SMOOTH ODD FIXED POINT ACTIONS ON \mathbb{Z}_2 -HOMOLOGY SPHERES

Masaharu Morimoto

Graduate School of Natural Science and Technology Okayama University

Abstract. Let G be S_5 or SL(2,5) and leet Σ be a homology sphere with smooth G-action such that the G-fixed point set consists of oddnumber points. Then the dimension of Σ could be restrictive. In this article, we report results on the dimension of Σ and on the tangential G-representation of a G-fixed point in Σ .

This is a report of a joint work with Shunsuke Tamura.

1. Review of known results

In the present article, G is a finite group and G-actions on manifolds should be understood as smooth G-actions. By various researchers, G-actions on spheres with finite G-fixed points have been studied.

Throughout the article, let A_n and S_n denote the alternating group and the symmetric group on n letters, respectively, and let C_n denote the cyclic group of order n. First we like to recall several results found so far.

- (1) For $G = A_5$, there are G-actions on Z-homology spheres Σ of dimension 3 such that $|\Sigma^G| = 1$, e.g. $\Sigma = S^3/SL(2,5)$.
- (2) (E. Stein [30]) For G = SL(2,5), there exist effective *G*-actions on the sphere S^7 (of dimension 7) such that $|S^G| = 1$.

²⁰¹⁰ Mathematics Subject Classification. Primary 57S17; Secondary 58E40.

Key words and phrases. smooth action, fixed point, homology sphere.

This research was partially supported by JSPS KAKENHI Grant Numbers JP26400090, JP18K03278.

- (3) (T. Petrie [26]) Let G be an abelian group of odd order possessing at least 3 non-cyclic Sylow subgroups. Then there exist effective G-actions on spheres S^n , for some integers n, such that $|S^G| = 1$.
- (4) (E. Laitinen–M. Morimoto [11]) A finite group G has effective G-actions on spheres S^n , for some n, such that $|S^G| = 1$ if and only if G is an Oliver group, i.e. $n_G = 1$ cf. [24, 23].
- (5) (A. Borowiecka [3]) Let G = SL(2, 5). Then S^8 does not admit any effective *G*-action satisfying $|S^G| = 1$.
- (6) (M. Morimoto [15, 17, 18], A. Bak–M. Morimoto [1, 2]) Let $G = A_5$. Then there are effective *G*-actions on S^n satisfying $|S^G| = 1$ if and only if $n \ge 6$.
- (7) (B. Oliver [23]) Let G be an Oliver group, and V_1, V_2, \ldots, V_m are \mathcal{P} matched real G-modules such that $V_i^G = 0$ for $1 \leq i \leq m$. Then there
 are effective G-actions on spheres S and real G-modules W such that $S^G =$ $\{x_1, \ldots, x_m, y_1, \ldots, y_m\}$ and $T_{x_i}(S) \cong V_i \oplus W \cong T_{y_i}(S)$ for $1 \leq i \leq m$.
- (8) (M. Morimoto-K. Pawałowski [21], M. Morimoto [20]) Let G be a gap Oliver group, and V_1, V_2, \ldots, V_m are \mathcal{P} -matched real G-modules such that $V_i^N = 0$ for $1 \leq i \leq m$ and $N \leq G$ with prime power index |G : N|. Then there are effective G-actions on spheres S and real G-modules W such that $S^G =$ $\{x_1, \ldots, x_m\}$ and $T_{x_i}(S) \cong V_i \oplus W$ for $1 \leq i \leq m$.

2. Report of results

We define the sets T_G of integers, for several finite groups G, as follows.

- $T_{A_5} = [0..2] \cup \{4, 5\}.$
- $T_{SL(2,5)} = [0..6] \cup \{8,9\}.$
- $T_{S_5} = [0..5] \cup [7..9] \cup \{13\}.$
- $T_{A_6} = [0..7] \cup [9..12] \cup \{14, 15\} \cup \{19, 20\}.$
- $T_{SL(2,9)} = [0..15] \cup [17..20] \cup \{22, 23\} \cup \{27\}.$
- $T_{S_6} = [0..15] \cup [17..20] \cup [22..24] \cup [27..29] \cup \{33\} \cup \{38\}.$

We would like to report the following results.

Theorem 2.1 (cf. [22]). Let G be A_5 or SL(2,5) (resp. S_5) and let Σ be a \mathbb{Z}_2 -homology (resp. \mathbb{Z} -homology) sphere of dimension n in T_G . Then Σ never admits effective G-actions satisfying $|\Sigma^G| \equiv 1 \mod 2$.

Related to Theorem 2.1, we remark the following:

- (1) S. Tamura announced an interesting result: Let G be A_6 or SL(2,9) (resp. S_6) and let Σ be a \mathbb{Z}_2 -homology (resp. \mathbb{Z} -homology) sphere of dimension n in T_G . Then Σ never admits effective G-actions satisfying $|\Sigma^G| \equiv 1 \mod 2$.
- (2) In a recent work of A. Borowiecka–P. Mizerka, they gave certain subsets I_G (possibly the empty set) of [6..10] for finite groups G such that $|G| \leq 216$ or $G \cong A_5 \times C_k$ with k = 3, 5, or 7, and they claimed that if $n \in I_G$ then there is no G-action on S^n satisfying $|S^G| = 1$.

Theorem 2.2. Let G be S_5 and n a non-negative integer. If n does not belong to T_G then there exist effective G-actions on S^n satisfying $|S^G| = 1$.

For a *G*-manifold X and $m \in \mathbb{N}$, let X_0^G denote the set consisting of all *G*-fixed points x in X such that dim $T_x(X)^G = 0$, and let $X^G(m)$ denote the set consisting of all *G*-fixed points x in X such that $T_x(X)$ contains an irreducible real *G*-submodule of dimension m, where $T_x(X)$ stands for the tangential *G*-representation at $x \in X^G$ in X.

Theorem 2.3. Let $G = A_5$ and Σ a \mathbb{Z}_2 -homology sphere with G-action.

- (1) If $|\Sigma_0^G| \equiv 1 \mod 2$ then $\Sigma^G(3) \neq \emptyset$.
- (2) If $|\Sigma^G| < \emptyset$ then $|\Sigma^G(3)| \equiv |\Sigma^G| \mod 2$.

Theorem 2.4. Let $G = S_5$ and Σ a \mathbb{Z} -homology sphere with G-action. If $|\Sigma^G| < \infty$ then $\Sigma^G(6) = \Sigma^G$.

Theorem 2.1 follows from Theorems 2.3 and 2.4.

3. IRREDUCIBLE REAL G-REPRESENTATIONS AND FIXED-POINT-SET DIMENSIONS

In this section, we give basic data to prove Theorems 2.2 and 2.3. For a real G-representation V we call data of pairs $(H, \dim V^H)$ fixed-point-set dimensions, where H ranges over a set of subgroups of G.

Case 1. Let $G = A_4$. The irreducible real *G*-representations (up to isomorphisms) are \mathbb{R} , $U_{3,1}$, $U_{3,2}$, U_4 , and U_5 , where dim $U_{3,i} = 3$, and dim $U_k = k$. The *G*-actions on $U_{3,1}$, $U_{3,2}$, U_4 , and U_5 are effective. We tabulate fixed-point-set dimensions of irreducible real A_5 -representations.

	E	C_2	C_3	C_5	D_4	D_6	D_{10}	A_4	A_5
R	1	1	1	1	1	1	1	1	1
$U_{3,i} \ (i=1,\ 2)$	3	1	1	1	0	0	0	0	0
U_4	4	2	2	0	1	1	0	1	0
U_5	5	3	1	1	2	1	1	0	0

Case 2. Let G = SL(2,5). The irreducible real *G*-representations (up to isomorphisms) are \mathbb{R} , $U_{3,1}$, $U_{3,2}$, U_4 , U_5 , $W_{4,1}$, $W_{4,2}$, W_8 , and W_{12} , where $U_*^Z = U_*$, $W_*^Z = 0$, dim $\mathbb{R} = 1$, dim $U_{k,i} = k$, dim $U_k = k$, dim $W_{k,i} = k$, and dim $W_k = k$. The *G*-actions on $W_{4,1}$, $W_{4,2}$, W_8 , and W_{12} are effective.

Case 3. Let $G = S_5$. The irreducible real *G*-representations (up to isomorphisms) are \mathbb{R} , \mathbb{R}_{\pm} , $V_{4,1}$, $V_{4,2}$, $V_{5,1}$, $V_{5,2}$, and V_6 , where dim $\mathbb{R} = 1$, dim $\mathbb{R}_{\pm} = 1$, dim $V_{k,i} = k$, and dim $V_6 = 6$. The *G*-actions on $V_{4,1}$, $V_{4,2}$, $V_{5,1}$, $V_{5,2}$, and V_6 are effective. The characters of them are as follows.

	e	(4, 5)	(1,2)(4,5)	(1, 2, 3)	(1, 2, 3, 4)	(1, 2, 3, 4, 5)	(1,2,3)(4,5)
\mathbb{R}	1	1	1	1	1	1	1
V_1	1	-1	1	1	-1	1	-1
V_4	4	-2	0	1	0	-1	1
W_4	4	2	0	1	0	-1	-1
V_5	5	-1	1	-1	1	0	-1
W_5	5	1	1	-1	-1	0	1
V_6	6	0	-2	0	0	1	0

	S_5	A_5	S_4	\mathfrak{F}_{20}	$S_3 \mathfrak{C}_2$	A_4	D_{10}	\mathfrak{D}_8	S_3
\mathbb{R}	1	1	1	1	1	1	1	1	1
\mathbb{R}_{\pm}	0	1	0	0	0	1	1	0	0
$V_{4,1}$	0	0	0	0	0	1	0	0	0
$V_{4,2}$	0	0	1	0	1	1	0	1	2
$V_{5,1}$	0	0	0	1	0	0	1	1	0
$V_{5,2}$	0	0	0	0	1	0	1	1	1
V_6	0	0	0	0	0	0	0	0	1

We tabulate fixed-point-set dimensions of irreducible real S_5 -representations.

	D_6	\mathfrak{C}_6	C_5	\mathfrak{D}_4	D_4	\mathfrak{C}_4	C_3	\mathfrak{C}_2	C_2	E
\mathbb{R}	1	1	1	1	1	1	1	1	1	1
\mathbb{R}_{\pm}	1	0	1	0	1	0	1	0	1	1
$V_{4,1}$	1	1	0	0	1	1	2	1	2	4
$V_{4,2}$	1	1	0	2	1	1	2	3	2	4
$V_{5,1}$	1	0	1	1	2	2	1	2	3	5
$V_{5,2}$	1	1	1	2	2	1	1	3	3	5
V_6	0	1	2	1	0	1	2	3	2	6

Here D_m are dihedral subgroups of order m contained in A_5 , C_m are cyclic subgroups of order m contained in A_5 , \mathfrak{F}_{20} is a subgroup of order 20 not contained in A_5 , \mathfrak{D}_m are dihedral subgroups of order m not contained in A_5 , and \mathfrak{C}_m are cyclic subgroups of order m not contained in A_5 .

References

- A. Bak and M. Morimoto: Equivariant surgery and applications, in: Proc. of Conf. on Topology in Hawaii 1990, K. H. Dovermann (ed.), World Scientific Publ., Singapore, 1992, 13–25.
- [2] A. Bak and M. Morimoto: The dimension of spheres with smooth one fixed point actions, Forum Math. 17 (2005), 199–216.
- [3] A. Borowiecka: SL(2,5) has no smooth effective one-fixed-point action on S⁸, Bull. Pol. Acad. Sci. Math. 64 (2016), 85–94.
- [4] A. Borowiecka–P. Mizerka: Excluding smooth effective one-fixed point actions of finite Oliver groups on low-dimensional spheres, arXiv:1805.00447v2 [math.GT] 7 May 2018, http://arxiv.org/abs/1805.00447.
- [5] G. E. Bredon: Introduction to Compact Transformation Groups, Academic Press, New York, 1972.
- [6] P. E. Conner-E. E. Floyd: Differentiable Periodic Maps, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1964.
- S. DeMichelis: The fixed point set of a finite group action on a homology sphere, Enseign. Math. 35 (1989), 107–116.

- [8] T. tom Dieck: Transformation Groups, Walter de Gruyter, Berlin–New York, 1987.
- [9] M. Furuta: A remark on a fixed point of finite group action on S^4 , Topology 28 (1989), 35–38.
- [10] S. Kwasik and R. Schultz: One fixed point actions and homology 3-spheres, Amer. J. Math. 117 (1995), 807–827.
- [11] E. Laitinen and M. Morimoto: Finite groups with smooth one fixed point actions on spheres, Forum Math. 10 (1998), 479–520.
- [12] E. Laitinen and K. Pawałowski: Smith equivalence of representations for finite perfect groups, Proc. Amer. Math. Soc. 127 (1999), 297–307.
- [13] E. Laitinen and P. Traczyk: Pseudofree representations and 2-pseudofree actions on spheres, Proc. Amer. Math. Soc. 97 (1986), 151–157.
- [14] D. Montgomery and H. Samelson: *Fiberings with singularities*, Duke Math. J. **13** (1946), 51–56.
- [15] M. Morimoto: On one fixed point actions on spheres, Proc. Japan Academy, Ser. A 63 (1987), 95–97.
- [16] M. Morimoto: S⁴ does not have one fixed point actions, Osaka J. Math. 25 (1988), 575–580.
- [17] M. Morimoto: Most of the standard spheres have one fixed point actions of A₅, in: Transformation Groups, K. Kawakubo (ed.), Lecture Notes in Mathematics **1375**, pp. 240–259, Springer-Verlag, Berlin-Heidelberg, 1989.
- [18] M. Morimoto: Most standard spheres have one-fixed-point actions of A₅. II, K-Theory 4 (1991), 289–302.
- [19] M. Morimoto: Smith equivalent Aut(A₆)-representations are isomorphic, Proc. Amer. Math. Soc. 136 (2008), 3683–3688.
- [20] M. Morimoto: Deleting and inserting fixed point manifolds under the weak gap condition, Publ. RIMS 48 (2012), 623-651.
- [21] M. Morimoto and K. Pawałowski: The equivariant bundle subtraction theorem and its applications, Fund. Math. 161 (1999), 279–303.
- [22] M. Morimoto–S. Tamura: Spheres not admitting smooth odd-fixed-point actions of S_5 and SL(2,5), accepted by Osaka J. Math. in 2018.
- [23] B. Oliver: Fixed point sets and tangent bundles of actions on disks and Euclidean spaces, Topology 35 (1996), 583–615.
- [24] R. Oliver: Fixed point sets of group actions on finite acyclic complexes, Comment. Math. Helv. 50 (1975), 155–177.
- [25] K. Pawałowski and R. Solomon: Smith equivalence and finite Oliver groups with Laitinen number 0 or 1, Algebr. Geom. Topol. 2 (2002), 843–895.
- [26] T. Petrie: One fixed point actions on spheres I, Adv. Math. 46 (1982), 3–14.
- [27] T. Petrie and J. Randall: Transformation Groups on Manifolds, Marcel Dekker, Inc., New York and Basel, 1984.
- [28] C. U. Sanchez: Actions of groups of odd order on compact, orientable manifolds, Proc. Amer. Math. Soc. 54 (1976), 445–448.
- [29] P. A. Smith: Transformations of finite period, Ann. of Math. 39 (1938), 127-164.
- [30] E. Stein: Surgery on products with finite fundamental group, Topology 16 (1977), 473–493.

Graduate School of Natural Science and Technology, Okayama University

3-1-1 Tsushimanaka, Kitaku, Okayama, 700-8530 Japan

E-mail address: morimoto@ems.okayama-u.ac.jp