal closures of elements in free groups holds also in surface groups of
appropriate genus. Their proofs wcrc non‐trivial. However it was proved (see [FGRS 1,2] and
[GLS]) that this result is first order and hence automatically true in any elementary free group. In
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[FGRS 1] a large collection of such results  W'as given. Such results were called something for nothing
results. Of course any such first order result true in a non‐abelian free group must hold in any
elementary free group. However elementary free groups satisfy many other properties beyond first
order results. This second idea were explored in the paper [FGRS 2]. In this final section we survey
briefly these two ideas.

Magnus proved the following theorem about the normal closures of elements in non‐abelian free
groups:

Theorem 6.1. (Magnus) Let  F be a non‐abelian free group and  R,  S\in F . Then if  N(R)=N(S),\iota t
follows that  R is conjugate to either  S or  S^{-1} Here  N(g) denotes the normal closure in  F of the
element  g.

J. Howie [H] and independently O. Bogopolski and Bogopolski and V.Sviridov  [BoS] gave a proof
of this for surface groups. Howie’s proof was for orientable surface groups while Bogopolski and
Sviridov also handled the non‐orientable case. Their proofs were non‐trivial and Howie’s proof used
the topological properties of surface groups. Howie further developed, as part of his proof of Magnus’
theorem for surface groups, a theory of one‐relator surface groups. These are surface groups modulo
a single additional relator. Bogopolski and Bogopoıski‐Sviridov proved in addition that Magnus’s
Theorem holds in even a wider class of groups. In [FGRS 1] (see also [FGRS 2] and [GLS]) it
was proved that Magnus’ rcsult is actually a first‐order theorem on non‐abelian free groups and
hence from the solution to the Tarski problems it holds automatically in all elementary free groups.
In particular Magnus’ theorem will hold in surface groups, both orientable and non‐orientable of
appropriate genus. If  G is a group and  g\in G then  N(g) , as in the statement of Magnus’s Theorem
above, will denote the normal closure in  G of the element  g.

Theorem 6.2. Let  G be an elementary free group and  R,  S\in G. Then if  N(R)=N(S) it follows
that  R is conjugate to either  S or  S^{-1}

As corollaries we recover the results of Howie [H], Bogopolski [Bo] and Bogopolski‐Sviridov  [BoS]
which extend Magnus’s Theorem to surface groups

Corollary 6.1.  ([H],[Bo], [BoS]) Let  S_{g} be an orientable surface group of genus  g\geq 2 . Then  S_{g}
satisfies Magnus’s theorem, that is if  u,  v\in S_{g} and  N(u)=N(v) it follows that  u is conjugate
to either  v or  v^{-1} Further if  N_{g}iS a non‐orientable surface group of.qenus  g\geq 4_{7} then  N_{g} also
satisfies Magnu s^{\rangle}s theorem. For  N_{G} The genus  g\underline{>}4 is essential here.

In [FGRS 1] a collection of results about elementary free groups and surface groups was presented,
their proofs being consequences of the Tarski theorem. We mention one such result that is not obvious
in a surface group. The following theorem can be easily proved in free groups.

Theorem 6.3. Let  F be a free group and  n,  k non‐zero integers. For all  x,  y\in F if  [x^{n}, y]=[x, y^{k}]
then either  n=k=1 or  x,  y commute and both are  power\mathcal{S} of a single element.

The first part of the result that either  n=k or  [x, y]=1 is first‐order given by a sequence of
elementary sentences, one for each  (n, k)\in \mathbb{Z}^{2}\backslash \{(1,1)\} with neither  n nor  k zero;

 \forall x, y\in F([x^{n}, y]=[x, y^{k}])\Rightarrow[x, y]=1

Therefore this part of the result must hold in any elementary free group. Further if the elementary
free group is finitely generated the second part must also hold.

Corollary 6.2. Let  G be an elementary free group. If  x,  y\in G and if  [x^{n}, y]=[x, y^{k}] then either
 n=k=1 or  x,  y commute. If  G is finztely generated then both  x and  y are powers of a single
element  w\in G.

Since surface groups are finitely generated we have the following.
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Corollary 6.3. Let  G be either an orientable surface group of genus  g\geq 2 or a non‐orientable
surface group of genus  g\geq 4 . If  x,  y\in G and if  [x^{n}, y]=[x, y^{k}] then either  n=k=1 or  x,  y

commute and then both  x and  y are powers of a single element  w\in G.

In another direction in [FGRS 2] properties of all elementary free groups, which may not be first
order wcrc explored. A finitely gcnerated clementary frce group  G must be a limit group and many
of its properties follow from from the structure theory of limit groups. Hence such a group must be
CSA and any 2‐generator subgroup is either free or abelian.

In [FGRS 2] it was proved that a finitely generated elementary free group has cyclic centralizers.
This is not a first order statement, however from this we get that if two elements commute in a
finitely generated elementary free group then they are both powers of a single element. This is
not true in a general elementary free group. An example where it does not hold in the infinitely
generated case is given in [FGRS 2]. From the cyclic centralizer property we can obtain that a finitely
gcnerated clemcntary frec group must be hypcrboıic, stably hyperbolic and a Turner group, that
is the test elements, if there are any, in any finitely generated elementary free group are precisely
those elements that do not lie in any proper retract. It was also proved in [FGRS 2] that any finitely
generated elementary free group is conjugacy separable and hence has a solvable conjugacy problem.
in [FKMRR] it was shown the automorphism group of a finitely generated elementary free group is
talnc.

The next theorem summarizes many of these results. The proofs can be found [FGKRS].

Theorem 6.4. Let  G be a finitely generated elementary free group. Then:
(1) (Magnus’s Theorem) if  N(R)=N(S) if  R,  S\in G it follows that  R is conjugate to either

 S or  S^{-1}

(2)  G has cyclic centralizers of non‐trivial elements. It follows that if  x,  y\in G and  x,y

commute then both  x and  y are powers of a single element  w\in G.

(3) if  x,  y,  u,  v\in GMth[x, y]\neq 1 and  u,  v in the subgroup generated by  x ,  y?jt follows that if
 [x, y] is conjugate to a power of  [u, v] within  \{x, y\} that is there exists a  k with  [x, y]=g([u, v]^{k})g^{-1}
for some  g\in\{x,   y\rangle and  [x, y^{m}]=[u, v^{n}] it follows that  m=n . Further if  m=n\underline{>}2 then  y is
conjugate within  \{x, y\} to  v or  v^{-1}

(4)  G is conjugacy separable.
(5)  GiS hyperbolic and stably hyperbolic.
(6)  G is a Turner group, that is the test elements in  G are precisely those elements that do

not fall in a proper retract
(7) if  G is freely indecomposable then the automorphism group of  GiS tame.
(8)  G has a faithful representation? jnPSL(2, \mathbb{C}) .
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