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Zsolt Fazekas, Robert Mercas, Daniel Reidenbach gave the conjecture in [2] which

gives necessary and sufficient condition for the primitive prefix square root of a

regular language L to be regular. The author gives a counterexample of their

conjecture and gives a new conjecture.

1. Preliminary

An alphabet  V is a finite and nonempty set of symbols, called letters. Every finite

sequence of letters of  V is called a word over  V . Words over  V together with the

operation of concatenation with the empty word  \varepsilon form a free monoid  V^{*} We denote

 V^{+}=V^{*}-\{\varepsilon\}.

Let  w=a_{1}a_{2}\cdots a_{n} where  a_{1} ,  a_{2} , ,  a_{n}\in V . The length of a word  w is  n and denoted by

 |w| and the length of the empty word  \varepsilon is  0.

For a positive integer  p,

 V^{\leq p}=\{w\in V^{*}||w|\leq p\},

 V^{p}=\{w\in V^{*}||w|=p\}.

For a word  w=xyz for  x,y,z\in V^{*}, a prefix of  w is  x , a factor of  w is  y and a suffix

of  w is  z.

For a word  w\in V^{+}, the following operations are defined in [1]:

 \bullet prefix square reduction:  \square  1(w)= { uv|w=uuv , for  u\in V^{+},v\in V^{*} }
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 \bullet suffix square reduction:  |\square (w)= { uv|w=vuu , for  u\in V^{+},v\in V^{*} }

 0 prefix‐suffix square reduction:  \square  1\square (w)=\square  1(w)\cup 1\square (w)

For simplicity, we restrict the argument to prefix square reduction.

We define the bounded version for a fixed positive integer  p :

 \bullet  p‐prefix square reduction:  p\square  1(w)= {  uv|w=uuv , for  u\in V^{\leq}P ,  v\in V^{*} }

For a language  L , we have language:   \square  I(L)=\bigcup_{w\in L}\square |(w)

The following languages are defined:

 \square |^{0}(w)=\{w\},

 \square  1^{k+1}(w)=\square |(\square |^{k+1}(w)) for any  k\geq 0

  \square  1^{*}(w)=\bigcup_{k\geq 0}\square |^{k}(w)

For a word  w , the primitive prefix square root of  w is the set  \{u1u\in\square  1^{*}(w) and

 \square  1(u)=u\} and it is denoted by  \sqrt[\square ]{w}| . The primitive bounded prefix square root of  w is

the set {  u|u\in_{p}\square  1^{*}(w) and  p\square |(u)=u } and it is denoted by  p\sqrt[\square ]{w}^{1} . For a language  L , we

define   \sqrt[\square ]{L}|=\bigcup_{w\in L}\sqrt[\square ]{w}| and  p \sqrt[\square ]{L}^{1}=\bigcup_{w\in L}^{p}\sqrt[\square ]{w}^{1}.

2. Conjectures

Zsolt Fazekas, Robert Mercas, Daniel Reidenbach gave the following conjecture in

[2].

Conjecture (in [2]). Let  L be a regular language. The primitive prefix square root of
 L is regular if and only if there exists some positive integer  p such that  \sqrt[\square  1]{L}=^{l^{7}}\sqrt[\square ]{L}^{1}.

But, I give here the following counterexample and new conjecture.

Example. Let  L=aab^{+}aab^{+}c where  a,b,c\in V . The language  L is regular. On the

other hand, the primitive prefix square root of  L is  \sqrt[\square ]{L}1=ab^{+}aab^{+}c\cup ab^{+}c and this

language is regular.
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But, there is no positive integer  p such that  \psi^{\square }\overline{L}=^{p}\sqrt[\square ]{L}^{1}.

Now, we define a new term to describe our new conjecture: For a word  w , if xx is a

non‐trivial prefix of  w and  X is prefix square free, then we say that xx is the minimal

prefix square of  w.

Conjecture. Let  L be a regular language. The primitive prefix square root of  L is

regular if and only if there exists positive integer  N such that, for every word
 W\in DI^{*}(L) , the length of the minimal prefix square of  w is smaller than  N.
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