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Abstract

A multi‐variable function is said to be sclf‐commuting if it commutes with itself.
As the first step toward the characterization of self‐commuting functions defined on
a finite set this article studies very basic facts on them. We restrict our attention to
self‐commuting and conservative binary functions. Such functions on a three‐element
set are characterized and some examples of such functions on arbitrary finite set are
presented.
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1 Introduction

Ever since the concept of commutation was introduced on the set of finitary functions over

some set, commutation and its related topics have been studied by many authors. (See, e.g.,
[BW87], [Da79], [Her08], [MR04], [MRII], [Sza85].)

When two functions  f and  g commute we write  f\perp g . (The definition of commutation
will appear in the next section.) The binary relation induced by  \perp is symmetric, but it is
not reflexive, that is, there exists a function which does not commute with itself. We call a

function self‐commuting if it commutes with itself.

Our goal is the characterization of self‐commuting functions defined on arbitrary finite

set. As the first step toward this goal, we take up in this note conservative binary functions
and present some preparatory results on self‐commuting and conservative binary functions.
In Section 4 such functions on a three‐element set are characterized and in Section 5 an

attempt is made to generalize thc result on a three‐element set to that on any finite set.1

2 Definitions and Notations

Let  E_{k}=\{0,1, , k-1\} for finite  k>1 . We denote by  \mathcal{O}_{k}^{(n)} for  n\geq 1 the set of  n‐variable
functions defined on  E_{k} , that is, the set of maps from  E_{k}^{n} into  E_{k} , and by  \mathcal{O}_{k} the set of

functions defined over  E_{k} , i.e.,   \mathcal{O}_{k}=\bigcup_{n=1}^{\infty}\mathcal{O}_{k}^{(n)}. A projection  e_{i}^{n} , for  n>0 and  1\leq i\leq n,

is the function in  \mathcal{O}_{k}^{()} which always takes the value of the i‐th variable. The set of all
 *
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projections is denoted by  \mathcal{J}_{k}. A clone over  E_{k} is a subset  C of  \mathcal{O}_{k} which is closed under

(functional) composition and includes  \mathcal{J}_{k}.

Commutation for two multi‐variable functions are defined in the following way.

Definition 2.1 For  f\in \mathcal{O}_{k}^{(n)} and  g\in \mathcal{O}_{k}^{(m)},  f and  g commute  lf

 g(f(a_{11}, \ldots, a_{1n}), \ldots, f(a_{m1}, \ldots, a_{mn}))

 = f(g(a_{11}, \ldots, a_{m1}), \ldots, g(a_{1n}, \ldots, a_{mn}))

holdg for all a  i_{f}\in E_{k}(i=1, \ldots, m;j=1, \ldots, n) .

Let us introduce thc operation  \Diamond :  \mathcal{O}_{k}^{(m)}\cross \mathcal{O}_{k}^{(n)}arrow E_{k}^{\mathcal{M}_{m.n}
(E_{k})} in the following way:
For  f\in \mathcal{O}_{k}^{(n)},  g\in \mathcal{O}_{k}^{(m)} and  M\in \mathcal{M}_{7n,n}(E_{k}) define

 (g\Diamond f)(M) = g(f(r_{1}), \ldots, f(r_{m}))

where  r_{i} is the i‐th row of  M  ({\imath} \leq i\leq m) . Thcn,  f and  g commute if

 (g\Diamond f)(M) = (f\Diamond g)(tM)

holds for all  M\in \mathcal{M}_{7nn}(E_{k}) .

When  f and  g commute, we write  f\perp g . Obviously, the binary relation  \perp is symmetric.
However, the relation  \perp is not reflexive, that is,  f_{7}Lf holds for some  f in  \mathcal{O}_{k}.

Definition 2.2 For  f\in \mathcal{O}_{k} , we say  f is self‐commuting if  f\perp f holds.

There are plenty of functions which are not self‐commuting. We draw some such examples
from  \mathcal{O}_{2}^{(2)} , i.e., binary functions on  E_{2} . The binary function  f will be denoted by  f_{i}

 (0\leq i\leq 15) when  i=f(0,0)  2^{3}+f (  0 , ı) .  2^{2}+f(1,0) .  2+f(1,1) . Thus, for example,  f_{0}

is the constant function taking  0,  f_{1} is AND and  f_{3} is the projection  e_{1}^{2}.
In Table 1, the last column shows whether a function  f is self‐commuting or not. The

symbol  0 in the i‐th row indicates the function  f_{i} is self‐commuting and  x indicates it is not
self‐commuting. Among 16 functions, 10 are self‐commuting and 6 are not self‐commuting.
In order to verify the results in the table, we pick up just one case:  f_{14}(= NAND) . Consider
the following (2, 2)‐matrix Al.

 M=(\begin{array}{ll}
0   0
1   1
\end{array})
It is immediate to see that fı4  7Lf_{14} is verified by this  M.

3 Some Simple Properties

(1) For  f\in \mathcal{O}_{k}^{(n)},  g\in \mathcal{O}_{k}^{(m)} and  M\in \mathcal{M}_{m,n}(E_{k}) , we shall write

 f\perp g on  M

if  (g\Diamond f)(M)=(f\Diamond g)(tM) holds. Thus,  f\perp 9 if and only if “  f\perp g on  M” holds for all
 M in  \mathcal{M}_{m,n}(E_{k}) .
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Table 1: Binary Functions on  E_{2}

Lemma 3.1 For  f\in \mathcal{O}_{k}^{(n)} and  M\in \mathcal{M}_{n}(E_{k}) we have.‘

(1) If  M is symmetric then  f\perp f on  M

(2)  f\perp f on  M if and only if  f\perp f on  tM (Here,  tM is the transposed matrix of
 M.)

(2) Lct us define  \# M=|  \{a ij|1\leq i\leq m, 1\leq 2\leq n\}| for  M=  (a i_{j})\in M_{rn,n}(E_{k}) .
For example, let

 j14_{1}=(\begin{array}{ll}
0   0
0   0
\end{array}), M_{2}=(\begin{array}{ll}
0   1
0   0
\end{array}), M_{3}=(\begin{array}{ll}
0   l
2   0
\end{array})
Then we have  \# M_{1}=1,  \# M_{2}=2,  \# M_{3}=3.

Next,  f\in \mathcal{O}_{k}^{(n)} is said to be conservative if  f(a_{1}, \ldots, a_{n})\in\{a_{1}, a_{n}\} holds for all

 a_{1},  a_{n}\in E_{k}.

Lemma 3.2 For  f\in \mathcal{O}_{k}^{(2)} and  M\in \mathcal{M}_{2}(E_{k}), if  f is conservative and  \# M\leq 2 then
 f\perp f on  M.

Proof When  \# M=1 the assertion is trivial. Suppose  \# M=2 . Then, due to Lemma

3.1, among the following matrices where  a\neq b we need to consider only two matrices (the
second and the fifth).

 (\begin{array}{ll}
a   a
a   b
\end{array})(\begin{array}{ll}
a   a
b   a
\end{array})(\begin{array}{ll}
a   b
a   a
\end{array})(\begin{array}{ll}
b   a
a   a
\end{array})(\begin{array}{ll}
a   a
b   b
\end{array})(\begin{array}{ll}
a   b
a   b
\end{array})(\begin{array}{ll}
a   b
b   a
\end{array})
Case 1:  M_{1}=(\begin{array}{ll}
a   a
b   a
\end{array})
Let  *=f(f(a, a), f(b, a))=f(a, f(b, a)) and  \wp=f(f(a, b), f(a, a))=f(f(a, b)_{)}a) . If
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 f(a, b)=a then it is clear that  \bullet=\wp=a . Next, suppose  f(a, b)=b . Then,  f(b, a)=a
implies  \bullet=\wp=a and  f(b, a)=b implies  \bullet=\wp=b . Hence  f\perp f on  M_{1}.

Case 2:  M_{2}=(\begin{array}{ll}
a   a
b   b
\end{array})
Clearly we have  f(f(a, a), f(b, b))=f(a, b)=f(f(a, b), f(a, b)) , showing  f\perp f on  M_{2}.  \square 

Corollary 3.3 For a binary function  f on  E_{2} , i. e.,  f\in \mathcal{O}_{2}^{(2)}, if  f is conservative then  f is

self‐commuting.

4 Binary Functions on  E_{3}

In this section we consider 2‐variable functions on  E_{3}=\{0,1,2\} . Our aim in this section is

to find all conservative  f\in \mathcal{O}_{3}^{(2)} satisfying  f\perp f.

In order to find all such functions, we need to consider  M onıy of the following type,

because of Lemma 3.1 again.

(A)  (\begin{array}{ll}
a_{l}   O
1   a_{2}
\end{array}) (B)  (\begin{array}{ll}
b_{l}   0
2   b_{2}
\end{array}) (C)  (\begin{array}{ll}
c_{l}   1
2   c_{2}
\end{array})
First, take, for example, a matrix  M_{0} of type (A):

 M_{0}=  (\begin{array}{ll}
0   0
1   2
\end{array})
In this case, in order to have the condition “‘  f\perp f on  M_{0}  f must satisfy

 f(0_{1}f(1,2)) = f(f(0,1), f(0,2)) .

It follows that

 \bullet  f(0,1)=0,  f(0,2)=2\Rightarrow f(1,2)=2
 \bullet  f(0,1)=1,  f(0,2)=0,  f(1,2)=1\Rightarrow f(1,0)=1

 f(0,1)-1,  f(0,2)-0,  f(1,2)=2\Rightarrow f(1,0)=0

In other words, each row in the following table gives a forbidden combindtion for  AT_{0} :

By applying the similar consideration to other matrices of type (A) we get the following
table of forbidden combinations.

(A)
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The forbidden combinations for types (B) and (C) are the following:

(B)

(C)

Now, the list of the binary functions on  E_{3} which are self‐commuting and conservative is:

To rephrase, we conclude as follows.

Proposition 4.1 If  f\in \mathcal{O}_{3}^{(2)} is self‐commuting and conservative, then  f is a projection
or one of the following shape. (Here the symbol  * indicates arbitrary element provided that
 conservat?vene6S is preserved.)
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5 Binary Functions on  E_{k}

In this section we consider more general case:  E_{k} for any  k>1 . We present some examples
of self‐commuting and conservative binary functions on  E_{k}.

Notice that if  f\in \mathcal{O}_{k}^{(2)} is self‐commuting and conservative then the following property,
which we may call the 3‐element property, must be satisfied for  f.

“The3‐element property” : For every 3‐element subset  \{a, b, c\} of  E_{k} , the  \zeta sub‐tables’
of Cayley table of  f consisting of the rows and the columns corresponding to  a,  b and  c are one

of the following forms. (Here the symbol  * is arbitrary up to preserving conservativeness.)

Now, the following Cayley tables are three examples of self‐commuting and conservative

binary functions  f(\in \mathcal{O}_{k}^{(2)}) on  E_{k} . (Again,  * is arbitrary up to preserving conservativeness.)

(1)

(2)

(3)

We remark that the 3‐element property can be effectively used to obtain these examples.
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