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Global solutions for the nonlinear Dirac equation
and endpoint Strichartz estimates

Shuji Machihara FTRFE = (HEXFRAETEE)
joint work with - Makoto Nakamura, Kenji Nakanishi and Tohru Ozawa

Abstract. Global wellposedness of the nonlinear Dirac equation is shown for small data
in the energy class with some regularity assumption for the angular variable. Main tool
for the proof, endpoint Strichartz estimates for Klein-Gordon and wave equations on the

polar coordinates in three spatial dimension are studied.

1. INTRODUCTION

We consider the Cauchy problem for the nonlinear Dirac equation:

3
Z 7 0qu — mu = A7y, u)u,

a=0

(1.1)

u(0,z) = p(z), |
where ¢(z) : R® — C* is the given, u(¢,z) : R1*® — C* is the unknown function,
m > 0 and A € C are given constants, (g, 8,,02,0;) = (0;, V) is the space-time
derivative, (-,-) denotes the inner product on C%, and v* € GL(C,4) (. =0,1,2,3)
denote the Dirac matrices given by

I 0 0 oF ‘
70:(0_1')1 7k=(___ak06)1 : (12)

oo(13) = (2F) o= (3 5) s

We study the global existence of solutions of (1.1) with small data. We have
already shown the existence of global solution in H® with small data ¢ € H*® for
s > 1in [7]. Local existence was proved by Escobedo and Vega in H®,s > 1 [3].
Here the value s = 1 is a scaling critical exponent which is given by the homogeneity
of the Cauchy problem (1.1) with m = 0, see the introduction in [3]. In this note we
concentrate on the critical case, that is, on searching for the H* solution of (1.1).

Before trying to the critical problem, we review the situation in [7] of subcriti-
cal case. The main tool there is Strichartz estimates for Klein-Gordon equations.
However, we are faced the L?L norm of u when we estimate the nonlinear term,
and it is known that the estimates H* — L2L% (initial data — free solutions)
so-called endpoint Strichartz estimates does not hold [4], see also unsuccessful esti-
mates H' — L2BMO, [8]. Therefore we provided the more regular initial data and
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used the embedding theorems to obtain the solutions. To tell the truth, we could
derive the H! global solvability easily, if the endpoint estimates held. How do we
overcome the lack of endpoint Strichartz estimates? We show the one of answers
for this'difﬁculty in this note. We give the Strichartz estimate which deal with the
variables of radius and angular independently. For the special solution sufficiently
regular for rotation, this estimate corresponds to the endpoint estimates. By virtue
of this estimates, we prove the global existence of solutions for small H' data with
additional regularity for rotation.

Our original motivation to considering this type estimate is the following. It
is well known that the endpoint Strichartz estimate for wave equations holds for
a radial function [4]. Therefore there are the results of global solvability for small
radial data of some nonlinear wave equations which preserve the spherical symmetry
[11). Here we give the one unhappy remark. Dirac equation, even if free Dirac
equation, does not preserve spherical symmetry. So we could not use the available
endpoint estimates of wave equations directly for Dirac equation, even under the
assumption data is radial. Then we take notice of the fact that general functions
turn to radial functions after averaging in L} over angular variable. We study the
Strichartz estimates for wave and Klein-Gordon equations on the norms LILj that
firstly take L} for angular variable and secondly take L{ for radius variable. A similar
estimates for the Schrédinger equation in two spatial dimension were studied in [15].

Now we are in the position to state our results.

Theorem 1.1. Let m > 0, A € C and s > 0. Then there exists § > 0 such that if
¢ € HY(R®) satisfies

ol gy == Nl + IVellozag) < 6 (1.4)
then we have a unique global solution u of (1.1) satisfying u(0) = ¢ and
u € Cy(R; HY(HJ)) N L3(R; L*™). (1.5)

In the case of m = 0, we may replace the above norm of H'(Hg) with its homogeneous

version, namely ||V zcus)-

Remark 1.2. This Theorem implies global existence of solution with small radial
data in H!. We prove Theorem by the standard fixed point arguments using the
endpoint estimates that hold uniformly on any time interval. Hence we can easily
obtain global wellposedness and scattering for small data, as well as local existence
for large data by the standard arguments (see, e.g., [3]).

The rest of this note is organized as follows. In Section 2, we introduce the
notation and basic estimates on the fractional Sobolev spaces on the sphere S2. In



Section 3, we prove our endpoint Strichartz estimates. In Section 4, we prove the
global wellposedness for the nonlinear Dirac equation.

Throughout this note, we often use the notation A < B and D ~ E which mean
A < CB and D/C < E < CD, respectively, where C is some positive constant.
We denote (z) := (1 + [z]|?)"/2. We identify any set with its characteristic function.
Thus for any set A, A(z) =1if z € A and A(x) = 0 otherwise.

2. FRACTIONAL SOBOLEV SPACES ON THE SPHERE

In this section, we recall some basic facts that we need on the fractional Sobolev
spaces on the unit sphere S2. See [14, 17] for more general information. We denote
the polar coordinates £ = rf, r = |z| and 8 € S2. Let Ay denote the Laplace-
Beltrami operator on S2. For any function f(r6), we have

Dof(z) = |z x VI*f(z). (2.1)
The Lebesgue and Sobolev spaces on S? are defined by the norms
1/p
£l = ([ 11@)Pa0) ", 1o =10 - B8l (22
Throughout this note, we will use these norms in the mixed form:
1/p
15 @azon = ( [ 1500 roar) 2.9

The fractional power of Ay can be written explicitly by introducing the spherical
harmonics. Let F*(z) be a homogeneous polynomial of degree v satisfying AF¥(z) =
0, such that {F¥(0)}, makes a complete orthonormal basis of L?($2). Then any
function f(rf) can be decomposed as

oo N(v)

Fre) =" " ak(r)F(6), (2.4)

v=0 k=1
where a%(r) are determined by f, and
(1= Q)2 f =Y (L +v(v+1))2a;(r) F} (6), (2.5)
v,k
where we used AgFF(0) = —v(v + 1)F¥(f). In the case p = 2, we may use the
orthogonality to deduce that '

113 sz ~ D @) bz (2.6)
gt
Y,y

For nonlinear estimates, we use the equivalent norms defined through local coordi-
nates. Let {(Oj;,¥;)}), be a system of coordinate neighborhoods, and {);} be a
smooth partition of unity subordinate to {O;}. Let {x;} C CP(R?) satisfy x; =1
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on ¥;(supp A;) and supp x; C ¥;(0;). Then, for any functions f : S? — C and
h: (RN — C, we define Sf : (R*)Y — C and Rh: 5% = C by

N
(S£)i(z) = (AT (),  RR(y) =D (x:h)(L;(®))- (2.7)
7=1
Then we can define the Sobolev norms by
| fllor(szy = 1Sl (aar@ayn- (2.8)

This gives an equivalent norm of Hy” for 1 < p < oo (see [17}). We do not deal with
the cases p = 1 or oo in this note.

It is easily seen that RSf = f and SR is bounded from (H*?P(R?))¥ into itself, and
so, R is a retraction from (H*?(R?))" to H*?(S?) with a coretraction S. Therefore
we have the same embeddings and interpolations for H*?(S?) as on R%. We may
introduce another equivalent norm

(8'1);(@) = x; (@) f (L7 (@), S"fllareomany ~ IS fllasrmey-
(2.9)
Then the Holder inequality and the Leibniz rule easily transfers from the Euclidean
case as follows. Let s > 0and 1/p=1/¢1 +1/r1 =1/g2 +1/r3,1 < p < 00,1 #
00, T3 # 00. We have

£ gllmea(sy ~ D 1(S£);(S"9)ill memcmey
Jj

< S TS Hillamn @ 1S 9)sllrr ey + (S )il oz 1 (S'9)sll o2 wey)

j (2.10)

S ||f||H='«1(52)||9||L'1(s2) + “f”m(S“)“g”H”z(Sz);
where we used the standard estimate on pointwise multiplication on R? on the second
line.
Finally we check the equivalence of the following norms,

(X — Ap)* 2 Fllar ~ || £l caag)s (2.11)

where the right hand side was introduced in (1.4). Note that V and Ay are not
commutative. Since (2.11) is obvious if we replace H' by L?, it suffices to prove the
homogeneous version, i.e., for HL. Since |V| = v/—A commutes with Ag, the above
equivalence (2.11) reduces to the following one:

NIV flczcag) ~ HVf L2(H2)s (2.12)
which is equivalent to the boundedness of the Riesz operators:

V/|V|: L:(H;) — L?(H3) bounded. (2.13)

This is easily checked . when s is an (even) integer by computing the commutators of
z x V and V. Then the remaining case is covered by interpolation.



3. ENDPOINT STRICHARTZ ESTIMATES

In this section we consider the following free Klein—-Gordon equation with m > 0
in three space dimension:

Olu—Au+m?Pu=0, teR, zeR3,
u(0,z) = f(z), Ou(0,z) = g(z), =z €R’.
We give the endpoint Strichartz estimate.

(3.1)

Theorem 3.1. Let n = 3. Forany m > 0, any 1 < p < oo, we have for any
solution u of (3.1),

lullezreeny S Ifllan + llgllze- (3-2)

~ The rest of this section is devoted to the proof of (3.2). Although one might expect
that the estimates (3.2) were easier for the Klein-Gordon (m > 0) because of the
faster decay (t3/2), the estimate for the Klein-Gordon actually implies that for the
wave. In fact, suppose that we have an estimate (3.2) for a fixed m = mg > 0. Then
we obtain the same estimate for all m > 0 just by rescaling u — u(tm/mqy, zm/my).
Taking the limit m — 0, we obtain the same estimate for m = 0 as well. On the
other hand, it is not trivial to extend such an estimate from m = 0 to m > 0.

3.1. TT* argument. First of all, we convert them into the TT* versions. Our
desired estimates can be rewritten as

||W;1€iiw”t(ﬁ||L§LgoLg < ”‘PHLZ: Wm = vVm? — A, (3.3)

We apply the TT™* argument to the operators Ty := w;!(e*“mt 4+ e~*mt), We have
T.Tiu = 2/ w2{cos(wm(t — 5)) £ cos(wm‘(t + s)) }u(s)ds. (3.4)
R

Hence, by time reversibility, it suffices to prove
H/ W2 CO8 Wy (t — 8)u(s)ds
R

where p' = p/(p — 1) is dual exponent. It is important for our later argument
that we do not have ‘sin’ but ‘cos’ above. We denote the operator in (3.5) by
L (t) := w2 cos(wp,t) and its kernel function by

Lm(t,2) = FHE)pm cos (E)t, (€)= VI +m2. (3.6)

We use the following 7T version of the Hardy-Littlewood maximal operator as
the key estimate on (¢,7). In the lemma below, we forget about the polar coordinates
and so L? denotes the standard L?((0, co); dr) without weights.

L?L;’."Lg S ”u“LleLg" (3'5)
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Lemma 3.2. Let g(r) be a nonnegative nonincreasing integrable function on (0, 00).
Then the following estimate holds

®© 1 |t — s
/0 /Rrvl 9( TV )h(s’l)ds‘”

where r V | = max(r, [).

. S lgllzallBllzzry- (3.7)

Proof. The Hardy-Littlewood maximal function theorem shows the boundedness of
the operator

Mo(t,r) = l/ w(s)ds : L2 — LZLZ. | (3.8)
r |t—s|<r
So M M* is bounded
MM*: I2L! - L2L®, (3.9)
and it is written explicitly by
MM*h(t,r) = f / ;17 I(t = |, 7, D)h(s, Ddsdl, (3.10)
o Jr
where
2min(r, ), (t<|r—1]),
It,r,)=<Sr+i—-t, (r-l<t<r+l), (3.11)
0, (r+il<t).
Denote the operator in (3.7) by M(g, h). Since
1 1
il > :
TlI(t,'r,l)_Tvl{0<t<er}, (3.12)

the boundedness of M M* implies the desired estimate for M([0, 1], k), and by rescal-
ing, for any interval M([0,a],h). (Remember that we identify any set with its
characteristic function.) Then the general case follows by slicing g into intervals:

Mg WLz = H |7 s @mo.al, nyda

. Ly (3.13)
< / —g(@)allhlzzda = |lg

2[Rl 22

a
3.2. L} estimate (3.3) for the wave. We fix ¢ and estimate Lo(t) pointwise. By

symmetry, we may assume that ¢ > 0. Using the well known formula for the funda-
mental solution, we obtain ' ‘

Lo(t) = / wo'l sin wysds,
¢ (3.14)

*® 1 1
Lolt, z) = /t =d(s —r)ds = T—{t <r}.



Here again we identify the set with its characteristic function. Using the polar
coordinates we may write it as

Lo = | Qo) (3.15)
0
where 2 is an operator on S? defined by
Qp(8) = / F(|r - la))p(a)da, F(r)= (4nr)"}t < r}. (3.16)
S2?

We estimate the L} norm of § as follows. First we have the trivial L3 bound:

16l < [IF(Ir6 — la)llzgellellzy S ¢ {t <7+ el (3.17)
For the L estimate, we apply the Young inequality for the convolution on SO(3).
Using the identity

f(8)do =C f(Ae)dA, ec S?, (3.18)
52 50(3)

we estimate

1901123 ~ || / vy Flre = 1Be)o(4Be)aB

Ly

< lle(Ae) . fs o Flire=1BeaB (3.19)

~ liglzz [ Filre — t)as

where we changed the variables as §# — Ae and o~ ABe. The last integral of F' is
dominated by

{t<r+i} / ire — 18]71d8 < {t < 7+ [}(r v 1)~L. (3.20)
sz
Interpolating these estimates, we obtain for 2 < p < 00
1Qpllg S B2 rv i)y 2P{t <7+ Hiell - (3.21)

Plugging this estimate into Ly(t), we obtain

Iox 16rBliy 5 [ [ =y (530 Uston o), o

where
g (t) = t¥PH0 < t < 2}. (3.23)

Then the desired L} estimate (3.3) for m = 0 follows from Lemma 3.2 together with
the estimate ||g,||z1 < p. The case p < 2 is covered by the embedding L2 «— L.
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3.3. L? estimate (3.3) for the Klein-Gordon. Next we extend the above result
to the Klein-Gordon m > 0. Since our estimate is global in time and the large time
behavior is essentially different between the wave and the Klein-Gordon, it seems
meaningless to approximate the latter by the former. Nevertheless, we will show
that the TT* operator L,,(t) for the Klein-Gordon can be dominated by the wave
correspondence and a “dispersive” part, which is smooth and decays fast in time.

By the rescaling argument, it suffices to prove the estimate for m = 1. We may
assume t > 0 by symmetry. We calculate the kernel L,, by writing the Fourier
transform in the polar coordinates as

ity ) =C [ [ (0172 cott(p) e 2P ddp
=c [ [ (9132 cos(tloh) cos(roN) o (3.24)
=C / cos(rv) / o Eg—s;ldld

where we changed the variables as A = cos(f - @), v = pA and [ = t{p),,. Then we
obtain a uniform bound

t(v) dl
1L (t, 7) ~ co(tuN// TS, (3.25)
t

Integrating by parts after changing the variable l — [/(v),,,, we further rewrite (3.24)

as
t

Ln(t,z) = Ct ' Kp(t,z) + C / Km(l,z)i2dl, (3.26)

o0

where K,,(t) denotes the one-dimensional fundamental solution of the Klein-Gordon.
When m = 1, we have

1(t, 1) C’/ Lsin(t(v)) cos(rv)dv = CJo(Vt2 — r2){r < t}
< (m) ‘<1, (3.27)

where J; is the Bessel function of order 0 and we used the estimate |Jo(s)| S (s)~1/?

[12, p. 98]. Hence we have for ¢ < r,
Lt 2)| S / (12 = r?) V42 < 32, (3.28)
When t/2 < r < t, we estimate |K;(¢,7)| < 1 and

Lyt )| < 1+ / =24 < 471 < L (3.29)
t



When r < t/2, we have v/t2 — r2 2 t and so

|L1(t, )| S 732 4 ¢71/2 / 17241 < 732, (3.30)

t

Gathering the estimates (3.14), (3.25), (3.29) and (3.30), we conclude
[E1(t,2)| S Lolt/2) + (B (3.31)

Thus we have reduced the desired estimate for m = 1 to that for m = 0 and the
L2L% estimate for the dispersive part (¢)~%/>
inequality.

, which follows simply from the Young

4. GLOBAL SOLUTIONS FOR THE NONLINEAR DIRAC EQUATION

In this section, we prove Theorem 1.1. We rewrite the equation (1.1) as the
following integral equation:

cp+/ Un(t — 8)F(u(s))ds, (4.1)

where F(u) = —iAy°(y%u, w)u and U,,(t) denotes the propagator of the free Dirac
equation given by

Un(t) = cos(wpt) — nyf 0; + im)wy,! sin(wmt), (4.2)

where wy, = vmZ —A. We set du = R.H.S of (4.1) and apply the contraction
mapping theorem.

For the linear term, we use the Strichartz estimates (3.3). We see from (4.2) that
wilUm(t) is a linear combination of w;;!e*™=? with bounded Fourier multipliers. So
we have estimates for m > 0,1 <p < 00 as

1Um(D)¢llzrerg S lollmr- (4.3)

Moreover, from the fact that A is commutative with Ag, it follows that
[Un®ellizrenge S N1~ 6} 2@l ~ llollrsa). (4.4)
Therefore putting X = L H'(H) N L2LX H,* with p sufficiently large as p > 2/s,

we have

I2ullx S el + /0 " \Un(t — $)F (u(s)l|xds

(4.5)
S el gy + I1F (W)l ag)-
By (2.10), we estimate the nonlinear term F'(u) as
IEw)lla; S (46)

IVF(u)lla S
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with 1/p + 1/q = 1/2. By the embeddings H,? — L for s > 2/p, Hj — Lj for
s > 2/p, and the Holder inequality for variables ¢ and r, we have

IF @)l siar gy S Nellzzpe pee lull g garg) - (4.7)

Analogously we have

1@u — @vllx S (lullk + lol3)lu - vllx. (4.8)

Therefore ® is a contraction map on a small closed ball in X.

For the uniqueness of solutions in the class of (1.5), we consider the L{°L? metric.

By the L? invariance of U(t), we have

lu = vllipera S (lellZare + lullZaze)lle — vlizprs. (4.9)

We can conclude u = v time locally, so that for the entire time interval by the

repetition.
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