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HECKE‐SIEGEL TYPE THRESHOLD FOR SQUARE‐FREE FOURIER
COEFFICIENTS: AN IMPROVEMENT

PRAMATH ANAMBY AND SOUMYA DAS

ABSTRACT. We prove that if f is a non zero cusp form of weight  k on  \Gamma_{0}(N) with
character  \chi such that N/(conductor  \chi ) is square‐free, and  \epsilon>0 is given, then there
exists a square‐free  n\leq k^{3+\epsilon}N^{7/2+\epsilon} such that  a(f, n)\neq 0 . This significantly improves
the already known existential and quantitative result from previous works.

1. INTRODUCTION

It is an obvious fact that the Fourier coefficients of a modular form completely deter‐
mine it. Thus an interesting question to ask is, whether any subset of set of all Fourier
coefficients determines the form. The oldest result in this direction says that if  f is a
form in  M_{k}(\Gamma) (here  \Gamma\subseteq SL_{2}(Z) is a congruence subgroup,  k\geq 1 , and  M_{k}(\Gamma) is the
space of modular forms of weight  k with respect to  \Gamma ) with a Fourier expansion, say for
 \tau\in \mathcal{H}=\{z\in C|\Im(z)>0\},

(1.1)  f( \tau)=\sum_{n=0}^{\infty}a(f, n)e^{2\pi in\tau},
then there exists a number  A\geq 0 depending on the space such that if  a(f, n)=0 for
all  n\leq A , then  f=0 . Tıle smallest such bound or threshold is due to Hecke  i7] and
is known to be of the same magnitude as the quantity  k\cdot[SL_{2}(Z):\Gamma] , a similar result is

true for Siegel modular forms by results due to Siegel (see [5] for example). This bound
is popularly known as (mistakenly though) Sturm’s bound,  wl_{1}o proved a ‘  mod p ’ version
of this result.

Many other affirmative results are available in the literature like the “multiplicity‐oner‘
results in the case of elliptic newforms of integral weights, and are crucial in many appli‐
cations, both analytic and arithmetic in nature. For example, the same question in the
setting of half‐integral weight modular forms has a bearing to questions like non‐vanishing
of central  L‐values [11], and that for Siegel modular forms to certain automorphic lifting
theorems [13] etc. We refer the reader to [1] for more extensive discussion on this.

Let us now discuss some of the recent results in this line of investigation. In [1], the
authors proved (essentially) that the elliptic cusp forms of integral weights and square‐free
levels are determined by their ‘square‐free’ Fourier coefficients (i.e., by those which are
indexed by square‐free numbers). This was motivated by the quest of such a result for the
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so‐called Hermitian modular forms, which are automorphic with respect to the unitary
group  U(n, n) over the ring of integers of an imaginary quadratic field. Let us recall those
results in some detail.

Let  N be a positive integer and  \chi a Dirichlet character  mod N with conductor  m_{\chi}.

When  N/m_{\chi} is square‐free it was proved in [1] that the set of all square‐free Fourier
coefficients determine any cusp form in  M_{k}(N, \chi) (see section 2). Further in [2], the
existence of an analogue of the Sturm’s bound for the square‐free Fourier coefficients was
proved. To be more precise, let us define  \mu_{sf}(k, N) to be the smallest integer such that
whenever  f\in S_{k}(N, \chi) and  a(f, n)=0 for all square‐free  n\leq\mu_{sf}(k, N) , then  f=0 . It is

not a‐priori clear that such a bound should exist. This was indeed shown to exist in [2],
and the following rather crude bound was shown. In particular the bound is cxponential
in the weight and level.

(1.2)  \mu_{sf}(k, N)\leq a_{0} .  N .  2 \frac{r(r-1)}{2}e^{4r\log^{2}(7k^{2}N)},

where  a_{0} is an absolute constant and  r=(k-1)N.

The idea in [2] was to reduce to newforms following an argument of Balog and Ono [3],
where one needs to work with many primes at which two distinct newfortns have distinct
eigenvalues. One way to handle this is the prime number theorem (PNT) for newforms,
and the bad bound is due to the error term in the PNT.

The purpose of this article is to improve the above bound vastly. The main idea is
to work with suitably modified  L‐functions, and replace the PNT by the Rankin‐Selberg
method. Of course one has to keep track on the dependence of the ‘analytic conductor’

(essentially a function of weight and level); and reduce oneself to the case of newforms.
The latter step is a little tricky. Let us now state the main result of this paper.

Theorem 1. Let  N be a positive integer and  \chi a Dirichlet character mod  N with conductor
 m_{\chi} such that  N/m_{\chi} is square‐free. Let  f\in S_{k}(N, \chi) be non‐zero and fix any  \epsilon>0 . Then
there exists a square‐free integer  n\ll k^{3+\epsilon}N^{7/2+\epsilon} such that  a_{f}(n)\neq 0 , the implied constant
depending only on  \epsilon.

Clearly this is a significant improvement over the previously known bound. This was
in part motivated by an asymptotic in [10] on a similar subject. But we follow a simpler
approach to get our result. By exploiting the properties of Rankin‐Selberg  L‐functions,
first we obtain either an asyinptotic, or an upper bound for  a (suitable smooth) weighted
sum of the products  \lambda_{f}(n)\lambda_{g}(n) of square‐free Fourier coefficients of normalized Hecke
newforms, with explicit error. Once these have been established, the proof of Theorem ı
is obtained by reducing to this case from an arbitrary cusp form using newforn} theory.
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2. SETUP

General notation and preliminaries. Let  N be a positive integer and  \chi a Dirichlet char‐
acter  mod N with conductor  m_{\chi} . Then  M_{k}(N, \chi) denotes the space of modular forms of
weight  k on  \Gamma_{0}(N) with character  \chi and  S_{k}(N, \chi)\subset M_{k}(N, \chi) denotes the space of all
cusp forms.

We use the usual  \epsilon convention in analytic number theory:  \epsilon>0 is an arbitrarily small
nunlber which may vary at different occurances. Moreover we adopt the standard Landau
 O‐symbol:  A\ll B means   A\leq (constant) .  B with the constant depending on certain
parameters at hand, usually mentioned explicily.

Definition 1  (^{11}Naive^{11} Rankin‐Selberg Convolution). Let  f,  g\in S_{k}(N, \chi) be normalized
Hecke newforms for some level dividing  N . Let  \lambda_{f}(n) and  \lambda_{g}(n) be the Fourier coefficients
of  f and  g respectively. Then the “naive” Rankin‐Selberg convolution is defined as

(2.1)  L(f\cross\overline{g}, s)  := \sum_{n\geq 1}\lambda_{f}(n)\overline{\lambda_{g}(n)}n^{-s} , for  {\rm Re}(s)>1.

The usual Rankin‐Selberg convolution  L(f\otimes g, s) of  f and  g is defined as

(2.2)  L(f \otimes\overline{g}, s) :=\prod_{p}\prod_{\dot{x},j=1}^{2}(1-\alpha_{i}(p)
\overline{\beta_{j}(p)}p^{-s})^{-1},
where for a prime  p , the Satake‐parameters  \alpha_{1}(p),  \alpha_{2}(p) and  \beta_{1}(p),  \beta_{2}(p) are the roots of
the quadratic polynomials  x^{2}-\lambda_{f}(p)x+\chi(p) and  x^{2}-\lambda_{g}(p)x+\chi(p) respectively.

Since  \lambda_{f}(n) and  \lambda_{9}(n) are multiplicative,  L(f\cross g, s) has an Euler product. Let   L_{p}(f\cross
 \overline{g},  s) denote the pth Euler factor of  L(f\cross\overline{g}, s) . Then for  p\{N , we have (see [9, page 133])

 L_{p}(f \cross\overline{g}, s)=(1-p^{-2s})\prod_{i_{)}j=1}^{2}(1-\alpha_{i}(p)
\overline{\beta_{j}(p)}p^{-s})^{-1}
Let  L_{N}(f\cross\overline{g}, s)  := \prod_{p(N}L_{p}(f\cross\overline{g}, s) . Then we can write

(2.3)  L_{N}(f\cross\overline{g}, s)=L(f\otimes\overline{g}, s)H(s) ,

where  H(s)= \prod_{p}H_{p}(s) and  H_{p}(s) is given by

(2.4)  H_{p}(s)=\{\begin{array}{l}
(1-p^{-2s}) if p(N;
\prod_{i,j=1}^{2}(1-\alpha_{i}(p)\overline{\beta_{j}(p)}p^{-s}) otherwise .
\end{array}
Since  H(s) is equal to   \zeta^{(N)}(2s)^{-1}(:=\prod_{p(N}(1-p^{-2s})) up to finitely many Euler products,
 H(s) converges absolutely for  {\rm Re}(s)>1/2.
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We would prefer to work with smooth cut‐off functions from now on, and hence we
consider a smooth and positive function  \omega with support in  [ \frac{1}{2},1] . The Mellin transform
of  \omega is given by

  \overline{\omega}(s):=\int_{0}^{\infty}y^{s-1}\omega(y)dy.
The integral converges for any  s\in C , thus  \overline{\omega}(s) is entire and since  \omega is smooth and
compactly supported, using integration by parts we get

(2.5)  \overline{\omega}(s)\ll|s|^{-A-1}

for any  A>0 , the implied constant depends only on  A and  \omega.

Let   \sum^{\#} denote the sum over square‐free integers. Then we prove the following result.

Proposition 2.1. Let  f,  g\in S_{k}(N, \chi) be normalized newforms for some level dividing  N.

Then we have for any  1/2<c<1 and  \epsilon>0 , the following.

(i) There exists a constant  C(f, \omega)>0 such that

  \sum_{n\geq 1}^{\#}\frac{3(1-c)}{2}+\epsilon.
 (n,N)=1

(ii) If  f\neq\overline{g}

 (n,N)=1 \sum_{n\leq x}^{\#}\lambda_{f}(n)\overline{\lambda_{g}(n)}\omega(n/x)=O
(x^{c}k^{1-c+\epsilon}N^{\frac{3(1c)}{2}+\epsilon})
.

In both (i) and (ii), the implied constants depend only on  \epsilon>0 . Moreover,  C(f, \omega)\gg_{\epsilon}
 (kN)^{-\epsilon}.

Proof. Let

(2.6)  L^{b}(f \cross\overline{g}, s) :=(n,N)=1\sum_{n\geq 1}^{\#}\lambda_{f}(\prime 
n)\overline{\lambda_{g}(n)}n^{-s}=\prod_{t4N}(1+\lambda_{f}(p)\overline{\lambda_
{g}(p)}p^{-s}) .

Then we can write

(2.7)  L^{b}(f\cross\overline{g}, s)=L_{N}(f\cross\overline{g}, s)H_{1}(s) ,

where  H_{1}(s)= \prod_{p(N}H_{1,p}(s) and  H_{1,p}(s) is given by

 H_{1,p}(s)=(1+\lambda_{f}(p)\overline{\lambda_{g}(p)}p^{-s})L_{p}
(f\cross\overline{g}, s)^{-1}.

Let  H_{1,p}(X)=(1+ \lambda_{f}(p)\overline{\lambda_{g}(P)}X)(1-X^{2})^{-{\imath}}
\prod_{i,j=1}^{2}(1-\alpha_{i}(p)\overline{\beta_{j}(p)}X) . Now noting that
for these primes,  H_{1,p}'(0)=0 , we get that  H_{1}(s) converges absolutely for  {\rm Re}(s)>1/2 (see
[4] for similar arguments). Thus using (2.3) and (2.7) we get

(2.8)  L^{\mathfrak{h}}(f\cross\overline{g}, s)=L(f\otimes\overline{g}, s)H(s)H_{1}(s) .
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In the following calculations we make use of the uniform convexity bound for  L(f\otimes\overline{g}, s) .
For  1/2\leq\sigma\leq 1 , this is given by (see [9, Theorem 5.41])

(2.9)  L(f\otimes\overline{g}, s)\ll q(f\otimes\overline{g}, s)^{\frac{(1-\sigma)}{2}+
\epsilon},
where the implied constants depend only on  \epsilon . Here  q(f\otimes g, s) denotes the analytic
conductor of  L(f\otimes\overline{g}, s) (see [9, chapter 5] for details).

Using the Mellin inversion formula for  \overline{\omega}(s) (see [9, page 90]) , we have

  \sum_{n\geq 1}^{\#}\lambda_{f}(n)\overline{\lambda_{g}(n)}\omega(n/x)=\frac{1}
{2\pi\dot{i}}\int_{(2)}L^{b}(f\cross g, s)x^{s}\overline{\omega}(s)ds
 (n,N)=1

(2.10)  = \frac{1}{2\pi\dot{i}}\int_{(2)}L(f\otimes g, s)H(s)H_{1}(s)x^{s}
\overline{\omega}(s)ds.
We use (2.8) to get the previous equality. Now we move the line of integration to  1/2<
 c<1 (  c will be chosen later). Since Rankin‐Selberg convolution is polynomially bounded
in vertical strips and  \overline{\omega} has a rapid decay given by (2.5), the horizontal integrals do not
contribute.

If  f\neq g , then  L(f\otimes g, s) is entire. Otherwise  L(f\otimes g, s) has a pole at  s=1 (see [9,
page 97]). Thus we have
(2.11)

 (n,N)=1 \sum_{n\geq 1}^{\#}\lambda_{f}(n)\overline{\lambda_{g}(n)}\omega(n/x)=
\delta(f, \overline{g}){\rm Res}_{s=1}(F(s))x+\frac{1}{2\pi\dot{i}}\int_{(c)}L(f
\otimes\overline{.q}, s)H(s)H_{1}(s)x^{s}\overline{\omega}(s)ds,
where  \delta(f, \overline{g})=1 if  f=\overline{g} and  0 otherwise and  F(s) denotes the integrand in (2.10). We
let

(2.12)  C(f, \omega) :={\rm Res}_{s=1}(F(s))=H(1)H_{1}(1){\rm Res}_{s=1}
L(f\otimes\overline{f}, s)\overline{\omega}(1)

Since  \omega (ı) and  H(1)H_{1}(1) are positive,  C(f, \omega)>0 . Also  {\rm Res}_{s=1}L(f\otimes\overline{f}, s)\gg(kN)^{-\epsilon}
(for a non‐CM form this can be improved to  \log(kN)^{-1} , see [8]). Moreover, from the
fact that  H_{1}(s) converges absolutely for  {\rm Re}(s)>1/2 , it follows that  H(1)\gg 1 , with the
implied constant absolute. Further, from (2.4), we see easily that

 H(1) \gg\prod_{p|N}(1-1/p)^{4}\gg 2^{-4\nu(N)},
where  \nu(N) denotes the number of prime divisors of  N . Invoking the standard bound
 \nu(N)\ll\log N/\log\log N\ll_{\epsilon}N^{\epsilon} , we finally get for any  \epsilon>0 that

(2.13)  C(f, \omega)\gg_{\epsilon}(kN)^{-\epsilon}

Now we estimate the integral on the line  c . Since both  H(s) and  H_{1}(s) converge
absolutely for  {\rm Re}(s)>1/2 , we have  H(s)H_{1}(s)\ll_{\epsilon}1 . Using the uniform convexity bound
(2.9) and that (see [6, page 609])

 q(f\otimes g, s)\ll(1+|t|)^{4}k^{2}N^{3}.
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the integral on the line  c is bounded by

 x^{c}k^{1-c+\epsilon}N \frac{3(1c)}{2}+\epsilon\int_{0}^{\infty}(1+|t|)^{-A+1-
2c+\epsilon}dt.
We choose   A=2-2c+2\epsilon , so that the above integral converges absolutely. Thus we have

(2.14)   \sum_{n\geq 1}^{\#}\lambda_{f}(n)\overline{\lambda_{g}(n)}\omega(n/x)=
\delta(f, \overline{g})C(f, \omega)x+O(x^{c}k^{1-c+\epsilon}N^{\frac{3(1-c)}{2}+
\epsilon}) ,

 (n,N)=1

This completes the proof of the proposition.  \square 

3. PROOF OF THEOREM 1

Proof. Let  \{f_{1}, f_{2}, f_{s}\} be a basis of newforms of weight  k and level dividing  N for
 S_{k}(N, \chi) . Now by the theory of newforms, for any non zero  f\in S_{k}(N, \chi) , there exist
 \alpha_{i,\delta}\in C such that  f(\tau) can be written uniquely in the form

(3.1)  f( \tau)=\sum_{i=1}^{s}\sum_{\delta m_{\chi}|N}\alpha_{i,\delta}f_{i}
(\delta\tau)
such that at least one  \alpha_{i,\delta}\neq 0 . Note that in the above summation, for  \delta>1,  \alpha_{i,\delta}=0 if  f_{i}
is not a newform of level   N/\delta . Moreover, since  N/m_{\chi} is square‐free, we have  \delta is square‐
free in the above summation. Let  d_{0} be the smallest divisor of  N such that  \alpha_{i,d_{0}}\neq 0 for
some L.

For  (n, N)=1 we have

 a_{f}(d_{0}n)= \sum_{i=1}^{s}\sum_{\delta m_{\chi}|N}\alpha_{i,\delta}
\lambda_{f_{i}}(\frac{d_{0}n}{\delta}) .

For  \delta<d_{0},  \alpha_{i,\delta}=0 by our choice of  d_{0} . Also, since  (n, N)=1,   \lambda_{f_{i}}(\frac{d_{0}n}{\delta})=0 whenever
 \delta\neq d_{0} . Thus, after renumbering if necessary, we can write for some  r\leq s

 a_{f}(d_{0}n)= \sum_{i=1}^{r}\alpha_{i,d_{0}}\lambda_{f_{i}}(n) .

Now summing over all such square‐free  n with the weight function  \omega we get

  \sum_{(n,N)=1}^{\#}|a_{f}(d_{0}n)|^{2}\omega(\frac{n}{x})=\sum_{(n,N)=1}^{\#}
\sum_{in\geq{\imath} n\geq 1=1}^{\Gamma}|\alpha_{i,d_{0}}|^{2}|\lambda_{f_{i}}
(n)|^{2}\omega(\frac{n}{x})
(3.2)

 + \sum_{=1}^{\#} \sum_{in\geq 1,j=1,(n,N)i\neq j}^{r}\alpha_{\uparrow,d_{0}}
\overline{\alpha_{j,d_{0}}}\lambda_{f_{\dot{i}}}(n)\overline{\lambda_{f_{j}}(n)}
\omega(\frac{n}{x}) .

Note that since  (n, N)=1 , if  d_{0}\neq 1 , then all the  f_{i}s appearing in the above sum are
newforms of level  N/d_{0} . If  d_{0}=1 , then the  f_{i}s appearing in the above sum can be
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newforms of any level dividing  N . Thus using the proposition (2.1), the l.h.  s of (3.2) is

  \geq\sum_{\dot{\iota}=1}^{r}|\alpha_{i,d_{0}}|^{2}(C(f_{i}, \omega)x+O(x^{c}k^
{1-c+\epsilon}(N/d_{0})^{\frac{3(1-c)}{2}+\epsilon}))

 - \sum_{\dot{i}\neq j}^{r}|\alpha_{i,d_{0}}\overline{\alpha_{j,d_{0}}}|i_{J}=
1(o(x^{c}k^{1-c+\epsilon}(N/d_{0})^{\frac{3(1-c)}{2}+\epsilon}))
  \geq(\sum_{i=1}^{r}|\alpha_{i,d_{0}}|^{2}C(f_{i}, \omega))x-|\sum_{i=1}^{r}
\alpha_{i,d_{0}}|^{2}(\frac{3(1-c)}{2}+\epsilon.

Now recall from (2.12), the expression for  C(f_{\dot{i}}, \omega) . Using the bound  C(f_{\dot{i}}, \omega)\gg(kN/d_{0})^{-\epsilon}
from (2.13) and the Cauchy‐Schwarz in equality in the second term, we get
(3.3)

  \sum_{n\geq 1}^{\#}|a_{f}(d_{0}n)|^{2}\omega(\frac{n}{x})\gg\sum_{i=1}^{r}
|\alpha_{i,d_{0}}|^{2}((kN/d_{0})^{-\epsilon}x-(kN/d_{0})x^{c}k^{1-c+\epsilon}(N
/d_{0})^{\frac{3(1-c)}{2}+\epsilon)} .

 (n,N)=1

Here we use the fact that  r\leq\dim(k9_{k}(N/d_{0}, \chi))=kN/d_{0}.

The above inequality holds true for any such weight function  \omega defined as in section 2.
Also we can choose  0\leq\omega\leq 1 so that

(3.4)  (n,N)=1 \sum_{n\geq 1}^{\#}|a_{f}(d_{0}n)|^{2}\omega(\frac{n}{x})\leq\sum_{(n,
N)=1}^{\#}|a_{f}(d_{0}n)|^{2}x/2<n<x
Thus from (3.3) we have

  \sum_{x/2<n<x}^{\#}|a_{f}(d_{0}n)|^{2}\gg\sum_{?=1}^{r}|\alpha_{i,d_{0}}|^{2}(
(kN/d_{0})^{-\epsilon}x-x^{c}k^{2-c+\epsilon}(N/d_{0})^{\frac{5-3c}{2}+\epsilon)
} .

 (n,N)=1

We choose   c=1/2+\epsilon (this is the best possible) and the result folıows by noting that the
 r.h.s is  >0 for  x\geq k^{3+\epsilon}(N/d_{0})^{\frac{7}{2}+\epsilon}  \square 

Remark 3.1. The use of a uniform sub‐convexity bound for  L(f \otimes g, \frac{1}{2}+\epsilon+it) instead of
the convexity bound (2.9) will reduce the exponent of  k and  N further by a small amount.
For example, the use of sub‐convexity result from [12] to get a sub‐convexity bound for
 L(f \otimes g, \frac{1}{2}+\epsilon+it) and using this to bound the integral in (2.11) will give us a slightly
better exponents of  k and  N.
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