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1 Introduction

In 1990 Dijkgraaf and Witten [6] introduced a topological invariant of closed oriented
3‐manifolds using a finite group and its 3‐cocycle. Let M be a closed oriented 3‐manifold,
 G a finite group and  \alpha\in Z^{3}(BG, U(1)) . Then the Dijkgraaf‐Witten invariant  Z(M) (we
abbreviate it to the DW invariant in this paper) is defined as follows:

 Z(M)= \frac{1}{|G|}\sum_{\gamma\in Hom(\pi_{1}(M),G)}\langle\gamma^{*}[\alpha],
[M]\rangle\in \mathbb{C}.
The topological invariance of  Z(M) is obvious from the definition and it is also evident
that  Z(M) is a homotopy invariant since  M only appears at the fundamental group and
the fundamental class in the definition of  Z(M) .

Dijkgraaf and Witten reformulated the invariant by using a triangulation of  M in the

following way. Let  K be a triangulation of  M . Then the fundamental class of  M is

described by the sum of the tetrahedra of  K and  \gamma\in Hom(\pi_{1}(M), G) is represented by
assigning an element of  G to each edge of K.  Z(M) is described as follows:

 Z(M)= \frac{1}{|G|^{a}} \sum \Gamma I \alpha(g, h, k)^{\pm 1},
 \varphi\in Coı(K)tetrahedron

where  a is the number of the vertices of  K and  g,  h,  k\in G are colors of edges of a

tetrahedron of  K . Wakui [12] proved the topological invariance of the DW invariant
in this combinatorial construction. Due to the above construction of  Z(M) by using a
triangulation, we can view the DW invariant as the “Turaev‐Viro type”invariant.

This construction by using a triangulation enable us to define the DW invariant for

a compact oriented 3‐manifold  M with  \partial M\neq\emptyset . However, for  \partial M\neq\emptyset case, the DW
invariant of  M is determined not only by  M but also by a triangulation of  \partial M and its

coloring.
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Here we construct another version of the DW invariant, which we call the generalized

DW invariant. For a compact oriented 3‐manifold  M with  \partial M\neq\emptyset , the generalized DW

invariant of  M does not need a triangulation of  \partial M nor its coloring. We can achieve

that by using an ideal triangulation of a compact oriented 3‐manifold with non‐empty

boundary or a cusped oriented 3‐manifold. This is an analogy of the construction of

the Turaev‐Viro invariant in [2] for a compact 3‐manifold with non‐empty boundary or a
cusped 3‐manifold.

We calculate the generalized DW invariants for some examples and show that the in‐

variants actually distinguish some pairs of cusped hyperbolic 3‐manifolds with the same

hyperbolic volumes and with the same Turaev‐Viro invariants. We also give an example

of a pair of cusped hyperbolic 3‐manifolds with the same hyperbolic volumes and with

the same homology groups, meanwhile with distinct generalized DW invariants.
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for useful communications. He also would like to thank members of Murakami’s labo‐
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2 Definition of the generalized Dijkgraaf‐Witten invariant

First we review the group cohomology briefly. Let  G be a finite group and  A a multi‐

plicative abelian group. The  n‐cochain group  C^{n}(G, A) is defined as follows:

 C^{n}(G, A)=\{\begin{array}{ll}
A   (n=0)
\{\alpha A\}   (n\geq 1) .
\end{array}
The group operation of  C^{n}(G, A) is a multiplication of maps induced by the multiplication

of  A and then  C^{n}(G, A) is a multiplicative abelian group since so is  A . The  n‐coboundary

map  \delta^{n} :  C^{n}(G, A)arrow C^{n+1}(G, A) is defined by

 (\delta^{0}a)(g)=1 (a\in A, g\in G) ,

 (\delta^{n}\alpha)(g_{1} . , g_{n+1})=

  \alpha (g_{2} g_{n+1})(\prod_{i=1}^{n}\alpha(g_{1}, \ldots, g_{i}g_{i+1}, 
\ldots, g_{n+1})^{(-1)^{i}})\alpha(g_{1}, \ldots, g_{n})^{(-1)^{n+1}}
 (\alpha\in C^{n}(G, A), g_{1} , g_{n+1}\in G, n\geq 1) .
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Then we can confirm by the above definition that  \{(C^{n}(G, A),  \delta^{n})\}_{n=0}^{\infty} is a cochain com‐

plex. Hence the  n‐cocycle group  Z^{n}(G, A) and the n‐th cohomology group  H^{n}(G, A) are
defined as usual.

An  n‐cochain  \alpha\in C^{n}(G, A) is said to be normalized if for any  g_{1} , . . . ,  g_{n}\in G,  \alpha satisfies

 \alpha(1, g_{2}, \ldots, g_{n})=\alpha(g_{1},1, g_{3}, \ldots, g_{n})= =
\alpha(g_{1} g_{n-1},1)=1\in A.

If  \alpha and  \beta are normalized  n‐cochains,  \alpha\beta and  \alpha^{-1} are also normalized  n‐cochains and
 \delta^{n}\alpha is a normalized  (n+1) ‐coboundary. Eilenberg and MacLane proved the following

proposition [7, Lemma 6.1 and Lemma 6.2].

Proposition 2.1. For any cochain  \alpha , there exists a normalized cochain  \alpha' which is co‐

homologous to  \alpha . For any normalized  n‐coboundary  \alpha , there exists a normalized  (n-1) ‐
cochain  \beta such that  \alpha=\delta^{n-1}\beta.

Hence we assume that any  n‐cochain is normalized. As we only consider 3‐cocycles in the

rest of this paper, we restate the cocycle condition for a 3‐cocycle  \alpha.

 \alpha(h, k, l)\alpha(g , hk,  l)\alpha(g, h, k)=\alpha(gh, k, l)\alpha(g,  h , kl  )  (g, h, k, l\in G) .

The cocycle condition takes an important role in the proof of the invariance of the gen‐
earalized DW invariant.

We can define the DW invariant by using any multiplicative abelian group  A , never‐

theless we usually use  U(1) in the definition of the original DW invariant. Hence we only

consider  U(1) ‐valued 3‐cocycles in the rest of this paper.

In this paper we suppose that a triangulation  K of a 3‐manifold is not necessarily a

decompositon as a simplicial complex. (A triangulation in this paper means a singular
triangulation in [10] and [11].) For given four vertices of  K,  K may have more than one
tetrahedron with the given four vertices. For given two vertices of  K , there may exist more

than one edge connecting the given two vertices. If a decomposition forms a simplicial

complex, we call the decomposition a simplicial triangulation.

Let  M be a compact oriented 3‐manifold with boundary. We consider a triangulation

of  M with ideal vertices such that each boundary component of  M converges at an

ideal vertex. We call such a triangulation of  M with ideal vertices a generalized ideal

triangulation of  M in this paper. In general, a generalized ideal triangulation  K of  M

has both interior vertices and ideal vertices. If  \partial M=\emptyset,  K has no ideal vertices, that is,
 K is an ordinary triangulation of a closed 3‐manifold  M . On the other hand, an ideal

triangulation is a generalized ideal triangulation without interior vertices.

Now we explain a coloring and a local order of a triangulation.
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 E_{3}

 \epsilon_{1}=1,\epsilon_{2}=1,\epsilon_{3}=-1.

Figure 1: The sign of edges.

Fix a generalized ideal triangulation  K of  M . Give an orientation to each edge and

each face of K. A coloring  \varphi of  K is a map

 \varphi : {oriented edges of  K}  arrow G

satisfying

 \varphi(E_{3})^{\epsilon_{3}}\varphi(E_{2})^{\epsilon_{2}}\varphi(E_{1})
^{\epsilon_{1}}=1\in G

for oriented edges  E_{1},  E_{2} and  E_{3} of any oriented 2‐face  F and

 \epsilon_{i}=\{\begin{array}{ll}
1   the orientation of E_{i} agrees with that of \partial F
-1   otherwise.
\end{array}
(Note that the three edges  E_{1},  E_{2} and  E_{3} of  F are chosen along the orientation of  F as
Figure 1.) The above condition for a coloring  \varphi is required because a coloring  \varphi originally
comes from  \gamma\in Hom(\pi_{1}(M), G) . Let Co1(K) be the set of the colorings of  K . Note that
a coloring  \varphi of  K is independent of the choice of orientations of edges and faces of  K.

Fix a generalized ideal triangulation  K of  M . Give an orientation to each edge of  K

such that for any 2‐face  F of  K , the orientations of the three edges of  F are not cyclic

(as the left hand side of Figure 2). We call such a choice of the orientations of edges of  K

a local order of  K (or a branching of  K). Then each tetrahedron  \sigma of  K has one of each
vertex incident to  i outgoing edges of  \sigma and to  (3-i) incoming edges of  \sigma for  i=0,1,2,3

(as the right hand side of Figure 2). Let  v_{i} be the vertex of  \sigma incident to  i outgoing edges
of  \sigma . Then the order  v_{0}<v_{1}<v_{2}<v_{3} of the vertices of  \sigma settles an orientation of  \sigma.

We define the sign  \epsilon_{\sigma} of  \sigma as follows:

 \epsilon_{\sigma}=\{\begin{array}{ll}
1   the orientation of \sigma by the local order agrees with that of M
-1   otherwise.
\end{array}
Now we define the generalized DW invariant. Let  M be a compact or cusped 3‐manifold,

 G a finite group and  \alpha\in Z^{3}(G, U(1)) . Fix a generalized ideal triangulation  K of  M

with a local order. Then for each tetrahedron  \sigma of  K the sign  \epsilon_{\sigma} is determined by the
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Figure 2: A local order for a face and for a tetrahedron.

Figure 3: A colored tetrahedron.

local order. Put a coloring  \varphi of  K , and then some element  \varphi(E) of  G is assigned to

each oriented edge  E of each tetrahedron  \sigma . We call  \varphi(E) the color of  E and such a

tetrahedron  \sigma the colored tetrahedron, denoted by  (\sigma, \varphi) . Let  v_{0},  v_{1},  v_{2},  v_{3} be the vertices

of  \sigma with  v_{0}<v_{1}<v_{2}<v_{3} by the local order  (v_{i} is incident to  i outgoing edges of

 \sigma) . Put  \varphi(\langle v_{0}v_{1}\rangle)=g,  \varphi(\{v_{1}v_{2}\rangle )  =h,  \varphi(\langle v_{2}v_{3}\rangle)=k . Correspond  \alpha(g, h, k)^{\epsilon_{\sigma}}\in U(1) to
the colored tetrahedron  (\sigma, \varphi) . We call  W(\sigma, \varphi)=\alpha(g, h, k)^{\epsilon_{\sigma}} the symbol of the colored
tetrahedron  (\sigma, \varphi) .

Theorem 2.2. Let  M be a compact or cusped 3‐manifold,  G a finite group and  \alpha\in

 Z^{3}(G, U(1)) . Let  K be a generalized ideal triangulation of  M with a local order. Let
 \sigma_{1} , . . . ,  \sigma_{n} be the tetrahedra of  K and a the number of the interior vertices of K. The

generalized Dijkgraaf‐ Witten invariant  Z(M) is defined as follows:

 Z(M)= \frac{1}{|G|^{a}}\sum_{\varphi\in Co{\imath}(K)}\prod_{i=1}^{n}
W(\sigma_{i}, \varphi) .

Then  Z(M) is independent of the choice of a generalized ideal triangulation  K of  M with
a local order.

By using a generalized ideal triangulation  K of  M , each component of  \partial M corresponds

to an ideal vertex of  K . Hence, even if  \partial M\neq\emptyset , the generalized DW invariant of  M does

not need a triangulation of  \partial M nor its coloring. For a closed 3‐manifold  M , since  K has

no ideal vertices, the generalized DW invariant of  M is no other than the original DW
invariant of  M.
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Remark 2.3. In general some generalized ideal triangulation  K of  M does not admit a

local order. Nevertheless the following lemma holds.

Lemma 2.4. Any compact or cusped 3‐manifold  M has a generalized ideal triangulation
which admits a local order.

Proof. For any given generalized ideal triangulation  K of  M , let  K^{bb} be the generalized

ideal triangulation of  M obtained by applying the barycentric subdivision twice to each

tetrahedron of  K . For given four vertices of  K^{bb} (which form a tetrahedron of  K^{bb} ), there
exists a unique tetrahedron of  K^{bb} with the given four vertices. Hence  K^{bb} can be dealt in

the same way as a simplicial triangulation of a closed 3‐manifold. We choose an arbitrary
total order on the set of the vertices of  K^{bb} and then the total order determines a local

order of  K^{bb}.  \square 

3 Invariance of the generalized Dijkgraaf‐Witten invariant

In this section, we prove Theorem 2.2. First we show that  Z(M) is independent of the

choice of a local order of a fixed generalized ideal triangulation  K of  M . Then we prove

that  Z(M) is independent of the choice of a generalized ideal triangulation  K of  M.

Let  K be a generalized ideal triangulation of  M with a local order.  \check{K} denotes the

generalized ideal triangulation without considering a local order in this section. We define

 Z(K) by

 Z(K)= \frac{1}{|G|^{a}}\sum_{\varphi\in Co{\imath}(K)}\prod_{i=1}^{n}
W(\sigma_{i}, \varphi) .

Lemma 3.1. Let  K_{1} and  K_{2} be generalized ideal triangulations with local orders of a

compact or cusped 3‐manifold M. If  \check{K}_{1}=\check{K}_{2} , then  Z(K_{1})=Z(K_{2}) , i.e.  Z(K) is

independent of the choice of a local order.

Proof. Let  K be a generalized ideal triangulation of  M with a local order. Let  K^{b} be

the generalized ideal triangulation of  M obtained by applying the barycentric subdivision

once to each tetrahedron of  K with the following local order:

(vertex of  K )  < (midpoint of an edge of  K )  < (center of a face of  K )
 < (center of a tetrahedron of  K).

We prove that  Z(K)=Z(K^{b}) , which implies the independence of the choice of a local

order. We prove this claim by the following three steps.

Step 1 : Divide each tetrahedron  \sigma of  K into four tetrahedra by adding four edges

connecting the center of  \sigma (denoted by b) and (four) vertices of  \sigma . This division is the
number of the tetrahedra of  K times of (1,4)‐Pachner moves. See Figure 4.  K' denotes
the generalized ideal triangulation of  M obtained by Step 1 with the local order
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 arrow

Figure 4: The division in Step 1 ((1,4)‐Pachner move).

 arrow

Figure 5: The division in Step 2.

(vertex of  K )  < (center of a tetrahedron of  K).
Step 2 : Divide each tetrahedron  \sigma of  K' into three tetrahedra by adding three edges

as follows.  \sigma has three vertices of  K (the other vertex of  \sigma is  b). Let  F be the face of  \sigma

with three vertices of  K . Add three edges connecting the center of  F (denoted by c) and
(three) vertices of  F . See Figure 5.  K" denotes the generalized ideal triangulation of  M

obtained by Step 2 with the local order

(vertex of  K )  < (center of a face of  K )  < (center of a tetrahedron of  K).
Step 3 : Divide each tetrahedron  \sigma of  K" into two tetrahedra as follows. Let  v_{0},  v_{1} be

two vertices of  \sigma which are vertices of  K (the other vertices of  \sigma are  b and  c). Let  E be
the edge of  \sigma connecting  v_{0} and  v_{1} , and  d the midpoint of  E . Divide  \sigma=\{v_{0}v_{1}cb\} into

 \langle v_{0}dcb\rangle and  \langle v_{1}dcb\rangle . See Figure 6. The generalized ideal triangulation of  M obtained by

Step 3 is  \check{K}^{b}.

Hence it suffices to show that  Z(K)=Z(K')=Z(K")=Z(K^{b}) . The proof of these

equalities are given in [8].
 \square 

Next we prove that  Z(M) is independent of the choice of a generalized ideal triangulation
 K of  M . In order to show that, we make use of the following theorem by Pachner.

Theorem 3.2 (Pachner). Any two simplicial triangulations of a 3‐manifold  M can be
transformed one to another by a finite sequence of the two types of transformations shown
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 arrow

Figure 6: The division in Step 3.

(1,4)‐Pachner move (2,3)‐Pachner move

Figure 7: The Pachner moves.

in Figure 7.

Let  K and  L be any two generalized ideal triangulations of  M . Owing to Lemma 3.1,

 Z(K)=Z(L) implies Theorem 2.2.

Suppose  K and  L are simplicial. By Theorem 3.2, there exists a finite sequence of

generalized ideal triangulations of  M,  K=K_{0}arrow K_{1}arrow. . .  arrow K_{n}=L , such that  K_{i}

is transformed to  K_{i+1} by one of Pachner moves once and each  K_{i} is simplicial. Hence

 Z(K_{i})=Z(K_{i+1}) for each  i implies  Z(K)=Z(L) .  Z(K_{i})=Z(K_{i+1}) follows from the

following two lemmas given in [13].

Lemma 3.3. If  K_{i} is transformed to  K_{i+1} by  a(1,4) ‐Pachner move, then  Z(K_{i})=
 Z(K_{i+1}) .

Lemma 3.4. If  K_{i} is transformed to  K_{i+1} by  a(2,3) ‐Pachner move, then  Z(K_{i})=
 Z(K_{i+1}) .

Therefore if  K and  L are simplicial,  Z(K)=Z(L) holds.

Next we consider a generalized ideal triangulation  K of  M which is not simplicial. Let
 K^{bb} be the generalized ideal triangulation of  M obtained by applying the barycentric

subdivision to each tetrahedron of  K twice. Even though  K is not simplicial,  K^{bb} is

always simplicial. Furthermore, by Lemma 3.1,  Z(K)=Z(K^{bb}) holds, which implies

 Z(K)=Z(L) for any two generalized ideal triangulations of  K and  L of  M.

This completes the proof of Theorem 2.2.
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(0,2)‐Pachner move (2,3)‐Pachner move

Figure 8: The Pachner moves for ideal triangulations.

We present simple properties of the generalized DW invariant which are known for the

original DW invariant in [12]. The following proposition can be proved in the same way
as the original DW case in [12].

Proposition 3.5. Let  M be a compact or cusped oriented 3‐manifold,  G a finite group

and  \alpha\in Z^{3}(G, U(1)) . Then the following holds.

(1)  Z(M) only depends on the cohomology class of  \alpha.

(2)  Z(-M)=\overline{Z(M)} , where  -M is the oriented 3‐manifold with the opposite orientation
to  M.

Although we introduce a generalized ideal triangulation in the definition of the gener‐

alized DW invariant, it suffices to consider ideal triangulations of  M in calculations of

 Z(M) by the following two theorems.

Theorem 3.6 ([10, Theorem 1.2.27]). Any two ideal triangulations of a 3‐manifold  M

can be transformed one to another by a finite sequence of the two types of transformations

shown in Figure 8.

We call  a(2,3) ‐Pachner move that increases the number of the ideal tetrahedra a positive

(2,3)‐Pachner move in this paper. In general, a given ideal triangulation of  M may not
admit a local order. However Benedetti and Petronio proved the existence of an ideal

triangulation with a local order [3, Theorem 3.4.9].

Theorem 3.7 (Benedetti‐Petronio). Let  M be a compact oriented 3‐manifold with bound‐
ary and  K an ideal triangulation of M. Then there exists a finite sequence of ideal trian‐

gulations of  M,  K=K_{0}arrow K_{1}arrow. . .  arrow K_{n} , such that  K_{i} is transformed to  K_{i+1} by a

positive (2,3)‐Pachner move and  K_{n} admits a local order.

Corollary 3.8. For any cusped or compact 3‐manifold  M with boundary, there exists an

ideal triangulation  K of  M with a local order. Since  K does not have interior vertices,
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m003 m004  (=S^{3}\backslash 4_{1})

Figure 9: Minimal ideal triangulations of m003 and m004.

the generalized Dijkgraaf‐ Witten invariant  Z(M) is described by the following form:

 Z(M)= \sum_{\varphi\in Co1(K)}\prod_{i=1}^{n}W(\sigma_{i}, \varphi) .

4 Examples of cusped hyperbolic 3‐manifolds

In this section, we calculate the generalized DW invariants of some cusped orientable

hyperbolic 3‐manifolds by using Theorem 3.7 and Corollary 3.8. We show that the gen‐

eralized DW invariants distinguish some pairs of cusped hyperbolic 3‐manifolds with the

same hyperbolic volumes and with the same Turaev‐Viro invariants. We also present an

example of a pair of cusped hyperbolic 3‐manifolds with the same hyperbolic volumes and

with the same homology groups, whereas with distinct generalized DW invariants.

For a positive integer  m , it is known that  H^{3}(\mathbb{Z}_{m}, U(1)) is isomorphic to  \mathbb{Z}_{m} and a

generator  \alpha of  H^{3}(\mathbb{Z}_{m}, U(1))\cong \mathbb{Z}_{m} is described by the following formula [1]:

  \alpha(g_{1}, g_{2}, g_{3})=\exp(\frac{2\pi i}{m^{2}}\overline{g_{1}}
(\overline{g_{2}}+\overline{g_{3}}-\overline{g_{2}+g_{3}})) ,

where  \overline{g_{\dot{i}}}\in\{0, , m-1\} is a representative of  g_{i}\in \mathbb{Z}_{m}.

(1) m003 and m004
According to Regina [4] and SnapPy [5], m003 and m004 are cusped orientable 3‐

manifolds with the minimal ideal triangulations shown in Figure 9. The 3‐manifold m004

is the figure eight knot complement. Their hyperbolic volumes, Turaev‐Viro invariants

and homology groups are as follows:

 Vol(m003)=Vol(m004)\approx 2.02988,

 TV (m003)  = \sum_{(a,a,b),(a,b,b)\in adm}w_{a}w_{b}  |\begin{array}{lll}
a   a   b
a   b   b
\end{array}||\begin{array}{lll}
a   a   b
a   b   b
\end{array}|=TV (m004),

 H_{1}(m003;\mathbb{Z})=\mathbb{Z}\oplus \mathbb{Z}_{5} , H_{1}(m004;\mathbb{Z})
=\mathbb{Z}.
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We show that m003 and m004 have distinct generalized DW invariants.

First we calculate the generalized DW invariant of m004. The minimal ideal triangula‐

tion of m004 admits the local order shown in Figure 9. Identify the labels of edges with

the colors of edges. By the left front face of the left ideal tetrahedron of m004 shown in

Figure 10,  a=ba . By the right front face of the left ideal tetrahedron of m004,  b=ab.

Hence  a=b=1\in G , which implies m004 has only a trivial coloring. Therefore, for any

finite group  G and its any normalized 3‐cocycle  \alpha,

 Z (m004)  =1.

On the other hand, the minimal ideal triangulation of m003 shown in Figure 9 does

not admit a local order. Then we apply Theorem 3.7 to the ideal triangulation of m003.

In order to assign a local order, transform the ideal triangulation of m003 by positive

(2,3)‐Pachner moves.
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Figure 10: A sequence of (2,3)‐Pachner moves for m003 to obtain a locally ordered ideal triangulation.

After positive (2,3)‐Pachner moves five times, the ideal triangulation of m003 which
consists of seven ideal tetrahedra admits the local order shown in Figure 10. The relations

between the colors of edges are the following:

 a=b^{3} , c=b^{2}, d=b^{4}, e=b, f=1 , g=b^{2}, b^{5}=1.

 Z (m003)  = \sum_{b\in G,b^{5}=1}\alpha(b, b, b)^{-1}\alpha(b^{2}, b, b)\alpha(b^{3}, 
b^{3}, b^{3})
 \cross\alpha(b, b, b^{3})\alpha(b, b^{2}, b^{2})\alpha(b^{2}, b^{3}, b^{2}) .

In order to confirm  Z(m003)\neq Z(m004) , we calculate  Z(m003) for  G=\mathbb{Z}_{5} and a

generator  \alpha of  H^{3}(\mathbb{Z}_{5}, U(1))\cong \mathbb{Z}_{5}.

 Z (m003)  =1+\exp  ( \frac{2\pi i}{5}(3+2))+\exp  ( \frac{2\pi i}{5}2(1+2))+\exp  ( \frac{2\pi\dot{i}}{5}3(-1+2+3+1+2))
 + \exp (\frac{2\pi i}{5}4(-1+2+1+1+2))

 =3+2 \exp\frac{2\pi i}{5}
 = \frac{1}{2}(5+\sqrt{5}+i\sqrt{10+2\sqrt{5}}) .

Hence the generalized DW invariants distinguish m003 and m004.
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m006

m007

Figure 11: Minimal ideal triangulations of m006 and m007.

(2) m006 and m007
According to Regina [4] and SnapPy [5], m006 and m007 are cusped orientable 3‐

manifolds with the minimal ideal triangulations shown in Figure 11. Their hyperbolic

volumes, Turaev‐Viro invariants and homology groups are as follows:

 Vol(m006)=Vol(m007)\approx 2.56897,

 TV (m006)  = \sum w_{a}w_{b}w_{c}aa TV (m006)  = \sum w_{a}w_{b}w_{c}aa  bb  aC|  |\begin{array}{lll}
a   b   c
a   c   a
\end{array}||\begin{array}{lll}
a   b   c
a   c   a
\end{array}|=TV(m007) ,

 H_{1}(m006;\mathbb{Z})=\mathbb{Z}\oplus \mathbb{Z}_{5} , H_{1}(m007;\mathbb{Z})
=\mathbb{Z}\oplus \mathbb{Z}_{3}.

 Z (m006)  = \sum_{a\in G,a^{5}=1}\alpha(a, a, a)^{3}\alpha(a, a^{2}, a)\alpha(a^{3}, 
a^{3}, a^{3}) .

 Z (m007)  = \sum_{a\in G,a^{3}=1}\alpha(a, a, a)\alpha(a^{-1}, a^{-1}, a^{-1}) .

If  G=\mathbb{Z}_{5} and  \alpha is a generator of  H^{3}(\mathbb{Z}_{5}, U(1))\cong \mathbb{Z}_{5},

 Z (m006)  =1+\exp  ( \frac{2\pi i}{5}\cross 3)+\exp  ( \frac{2\pi i}{5}\cross 2\cross 1)+\exp  ( \frac{2\pi i}{5}3(3+3))
 + \exp(\frac{2\pi\dot{i}}{5}4(3+1))

 =1+2 \exp\frac{6\pi i}{5}+\exp\frac{4\pi i}{5}+\exp\frac{2\pi i}{5}

 =- \frac{\sqrt{5}}{2}+\frac{\dot{i}}{4}(\sqrt{10+2\sqrt{5}}-\sqrt{10-2\sqrt{5}}
) ,
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 Z (m007)  =1.

Hence the generalized DW invariants distinguish m006 and m007.

In fact the previous two pairs of cusped hyperbolic 3‐manifolds with the same hyperbolic

volumes and the same Turaev‐Viro invariants are distinguished by their homology groups.

The following pair of cusped hyperbolic 3‐manifolds with the same hyperbolic volumes

and the same homology groups have distinct generalized DW invariants.

s778

Figure 12: A minimal ideal triangulation of s778.

s788

Figure 13: A minimal ideal triangulation of s788.

(3) s778 and s788
According to Regina [4] and SnapPy [5], s778 and s788 are cusped orientable 3‐manifolds

with the minimal ideal triangulations shown in Figure 12 and 13 respectively. Their

hyperbolic volumes, homology groups and  SO(3) Turaev‐Viro invariants [9] at  r=5 are
as follows:

 Vol(s778)=Vol (  s 788)  \approx 5.33349,
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 H_{1} (  s 778;  \mathbb{Z} )  =H_{1} (  s 788;  \mathbb{Z} )  =\mathbb{Z}\oplus \mathbb{Z}_{12},

 TV(s778)=6-2 \sqrt{5}, TV(s788)=\frac{5-\sqrt{5}}{2}.
The minimal ideal triangulations of s778 and s788 shown in Figure 12 and 13 do not

admit a local order. In order to assign a local order, transform the ideal triangulations of

s778 and s788 by positive (2,3)‐Pachner moves.

Figure 14: An ideal triangulation of s778 with a local order.

After positive (2,3)‐Pachner moves twice, the ideal triangulation of s778 which consists
of eight ideal tetrahedra admits the local order shown in Figure 14. The relations between

the colors of edges are the following:

 a=d^{2}, b=e=d^{3}, c=d^{5} , f=d^{10}, g=d^{4}, h=d^{8}, d^{12}=1.

 Z(s778)= \sum_{d\in G,d^{12}=1}\alpha(d, d, d^{2})\alpha(d^{2}, d, d)
\alpha(d^{2}, d, d^{2})\alpha(d^{3}, d^{2}, d^{3})
 \cross\alpha(d^{3}, d^{10}, d^{3})\alpha(d^{5}, d^{5}, d^{10})\alpha(d^{10}, d^
{5}, d^{5})\alpha(d^{10}, d^{5}, d^{10}) .

Figure 15: An ideal triangulation of s788 with a local order.
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After positive (2,3)‐Pachner moves three times, the ideal triangulation of s788 which
consists of nine ideal tetrahedra admits the local order shown in Figure 15. The relations

between the colors of edges are the following:

 b=e=a^{9} , c=a^{8}, d=a^{5}, f=a^{6}, g=a^{3}, h=a^{2}, i=a^{-1} , a^{12}=1.

 Z(s788)= \sum_{a\in G,a^{12}=1}\alpha(a^{5}, a, a^{2})\alpha(a^{6}, a^{2}, 
a^{3})\alpha(a^{8}, a, a^{2})\alpha(a^{8}, a, a^{8})^{-1}
 \cross\alpha (a^{8}, a^{5}, a^{8})^{-1}\alpha(a^{8}, a^{9}, a^{8})^{-1}
\alpha(a^{9}, a^{5}, a^{3})^{-1}\alpha(a^{9}, a^{8}, a)^{-1}\alpha(a^{9}, a^{9},
a^{5}) .

In order to confirm  Z(s778)\neq Z(s788) , we calculate  Z(s778) and  Z(s788) for  G=\mathbb{Z}_{12}

and a generator a of  H^{3}(\mathbb{Z}_{12}, U(1))\cong \mathbb{Z}_{12}.

 Z(s778)=-6, Z(s788)=3-2\sqrt{3}.

Hence the generalized DW invariants distinguish s778 and s788.
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