Conjecture about Regularity of Prefix Square Roots of Regular Languages

Kayoko Shikishima－Tsuji
Center for Liberal Arts Education and Research Tenri University

Zsolt Fazekas，Robert Mercas，Daniel Reidenbach gave the conjecture in［2］which gives necessary and sufficient condition for the primitive prefix square root of a regular language L to be regular．The author gives a counterexample of their conjecture and gives a new conjecture．

1．Preliminary

An alphabet V is a finite and nonempty set of symbols，called letters．Every finite sequence of letters of V is called a word over V ．Words over V together with the operation of concatenation with the empty word ε form a free monoid V^{*} ．We denote $V^{+}=V^{*}-\{\varepsilon\}$.

Let $w=a_{1} a_{2} \cdots a_{n}$ where $a_{1}, a_{2}, \cdots, a_{n} \in V$ ．The length of a word w is n and denoted by $|w|$ and the length of the empty word ε is 0 ．

For a positive integer p ，

$$
\begin{aligned}
& V^{\leq p}=\left\{w \in V^{*}| | w \mid \leq p\right\}, \\
& V^{p}=\left\{w \in V^{*}| | w \mid=p\right\} .
\end{aligned}
$$

For a word $w=x y z$ for $x, y, z \in V^{*}$ ，a prefix of w is x ，a factor of w is y and a suffix of w is z ．

For a word $w \in V^{+}$，the following operations are defined in［1］：
－prefix square reduction：$\square(w)=\left\{u v \mid w=u u v\right.$ ，for $\left.u \in V^{+}, v \in V^{*}\right\}$

- suffix square reduction: $\mid \square(w)=\left\{u v \mid w=v u u\right.$, for $\left.u \in V^{+}, v \in V^{*}\right\}$
- prefix-suffix square reduction: $\square \square(w)=\square(w) \cup \mid \square(w)$

For simplicity, we restrict the argument to prefix square reduction.
We define the bounded version for a fixed positive integer p :

- p-prefix square reduction: ${ }_{p} \square(w)=\left\{u v \mid w=u u v\right.$, for $\left.u \in V^{\leq p}, v \in V^{*}\right\}$

For a language L, we have language: $\square(L)=\bigcup_{w \in L} \square(w)$.
The following languages are defined:

$$
\begin{aligned}
& \left.\square\right|^{0}(w)=\{w\}, \\
& \left.\square\right|^{k+1}(w)=\square \mid\left(\left.\square\right|^{k+1}(w) \text { for any } k \geq 0\right. \\
& \left.\square\right|^{*}(w)=\left.\bigcup_{k \geq 0} \square\right|^{k}(w) \text {. }
\end{aligned}
$$

For a word w, the primitive prefix square root of w is the set $\left\{u \mid u \in \square \|^{*}(w)\right.$ and $\square(u)=u\}$ and it is denoted by $\sqrt[\square]{w}$. The primitive bounded prefix square root of w is the set $\left\{u\left|u \in_{p}\right|^{*}(w)\right.$ and $\left.{ }_{p} \square \mid(u)=u\right\}$ and it is denoted by $\sqrt[p r l]{w}$. For a language L, we define $\sqrt[\square]{L}=\bigcup_{w \in L} \sqrt[p]{w}$ and $\sqrt[p \square 1]{L}=\bigcup_{w \in L} \sqrt[p D]{w}$.

2. Conjectures

Zsolt Fazekas, Robert Mercas, Daniel Reidenbach gave the following conjecture in [2].

Conjecture (in [2]). Let L be a regular language. The primitive prefix square root of L is regular if and only if there exists some positive integer p such that $\sqrt[p]{L}=\sqrt[p+1]{L}$.

But, I give here the following counterexample and new conjecture.

Example. Let $L=a a b^{+} a a b^{+} c$ where $a, b, c \in V$. The language L is regular. On the other hand, the primitive prefix square root of L is $\sqrt[\square]{L}=a b^{+} a a b^{+} c \cup a b^{+} c$ and this language is regular.

But, there is no positive integer p such that $\sqrt[n]{L}=\sqrt[p a l]{L}$.

Now, we define a new term to describe our new conjecture: For a word w, if $x x$ is a non-trivial prefix of w and x is prefix square free, then we say that $x x$ is the minimal prefix square of w.

Conjecture . Let L be a regular language. The primitive prefix square root of L is regular if and only if there exists positive integer N such that, for every word $w \in \square^{*}(L)$, the length of the minimal prefix square of w is smaller than N.

References

[1] P. Bottoni, A. Labella and V. Mitrana, Theor. Comput. Sci., 682, (2017), pp 49-56.
[2] Szilárd Zsolt Fazekas, Robert Mercas, Daniel Reidenbach, On the Prefix-Suffix Duplication Reduction, International Journal of Foundations of Computer Science (in print).

Center for Liberal Arts Education and Research
Tenri University
Nara 632-8510
JAPAN
E-mail address: tsuji@tenri-u.ac.jp

